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Abstract: Accurate prediction of the remaining range remains a challenge for electric vehicles. 

The state of energy (SOE) is a state parameter representing the remaining range and remaining 

charge of a lithium-ion battery, which is related to the prediction of the remaining range of 

electric vehicles. To obtain the mathematical description and SOE parameters of lithium-ion 

batteries with high accuracy, a parameter identification method using an improved particle 

swarm optimization algorithm with compression factor is proposed. For the estimation of 

energy state, a particle filter (PF) is constructed in this paper, and the unscented particle filtering 

(UPF) algorithm with particle swarm optimization (PSO) is used to achieve the estimation of 

energy state, which can solve the problems of particle degradation and insufficient particle 

diversity of particle filtering. The experimental results show that the SOE estimation error is 

within 0.97% at 25 degrees for all three operating conditions and within 1.29% at 5 degrees for 

all three operating conditions. Therefore, the proposed algorithm has high accuracy and strong 

robustness at different temperatures and different working conditions, and the estimation results 

prove the validity of energy state estimation. 

Keywords: state of energy, unscented particle filtering, particle swarm optimization, parameter 
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identification 

1 Introduction 

In recent years, as the global economy continues to grow and problems such as resource 

scarcity and environmental pollution become more serious, the development of clean and 

renewable energy has become a global issue, and green and healthy new energy sources have 

gradually entered people's vision and become the focus of scholars' research [1-3]. Among them, 

lithium-ion batteries are widely used in new energy vehicles, aerospace, rail transportation, and 

other high-end emerging industries due to their high voltage, high specific energy, long cycle 

life, good safety performance, self-discharge, and so on. In the second quarter of 2022, lithium-

ion batteries, electronic components, integrated circuits, and other industry segments will have 

a value-added growth rate of more than 20%. With the increasing market demand for lithium-

ion batteries and expanding application areas, the safety, and reliability of lithium batteries have 

become an important research topic [4, 5]. 

The lithium-ion battery is a system with highly nonlinear operating characteristics. The 

acquisition and modeling of time-varying parameters inside the lithium-ion battery is an 

important factor affecting the accurate characterization of the lithium-ion battery and the 

accurate estimation of the energy state [6]. To effectively establish the state-space expressions 

of lithium-ion batteries, equivalent models with high adaptability must be established [7-9]. 

The equivalent circuit model can represent the ohmic internal resistance and open-circuit 

voltage characteristics of the battery [10, 11], which can reflect the relevant parameters inside 

the lithium-ion battery from a macroscopic perspective and can be used to study the influence 

of charge/discharge open-circuit voltage discrepancy, which is simple to calculate compared 

with the above two models [12], so the equivalent circuit model is chosen for this paper. 

Thevenin model, second-order RC equivalent model [13-16], PNGV model, and fractional-

order model [17, 18] have been widely used in extensive research by scholars at home and 

abroad [9, 12, 19]. In this paper, after considering the cost and computing power of BMS, the 

second-order RC equivalent model is chosen as the research object. 

The state of energy is both an important parameter to measure the performance of power 
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batteries and a key basis to develop control strategies [20-22]. The SOC, as we know it, refers 

to the remaining charge margin in the battery, which can protect the battery from overcharging 

and discharge and prolong its service life. SOE reflects the degradation of the battery [23-26], 

which is mainly expressed as the decline of the available capacity and the increase of the ohmic 

internal resistance [27-30]. Accurate estimation of SOE is beneficial to enhance the 

management and control of power battery systems and improve the utilization efficiency of 

power batteries [31-35]. The literature [36] proposed a Particle Filter-Extended Kalman Filter 

(PF-EKF) algorithm to estimate SOE to improve the accuracy and robustness of SOE 

estimation; the literature [37] combined the equivalent circuit model with the Unscented 

Particle Filter algorithm to deal with model nonlinearity, The literature [38] used two 

interrelated particle filters to simultaneously implement the equivalent model parameter 

identification and SOE estimation, which partially attenuated the impact of the time-varying 

equivalent parameters on the SOE estimation accuracy; the literature [39] proposed a dual 

filtering algorithm based on the extended Kalman filter and particle filter to establish an online 

energy state estimator based on the model. The results show that the model can better simulate 

the battery dynamics and the convergence of the algorithm is good. 

