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Abstract  

Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of 
fibrinolysis. However, it is now known that this inhibitor functions and contributes to many 
(patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor 
progression. This review discusses the past, present, and future roles of PAI-1, with a particular focus on 
the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. 
Throughout the past few decades diverse functions of this serpin have unraveled and it is now 
considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, 
including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle 
cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet 
PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. 
Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo 
synthesis. Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to 
play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory 
distress syndrome, including coronavirus disease 2019 disease. This review highlights the 
complexity of PAI-1 and the requirement to ascertain a better understanding on how this  
 complexserpin functions in (patho)physiological processes.
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Plasminogen activator inhibitor 1 (PAI-1) belongs to the serine protease family (SERPIN), originally recognized for its role 
in regulating the fibrinolytic system. However, it is now known to play important roles in many other (patho) physiological 
processes including inflammation, wound healing, cell adhesion, and tumor progression. PAI-1 regulates the fibrinolytic 
system via inhibition of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) thereby 
attenuating plasminogen activation and subsequent fibrin degradation. 

The crucial role for PAI-1 in hemostasis is underscored by the fact that a homozygous deficiency in this serpin gives rise to 
a mild-moderate bleeding diathesis.1 Conversely, increased levels of PAI-1 are associated with thrombotic com- 
plications.2–6 A strong relationship between PAI-1 obesity, diabetes, and metabolic syndrome has identified a key role for 
this serpin in these pathophysiological processes.7 This review will focus on the discovery of PAI-1 and its emerging 
recognition as a potential biomarker and predictor of thrombosis and acute respiratory distress syndrome (ARDS). 
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Fig. 1 Timeline of plasminogen activator inhibitor 1 (PAI-1) discovery. Briefly, a fibrinolysis inhibitor not directed to plasmin was first identified in 
1963 in pregnant women. Reports of a specific plasminogen activator (PA) inhibitor followed, but its function and origin remained elusive. In 
1982 a plasma-derived PA inhibitor and in 1983 an endothelial-derived PA inhibitor were found to decrease PA activity. In 1985, the nomenclature 
was updated and endothelial type PA inhibitor became PAI-1, and the placental type PA inhibitor, PAI-2. In the same year, the main source of plasma 
PAI-1 was identified within platelets and found to be released upon platelet activation. In 1986, a correlation between plasma PAI-1 levels, body 
weight, and insulin levels was revealed. A few years later (1988) vitronectin (Vn) was identified to stabilize PAI-1 in its active form and became 
known as PAI-1’s cofactor. In 1993, a 4G/5G polymorphism in the PAI-1 gene was discovered that influenced PAI-1 plasma levels. Five years later 
(1998), adipose tissue was found to be a major source of PAI-1 and in the millennium, it was shown that PAI-1 binds to fibrin via Vn. In 2004, 
studies revealed that platelets contain PAI-1 messenger ribonucleic acid (mRNA) and in 2019 we showed that PAI-1 is retained on the surface of 
activated platelets. During the coronavirus disease 2019 (COVID-19) pandemic, PAI-1 was identified as 

a key driver of the hypofibrinolytic state observed in patients with severe COVID-19. 

 
Discovery 

Reports of a specific plasminogen activator (PA) inhibitor were first reported in 1963, when Brakman and 
Astrup identified a fibrinolytic inhibitor in pregnant women that did not directly inhibit plasmin but instead 
seemed specific for urokinase8 (Fig. 1). Additional reports of a specific PA inhibitor present in human plasma 
followed9,10; however, there was uncertainty as to whether specific PA inhibitors had any necessary function,8 as 
the abundance of circulating α2-antiplasmin, the inhibitor of plasmin, was thought to be sufficient for regulation 
of the fibrinolytic system.11–13 Kinetic data to support the notion of PA inhibition was lacking and the then 
current dogma was that activity was regulated by release from the vessel wall, hepatic clearance, specific 
interactions with fibrin, or proteolytic activation. 

The existence and importance of specific PA inhibitors in plasma was revealed in 1982 when it was found that 
addition of tPA to plasma significantly attenuated its functional activity14,15 (Fig. 1). Subsequently, synthesis of a 
highly stable PA inhibitor of Mr 55,000 was described to be released from bovine aortic endothelial cells.16 In 
1985, our mentors and predecessors at the University of Aberdeen, Professors’ Booth and Bennett, identified a 
PA inhibitor housed within platelets that was present in negligible amounts in platelet-free plasma.17 This 
inhibitor was secreted following platelet activation and formed a 1:1 complex with tPA.17  

These observations collectively led to the classification of PA inhibitors by the Subcommittee on Fibrinolysis at 
the International Committee on Thrombosis and Haemostasis in Jerusalem, Israel in 1985.18 They initially 
identified three groups: the endothelial type PA inhibitor, the placental type PA inhibitor, and protease nexin.18 The 
ensuing advancement in laboratory techniques permitted differentiation between  PA and plasmin inhibitors, 
purification of PAI-1,19 development of specific antisera to PAI-1, and cloning of PAI-1 deoxyribonucleic 
acid.20,21 This allowed demonstration that this serpin was the principal physiological inhibitor of tPA and uPA 
that is capable of inhibiting cell-associated proteolysis as well as intravascular fibrinolysis.22 