Currently, particle filtering techniques have been successfully applied to many fields such 

as target tracking, computer vision, and fault diagnosis [40]. However, a common problem in 

basic particle filtering algorithms is the degeneracy phenomenon, which is because the variance 

of particle weights increases with time iterations [41-43]. The degeneracy phenomenon is 

inevitable and after several iterations, the weights of all but a few particles are negligible. The 

degeneracy means that if the drop in generations continues, then a large number of 

computational resources are consumed in dealing with those insignificant particles. To solve 

the problem, the following aspects can be improved: the first method is to increase the number 

of particles, increasing the number of particles is also called increasing the sampling points, the 

number of particles, naturally, can fully reflect the diversity of particles, can slow down the 

degeneration, but the number of computing increases. The second method is to improve the 

proposed density function, the premise assumptions of the basic particle filtering: importance 

resampling can be sampled from a reasonable posterior proposed density distribution to get a 

set of sample points set, and this set of sample points set can cover the real state well. If these 
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assumptions are not satisfied, the effect of the particle filtering algorithm has to be reduced; 

therefore, if an optimal proposed density distribution function can be found to guide the 

resampling to do the correct sampling distribution, then the validity of the sample set can be 

guaranteed, and the final quality of the filtering can be ensured. The third method is the 

optimization of the resampling method. the essence of resampling is to increase the diversity of 

particles. SIR particle filtering does this more successfully than SIS particle filtering. The 

introduction of the resampling mechanism avoids the possibility of losing the diversity of 

particles. 

Therefore, in this paper, a particle swarm optimization algorithm [44] optimized unscented 

particle filtering algorithm is proposed for energy state estimation, using an unscented Kalman 

filter (UKF) as the proposed density function of particle filtering to solve the problem of particle 

degradation of particle filtering, followed by the introduction of particle swarm optimization 

algorithm to improve the resampling link of particle filtering and increase the particle diversity 

to solve the problem of lack of particle diversity of particle filtering. 

The first chapter introduces the current background and status of the lithium battery energy 

state; the second chapter introduces the theoretical knowledge based on this paper, including 

the establishment of the equivalent model, the introduction of the particle swarm optimization 

algorithm and its improvement algorithm, and the description of the particle swarm 

optimization traceless particle filtering algorithm; the third chapter describes the comparison 

and analysis of the results based on the proposed algorithm and other existing algorithms under 

different complex working conditions; the fourth chapter is the conclusion of this paper, which 

demonstrates the superiority of the proposed algorithm and its limitations. 
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2 Mathematical 

2.1 Equivalent Circuit Model 

0U

1pU

1pC

1pR

2pU

2pC

2pR

ocU

+

-

LU

( )I t

0R

Figure 1 Second-order RC equivalent model 

As shown in Figure 1, the second-order RC equivalent model is obtained by adding an RC 

parallel loop to the Thevenin model. In the figure, the RC loop composed of 𝑅𝑝1 and 𝐶𝑝1

represents the stage of rapid voltage change during the chemical reaction inside the battery; the 

RC loop is composed of 𝑅𝑝2 and 𝐶𝑝2 represents the stage of slow voltage change during the

chemical reaction inside the battery. The simple model is easy to calculate, but cannot 

accurately describe the operating characteristics of the battery. The complex model can better 

characterize the charging and discharging characteristics of the battery, but the calculation 

volume will be greatly increased, which reduces the adaptability and promotion of the model. 

The effects of different orders of equivalent circuit models on the SOE estimation effect are 

compared, among which, the second-order RC equivalent model is more accurate and the 

computational effort, although a bit larger than the Thevenin and PNGV models, is within the 

acceptable range. Taking this into account, this paper decides to use the second-order RC 

equivalent model for SOE estimation. According to Kirchhoff's current law as well as the 

voltage law, equation (1) can be obtained. 

Page 5 of 29

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



{

𝑈𝐿 = 𝑈𝑜𝑐(𝑆𝑂𝐶) − 𝑖(𝑡)𝑅0 −𝑈𝑝1 − 𝑈𝑝2
𝑑𝑈𝑝1

𝑑𝑡
= −

𝑈𝑝1

𝑅𝑝1𝐶𝑝1
+

𝑖

𝐶𝑝1
𝑑𝑈𝑝2

𝑑𝑡
= −

𝑈𝑝2

𝑅𝑝2𝐶𝑝2
+

𝑖

𝐶𝑝2

(1) 

In equation (1), 𝑈𝑜𝑐  represents the terminal voltage, 𝑅0  represents the internal

resistance of the second-order RC equivalent model, while 𝑅𝑝1, 𝑅𝑝2 represent the polarization

resistance, 𝐶𝑝1, 𝐶𝑝2 represent the polarization capacitance, and 𝑈𝑝1, 𝑈𝑝2 refer to the voltages

of the two RC loops, respectively. Combined with the definition of SOE, equation (1) is 

discretized and [𝑆𝑂𝐶 𝑈𝑝1 𝑈𝑝2]  is selected as the state variable to obtain the state space

expression for the second-order RC equivalent model, as shown in equation (2). 

{

[

𝑆𝑂𝐸𝑘+1
𝑈𝑝1,𝑘+1
𝑈𝑝2,𝑘+1

] =

[

1 0 0

0 1 −
𝑇

𝜏1
0

0 0 1 −
𝑇

𝜏2]
𝑈𝐿,𝑘+1 = 𝑈𝑜𝑐 − 𝑈𝑝1 − 𝑈𝑝2 − 𝐼𝑅0

(2) 

In equation (2), the parameters to be identified in the model are 𝑅0, 𝑅𝑝1, 𝐶𝑝1, 𝑅𝑝2, 𝐶𝑝2, and

the specific parameter identification method and the parameter identification process will be 

described in detail below. 

2.2 Particle Swarm Optimization Algorithm 

Particle Swarm Optimization is a stochastic search algorithm based on group collaboration 

developed by simulating the foraging behavior of a flock of birds. It is usually considered a 

kind of swarm intelligence (SI). The particle swarm optimization algorithm was invented by 

Dr. Eberhart and Dr. Kennedy. The PSO algorithm simulates the foraging behavior of a flock 

of birds. Suppose a flock of birds is searching for food randomly and there is only one piece of 
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food in the area. All the birds do not know where the food is. But they know how far their 

current position is from the food. So what is the optimal strategy to find the food? The simplest 

and most effective one is to search the area around the bird closest to the food. 

PSO takes inspiration from this model and uses it to solve optimization problems in which 

the solution to each optimization problem is a bird in the search space. We call them "particles". 

All particles have a fitness value determined by the function being optimized, and each particle 

has a velocity that determines the direction and distance they fly. The particles then follow the 

current optimal particle and search the solution space. 

Parameter identification methods include offline identification methods, online 

identification methods, and intelligent identification, by comparing the advantages and 

disadvantages of several identification methods, we choose to use the PSO algorithm of 

intelligent methods as the basic algorithm of parameter identification. Figure 2 shows the flow 

chart of the PSO algorithm. 

Start
Initialize parameter 

settings

Initializing the 

particle swarm

Calculate the 

fitness of each 

particle

2

1

( ( ) ( ))
T

R T

t

J U t U t
=

= −

Five parameters need to be 

estimated

0 1 1 2 2, , , ,R R C R C

Set the number of particles m, the 

maximum number of iterations N, the 

dimension of the objective function, the 

position boundary and velocity boundary 

of the particle swarm

Finding the 

individual optimum 

position
bestP

Finding the global 

optimum position

bestG
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and position of 

each particles

1

1 2

1 1

( ) ( )n n n n n n

i i besti i best i

n n n

i i i

v v c rand P x c rand G x

x x v

+

+ +

= +   − +   −

= +

Loop iteration to 

algorithm 

terminates

end

Figure 2 The flow of the PSO algorithm 

The PSO is initialized as a population of random particles (random solutions) and then 

iterates to find the optimal solution. In each iteration, the particles update themselves by 
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tracking two "extremes". The first one is the optimal solution found by the particle itself, which 

is called the individual extreme value 𝑝𝐵𝑒𝑠𝑡 , and the other extreme value is the optimal 

solution found by the whole population, which is the global extreme value 𝑔𝐵𝑒𝑠𝑡 . 

Alternatively, instead of using the entire population, one can just use the neighbors of some of 

the optimal particles, and then the extreme value among all neighbors is the local extreme value. 

When these two optimal values are found, the particle updates its velocity and new position 

according to equation (3). 

𝑣𝑖
𝑛+1 = 𝜔𝑣𝑖

𝑛 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡𝑖
𝑛 − 𝑥𝑖

𝑛) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝐺𝑏𝑒𝑠𝑡
𝑛 − 𝑥𝑖

𝑛)

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1

(3) 

At present, the PSO algorithm has been widely used in function optimization, neural 

network training, pattern assignment, fuzzy control, and other fields. However, PSO algorithms 

also have defects such as poor local search ability, easy falling into local extremes, and low 

search accuracy. Therefore, the improvement of the PSO algorithm becomes a key challenge. 

2.3 Compression Factor Particle Swarm Optimization Algorithm 

To remove the limitation of the particle velocity boundaries and accelerate the 

convergence of the PSO algorithm, Clerc et al. introduced the compression factor into the basic 

PSO algorithm, and the introduction of the compression factor can change the velocity of the 

particles. The compression factor 𝜆 is calculated as shown in equation (4). 

𝜆 =
2

|2 − 𝜑 − √(𝜑2 − 4𝜑)|
(4) 

Where 𝜑 = 𝑐1 + 𝑐2, the individual learning factor 𝑐1 and the social learning factor 𝑐2

determine the influence of the particles' empirical information and the empirical information of 
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other particles on the trajectory of the particles, which reflects the information exchange among 

the particle population. A larger value of 𝑐1 will cause the particles to search too much in their

local range, while a larger value of 𝑐2, in turn, will drive the particles to converge to the local

optimum prematurely. Figure 3 details the flowchart of the particle swarm optimization 

algorithm after adding the compression factor. 

Start

Set initialization values for particle swarm 

parameters:

1 1, , , ( ), ( )id id best bestM x v P i G i

Calculate the fitness value of the objective 

function

Whether the current fitness value is 

greater than the global pole
Whether the current fitness value is 

greater than the individual pole

Update the global pole value to the current 

fitness value

Update individual pole values to current fitness 

values

Calculation of new position information and 

speed of movement

Error values reach the desired range or 

reach maximum population size

end

Figure 3 The flow of the CFPSO algorithm 

The CFPSO algorithm with the addition of the compression factor has the velocity and 

position calculated as shown in equation (5). 

𝑣𝑖
𝑛+1 = 𝜆 × (𝜔𝑣𝑖

𝑛 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡𝑖
𝑛 − 𝑥𝑖

𝑛) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝐺𝑏𝑒𝑠𝑡
𝑛

− 𝑥𝑖
𝑛))

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1

(5) 

2.4 Improved Compression Factor Particle Swarm Optimization Algorithm 

After adding the compression factor, the CFPSO algorithm achieves a balance between 

global search and local search to some extent. However, another important parameter in the 
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CFPSO algorithm, the value of 𝜔, is a fixed value, that represents the inertia weight of the 

particle itself. But the solution details of the problem change as the number of iterations 

increases, and the fixed value has many defects in the overall solution process. Thus, to 

dynamically adapt to the problem-solving process, this paper introduces adaptive inertia 

weights. Therefore, this paper presents a new ICFPSO algorithm, Figure 4 introduces the flow 

of this algorithm. 
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Figure 4 The flow of the ICFPSO algorithm 

A larger inertia weight facilitates the global search and a smaller inertia weight facilitates 

the local search. The improved velocity and position update process is consistent with equation 

(5), however, the value of ω in equation (5) is no longer a fixed value, but dynamically changing, 

and its change process is shown in equation (6). 

𝜔 = {
𝜔𝑚𝑖𝑛 +

(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)(𝑓 − 𝑓𝑚𝑖𝑛)

𝑓𝑎𝑣𝑔 − 𝑓𝑚𝑖𝑛
, 𝑓 ≤ 𝑓𝑎𝑣𝑔

𝜔𝑚𝑎𝑥 , 𝑓 > 𝑓𝑎𝑣𝑔

(6) 

In this paper, we take 𝜔𝑚𝑎𝑥 = 0.9, 𝜔𝑚𝑖𝑛 = 0.4, when the first iteration is larger ω, the

algorithm has a strong global search capability, with the increase of the number of iterations, ω 

Page 10 of 29

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



is smaller when the algorithm conducts a more accurate local search. 

2.5 Unscented particle filter based on improved particle swarm optimization 

SOE is an important part of the research on lithium-ion batteries. SOE reflects the 

deterioration degree of batteries and is a state parameter representing the remaining battery life 

and remaining power of lithium-ion batteries. Its definition is shown in equation (7). 

𝑆𝑂𝐸(𝑘 + 1) = 𝑆𝑂𝐸(𝑘) +
∫ 𝜂𝑃(𝑘)𝑑𝑘
𝑘+1

𝑘

𝐸𝑇

(7) 

In equation (7), 𝑆𝑂𝐸 (𝑘 + 1)  represents the energy status value of the next moment, 

𝑆𝑂𝐸 (𝑘) represents the energy status value of the current moment, 𝑃 (𝑘) is the power of the 

lithium-ion battery, 𝐸𝑇 is the rated energy of the battery.

The unscented Kalman filter algorithm is used as the proposed density function for particle 

filtering to solve the problem of particle degradation in particle filtering, followed by the 

introduction of an improved particle swarm optimization algorithm to optimize the resampling 

link of the particle filtering algorithm to solve the problem of lack of particle diversity in the 

particle filtering algorithm. As a result, the improved particle swarm optimization unscented 

particle filtering algorithm proposed in this paper is formed, and the flow chart of this algorithm 

is shown in Figure 5. 
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Generate Sigma point set

Sigma point set further prediction

Observation Z update

System status update

System variance and covariance 

update
Update particle status

Normalized weight

?eff thN N

resampling

Calculating the results

Calculate the fitness of each 

particle

The individual optimal position 

and global optimal position are 

calculated

Update the velocity and position 

of each particles

Convergence?

K
=

k
+

1

PSO-UPF results

K<N?

End

Predict the next moment
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 Sample new set of particles

Calculating weight

YN

YN

UKF

PF

IPSO

Figure 5 The flow of the IPSO-UPF algorithm 

The basic flowchart of the proposed algorithm is presented as shown in Figure 5, which is 

described as follows. 

(1) Initialization

N particles {𝑥0
𝑖 , 𝑖 = 1,2,⋯ ,𝑁} are collected from the prior distribution p(x_0), so that 

the initial weight of each sample is 𝑤0
𝑖 =

1

𝑁
, 𝑖 = 1,2,⋯ ,𝑁. 

(2) Significance sampling

Update the particle {𝑥𝑘−1
𝑖 , 𝑝𝑘−1

𝑖 } states with the UKF algorithm, update and thus obtain

{𝑥̃𝑘
𝑖 , 𝑝𝑘

𝑖 }; find the mean 𝑥̅𝑘
𝑖  and variance 𝛿𝑥𝑘

𝑖  of the particle set {𝑥̂𝑘
𝑖 }
𝑖=1

𝑁
; sample particle 𝑥𝑘

𝑖

from the importance density function 𝑞 (
𝑥𝑘

𝑥𝑘−1
𝑖 , 𝑍𝑘) = 𝑁(𝑥𝑘

𝑖 , 𝑥̅𝑘
𝑖 , 𝛿𝑥𝑘

𝑖 ).

(3) Weight update

The weights are calculated: 𝑤̃𝑘−1
𝑖 𝑝(𝑧𝑘/𝑥𝑘

𝑖 )𝑝(𝑥𝑘
𝑖 /𝑥𝑘−1

𝑖 )

𝑞(
𝑥𝑘
𝑖

𝑥𝑘−1
𝑖 ,𝑍𝑘)

 , and the weights are normalized: 

𝑤𝑘
𝑖 =

𝑤̃𝑘
𝑖

∑ 𝑤̃𝑘
𝑖

𝑖
. 

(4) Resampling
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Resampling condition is determined: 𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑘
𝑖 )
2𝑀

𝑖=1

< 𝑁𝑡ℎ, and 𝑁𝑡ℎ is the threshold

value of particle number. 

(5) Improving the particle swarm optimization process

Set the objective function as 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = exp (−
(𝑣𝑜𝑙𝑡𝑎𝑔𝑒−𝑍)2

2𝑅
) /√2𝜋𝑅, take the sample set 

generated by the trackless particle filter as the initial position of the particle swarm, calculate 

the velocity and position of the particle by equation (3) above, and iteratively update it 

continuously, when the maximum number of iterations is reached, the search will be stopped. 

(6) Output final state value

𝑆𝑂𝐸𝑘 =∑𝑤𝑘
𝑖𝑆𝑂𝐸𝑘

𝑖

𝑀

𝑖=1

(8) 

3 Experiment 

3.1 Experimental platform 

To ensure the orderly conduct of the experiment, the construction of the experimental 

platform is of paramount importance. The experimental equipment used in this paper includes 

a power battery large rate charge/discharge tester (BTS 750-200-100-4), a three-layer 

independent temperature-controlled high and low-temperature test chamber (BTT-331C), etc. 

The schematic diagram of the experimental platform is shown in Figure 6. 
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Figure 6 Schematic diagram of the experimental platform 

The power battery large multiplier charge/discharge tester is mainly applied to power 

battery working condition simulation, pulse charge/discharge, cycle life (Cycle Life), multiplier 

charge/discharge test, etc. The three-layer independent temperature-controlled high and low-

temperature test chamber can accurately simulate the complex natural-like environment of low 

temperature, high temperature, high temperature and high humidity, low temperature, and low 

humidity, etc. This paper takes the ternary lithium battery as the research object, whose rated 

capacity is 45Ah. 

3.2 Parameter Identification Result 

Based on the analysis of the PSO algorithm and its improvement algorithm above, we 

finally choose the ICFPSO algorithm for the parameter identification of the model. In this paper, 

to verify the identification effect of the algorithm, Hybrid Pulse Power Characteristic (HPPC) 
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experiment was carried out with laboratory equipment, and the experimental circuit voltage 

data were finally obtained. The end voltages calculated from the equivalent circuit model of the 

battery and the end voltages measured in the laboratory are compared to evaluate whether the 

model parameters identified by the ICFPSO algorithm can fully characterize the battery. Figure 

7 shows the comparison of the simulated and experimental voltages for several algorithms. 

(a-1) Simulated voltage and experimental voltage 

curves 

(a-2) Error curve of simulated voltage and 

experimental voltage 

(a) Parameter identification results at 25 degrees

(b-1) Simulated voltage and experimental voltage 

curves 

(b-2) Error curve of simulated voltage and 

experimental voltage 

(b) Parameter identification results at 5 degrees

Figure 7 Simulation voltage and experimental voltage curve and error curve 

In Figure 7, we can obtain the simulated voltage curves of several parameter identification 

algorithms, and comparing the simulated voltage with the experimental voltage, we can obtain 
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the curves shown above, and we can observe that the simulated voltage obtained by the ICFPSO 

algorithm is closer to the experimental value, and the curve fluctuations are less undulating. To 

analyze the effect of temperature on parameter identification, HPPC experiments at 25 degrees 

and 5 degrees are conducted, and by conducting experiments on the centralized parameter 

identification algorithm at different temperatures, we can obtain the results shown in Figure 7. 

The results show that the change of temperature will make the estimation of parameter 

discrimination poor, but the change of temperature does not affect the comparison of the 

advantages and disadvantages of various parameter discrimination algorithms, and the 

proposed algorithm still has superiority when the temperature is changed compared with other 

algorithms. Next, we can specifically analyze the performance indicators of several algorithms 

to compare the advantages and disadvantages of several algorithms in more detail. Table 1 lists 

the performance indexes of several algorithms. 

Table 1 Performance index of several parameter identification algorithms 

Temperature Algorithm ME MAE RMSE 

25℃ 

ICFPSO 0.0295 0.0042 0.0068 

CFPSO 0.0314 0.0074 0.0089 

PSO 0.0689 0.0047 0.0091 

5℃ 

ICFPSO 0.0441 0.0104 0.0136 

CFPSO -0.0589 0.0167 0.0196 

PSO 0.0619 0.0171 0.0199 

As shown in Table 1, we can calculate the maximum error (ME), the maximum average 

error (MAE), and the root mean square error (RMSE) of several algorithms. the MAE is the 

average difference between the predicted and experimental test values. the RMSE indicates the 

sample standard deviation of the difference between the predicted and observed values, and the 
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root mean square error, to indicate the dispersion of the sample, is as small as possible. Through 

the comparison, it can be seen that the ICFPSO algorithm has the best discrimination effect and 

the smallest error. Calculating the performance metrics of various parameter identification 

algorithms at 25 degrees and 5 degrees respectively, we can very much find that the decrease 

in temperature from 25 degrees to 5 degrees deteriorates the performance of several algorithms. 

However, regardless of the temperature, the proposed algorithm still has a high superiority 

compared to other algorithms. 

To achieve an estimation of SOE, modeling is very important. This paper presents a 

particle swarm optimization algorithm with compression factor and adaptive inertia weights for 

parameter identification of the second-order RC model. The results of parameter identification 

and voltage simulation using this model are given in this paper. ICFPSO algorithm shows that 

the model and parameter identification algorithm can accurately characterize the battery, and 

the maximum simulation error of the voltage is 39.4 mV, which is smaller than that of the single 

particle swarm optimization algorithm. 

3.3 The results of HPPC working condition 

The HPPC condition contains several cyclic experimental steps such as shelving and 

intermittent charging and discharging, which have strong dynamicity and can better simulate 

the working condition of the battery. The initial value of SOE estimation is set to 1, and the 

experimental data of HPPC condition are used to verify the proposed algorithm and several 

commonly used algorithms the comparison of experimental results and estimation errors are 

shown in Figure 8(a) and Figure 8(b), respectively. 
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(a-1) SOE estimation curves (a-2) SOE estimation error curves 

(a) SOE estimation results and errors under HPPC conditions at 25 degrees

(b-1) SOE estimation curves (b-2) SOE estimation error curves 

(b) SOE estimation results and errors under HPPC conditions at 5 degrees

Figure 8 SOE estimation curve and its error curve under HPPC condition 

From Figure 8, we can see that the estimation curve of the proposed algorithm is the best 

fit with the real estimation curve obtained from the experimental test, and there is a certain 

difference between the estimation curve of other algorithms and that measured by the 

experiment. By observing the error curves of several algorithms, it can be seen that the error 

curve of the UKF algorithm fluctuates greatly. The PF algorithm has a slightly smaller 

fluctuation range, which indicates that it has good stability, but its error is large. Compared with 

the previous two algorithms, UPF is superior in stability and maximum error value. Based on 

the UPF algorithm, the proposed algorithm further improves stability and reduces the maximum 

error value. The temperature has a certain influence on the SOE of lithium-ion batteries, and it 

can be seen from Figure 8 that the same algorithm has different effects on the estimation of SOE 

at different temperatures. However, the estimated effect of the proposed algorithm is the best 
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for both 5 degrees and 25 degrees. Therefore, the proposed algorithm has superiority at multiple 

temperatures compared with other algorithms. 

Table 2 Performance indexes of several algorithms under HPPC conditions 

Temperature Algorithm MAX MAE RMSE 

25℃ 

IPSO-UPF 0.0071 0.0008 0.0016 

UPF 0.0174 0.0094 0.0101 

PF 0.0418 0.0282 0.0182 

UKF -0.0383 0.0147 0.0290 

5℃ 

IPSO-UPF 0.0118 0.0014 0.0026 

UPF -0.0206 0.0101 0.0111 

PF 0.0364 0.0302 0.0303 

UKF 0.0603 0.0184 0.0242 

Table 2 lists the maximum error values, MAE values and RMSE values of several 

algorithms. Therefore, compared with Table 2, it can be seen that the parameters obtained after 

parameter identification using the ICFPSO algorithm are substituted into the IPSO-UPF 

algorithm for SOE estimation with the best effect. From the perspective of three performance 

indexes, the values of the three performance indexes of the proposed algorithm are all the 

minimum, which verifies the stability of the proposed algorithm on the other hand, and further 

proves the superiority of the proposed algorithm. By comparing the performance metrics of 

various algorithms at 25 degrees versus 5 degrees under HPPC conditions, we can find that the 

temperature can affect the SOE estimation results. However, the change in temperature does 

not change the superior comparison of the algorithms, and the proposed algorithm still has good 

stability as well as superiority. 
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3.4 The results of BBDST working condition 

The BBDST working condition comes from the actual data collection of the Beijing bus 

dynamic test, which contains the data under various operations such as starting, coasting, 

accelerating, rapid acceleration, etc. It is realistic and dynamic, and the actual application 

working condition of high-power lithium batteries is complex and changeable, so it is more 

convincing to use BBDST experimental data to verify the feasibility of the algorithm. The effect 

of SOE estimation under BBDST working conditions is shown in Figure 9. 

(a-1) SOE estimation curves (a-2) SOE estimation error curves 

(a) SOE estimation results and errors under BBDST condition at 25 degrees

(b-1) SOE estimation curves (b-2) SOE estimation error curves 

(b) SOE estimation results and errors under BBDST condition at 5 degrees

Figure 9 Estimation results and errors of SOE under BBDST condition 

Figure 9 shows the SOE estimation curves and error curves of several algorithms, among 

which, Figure 9(a) shows the SOE estimation results and corresponding errors at 25 degrees, 

and Figure 9(b) shows the estimation curve at 5 degrees. As can be seen from Figure 9, several 

error curves have a high overlap degree in the early stage. After obtaining parameters from the 
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ICFPSO algorithm and combining the IPSO-UPF algorithm, the error curve of SOE estimation 

is superior to other algorithms in fluctuation degree. In the later stage, the fluctuation of other 

algorithms is larger, resulting in a large deviation and obvious error accumulation phenomenon. 

However, the proposed algorithm has good stability with small fluctuation and the overall 

stability is within 0.6%. Through the comparison of the four figures, it can be seen that the SOE 

estimation results obtained by the proposed algorithm are superior to other algorithms no matter 

in the BBDST working condition of 25 degrees or 5 degrees. In the BBDST working condition, 

the maximum error value, MAE and RMSE were used to compare the estimated results of 

several algorithms, as shown in Table 3. 

Table 3 Performance index of the algorithm in BBDST condition 

Temperature Algorithm MAX MAE RMSE 

25℃ 

IPSO-UPF 0.0052 0.0009 0.0013 

UPF 0.0182 0.0065 0.0078 

PF 0.0328 0.0253 0.0257 

UKF 0.0392 0.0242 0.0256 

5℃ 

IPSO-UPF 0.0107 0.0027 0.0034 

UPF -0.0338 0.0092 0.0137 

PF 0.0432 0.0407 0.0408 

UKF 0.0496 0.0257 0.0297 

Table 3 describes the performance indexes of several algorithms. According to Table 3, 

after parameter identification by the ICFPSO algorithm, SOE estimation by the proposed 

algorithm is better than the UPF algorithm, PF algorithm and UKF algorithm. And, by the 

change of the performance index of several algorithms after temperature change, we can further 

determine the superiority of the proposed algorithm. In summary, the proposed algorithm is an 
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optimal choice. 

3.5 The results of DST working condition 

In practical applications, the real-time current of lithium-ion batteries is complex and 

variable. This imposes strict requirements on the dynamic performance of the battery and makes 

it difficult to estimate the SOE of lithium-ion batteries under complex operating conditions. To 

further verify the estimation of lithium-ion battery SOE by the estimation model under more 

complex application conditions, the model is simulated and validated with the experimental 

data of customized DST conditions. 

(a-1) SOE estimation curves (a-2) SOE estimation error curves 

(a) SOE estimation results and errors under DST conditions at 25 degrees

(b-1) SOE estimation curves (b-2) SOE estimation error curves 

(b) SOE estimation results and errors under DST conditions at 5 degrees

Figure 10 Estimation results and errors of SOE under DST conditions 

The estimation curves and corresponding error curves of several algorithms are 

respectively described in Figure 10. From the curve changes in the figure, we can see that the 

SOE curve estimated by the combination of the parameter values obtained after parameter 
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identification of the ICFPSO algorithm and the proposed algorithm has the least fluctuation, 

better convergence can better track the real value, and the error can be controlled within 1%. 

The parameter results obtained by the ICFPSO algorithm combined with other algorithms are 

estimated to be as high as 6.65%, and the error tends to increase significantly. By comparing 

Figure 10(a) with Figure 10(b), it can be found that the proposed algorithm has the best 

estimation and the best stability with high accuracy and strong robustness compared with other 

algorithms in this paper, both at 25 degrees and at 5 degrees. Therefore, we can see that the 

temperature has some influence on the SOE estimation effect, but the proposed algorithm still 

has superiority at multiple temperatures. Table 4 lists the performance indicators of several 

algorithms. 

Table 4 Performance index of the algorithm in DST condition 

Temperature Algorithm MAX MAE RMSE 

25℃ 

IPSO-UPF 0.0097 0.0026 0.0034 

UPF 0.0188 0.0094 0.0109 

PF 0.0665 0.0306 0.0399 

UKF 0.0542 0.0175 0.0222 

5℃ 

IPSO-UPF 0.0129 0.0019 0.0025 

UPF 0.0147 0.0095 0.0099 

PF 0.0289 0.0245 0.0246 

UKF 0.0537 0.0241 0.0291 

Table 4 lists the performance indicators of several algorithms. As can be seen from the 

values calculated in Table 4, the values of several performance indicators of SOE estimation 

using the ICFPSO algorithm for parameter identification and combined with the proposed 

algorithm are the smallest, which indicates that this estimation algorithm has the best effect, 
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and the difference between the estimated value and the real value is small, and the following 

effect is the best. By comparing the performance indexes of several algorithms under two 

temperatures, it can be further demonstrated that the proposed algorithm outperforms other 

algorithms and is a good choice for SOE estimation of lithium-ion batteries. 

4 Conclusion 

To achieve an accurate estimation of SOE, modeling and identification are very important. 

Based on the second-order RC equivalent model, a new improved compression factor particle 

swarm optimization algorithm is proposed for parameter identification. The parameter 

identification results and voltage simulation results of the algorithm are applied in this paper. 

The simulation results of the ICFPSO algorithm show that the model and parameter 

identification algorithm can accurately characterize the battery. The maximum error value of 

the simulation voltage is 29.5 mV, which is smaller than that of the CFPSO algorithm and PSO 

algorithm. For SOE estimation, an improved particle swarm optimization algorithm-unscented 

particle filter algorithm is used to estimate the energy state of lithium-ion batteries. Compared 

with PF, UKF and UPF algorithms, the algorithm used in this paper can estimate SOE better. 

The IPSO-UPF algorithm can better solve the problem of particle degradation and lack of 

particle diversity of the PF algorithm. Experimental results show that this algorithm can achieve 

accurate estimation of SOE well. Next, we will continue to study the joint SOC and SOE 

estimation algorithm of IPSO-UPF with reduced computational effort, so that the algorithm has 

higher computational accuracy and operation speed. 
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