 

 

 

 

 



 

 
Mechanism of Action 

Like other members of the SERPIN superfamily, PAI-1 inhibits its target serine proteases, tPA and uPA, by 
mimicking the substrate of the target protease on the exposed reactive center loop (RCL) to which the 
enzyme binds forming a reversible Michaelis–Menten complex.23–25 The RCL is cleaved by PA, allowing PAI-1 
to “trap” its substrate in a stable covalent acyl-enzyme complex.26 Cleavage is coupled with rapid insertion of 
the RCL into the PAI-1 β-sheet A,27 translocating the PA to the opposite side of PAI-1 molecule, thereby resulting 
in distortion and inactivation.28,29 PAI-1 is a more potent inhibitor of tPA than uPA, as demonstrated by their 
second-order rate constants which differ by an order of magnitude (12.6 x 107 M–1s–1 vs. 4.8 x 106 M–1s–1).30 

These differences arise due to an increased contact area between tPA and PAI-1.23,31 

Circulating PAI-1 exists largely in complex with tPA.32 The complex is cleared from the circulation by the low-
density lipoprotein receptor family leading to endocytosis and deg- radation.33 In an uncomplexed state PAI-1 can 
exist in either an active or latent state.34–36 The latent form of PAI-1 occurs due to spontaneous insertion of its RCL 
in to the central body of the PAI-1 molecule, producing an additional strand of β- sheet A.35 The active form of 
PAI-1 is very unstable, with a short half-life of < 10 minutes, before it is rapidly converted to its inactive, latent 
form.34,37 PAI-1 is stabilized in its active form by binding to its cofactor, the adhesive glycoprotein vitronectin 
(Vn),38–40 which delays conversion of PAI-1 to its latent conformation and endows capacity to bind to fibrin. 

 
 

 

Fig. 2 Plasminogen activator inhibitor 1 (PAI-1) is secreted from activated platelets and colocalizes on platelet-associated fibrin fibers to stabilize 
the thrombus from premature degradation. Platelet-rich plasma (PRP) clots (30%) were formed in the presence of annexin V-fluorescein 
isothiocyanate (FITC) to label platelets (green), a DyLight 550 fluorescently labeled antibody to PAI-1 (yellow) and Alexa Fluor 647 labeled 
fibrin(ogen) (red). Clotting was initiated with 0.125 U/mL thrombin and clots were formed at 37°C for 2 hours. Clots were imaged using a Zeiss 
LSM710 confocal microscope. 
Scale bar represents 10 μm. Figures from Morrow et al, 2019.148 

 

 
Source of PAI-1 

Plasma PAI-1 is present at a low concentration of 5 to 20 ng/mL41 (0.4 nM41) and is an important 
determinant of fibrinolytic potential in plasma.42 It is cleared by the liver with a half-life of approximately 5 
minutes indicating a high basal rate of synthesis. The major circulating pool of PAI-1, accounting for 
approximately 90%, is located within platelet α-granules.36,43,44 Our work has shown that following de- 
granulation of platelets a proportion of the inhibitor remains associated with the activated platelet membrane 
and is associated with platelet-bound fibrin, as well as forming part of the secretome (Fig. 2).45 PAI-1 is known  

 

 



 

to be synthesized and packaged into α-granules within megakaryocytes, the precursor cells that produce and 
release plate- lets into the circulation.46  

However, other studies indicate de novo synthesis of functional PAI-1 within platelets,47–49 from translationally 
active messenger ribonucleic acid (mRNA).47 The synthesis of PAI-1 increased when platelets were activated 
with thrombin, suggesting that de novo PAI-1 synthesis could be a mechanism for platelets to contribute to 
thrombus stabilization.47 Other cell types, including hepatocytes, adipocytes, endothelial, and smooth muscle 
cells, also produce PAI-1.36,50–52 Circulating PAI-1 levels are under genetic control that is directly related to an 
insertion/deletion (5G/ 4G) polymorphism at position –675 of the promoter.53 The 4G/5G polymorphism in PAI-
1 differs according to the ethnic group and has a direct impact on circulating levels of the serpin, with the 4G 
allele giving rise to elevated plasma PAI-1.54–58 Furthermore, levels of PAI-1 vary according to gender and show 
a positive correlation with increasing age.59 The cellular origin of plasma PAI-1 remains unknown,60 as the 
forms of PAI-1 secreted by various cells do not differ structurally or via glycosylation. Studies have suggested 
that the liver may be the primary plasma source of PAI-1, as PAI-1 gene expression is upregulated by endotoxins 
and several inflammatory mediators, namely, tumor necrosis factor al- pha (TNF-α) and transforming growth 
factor beta (TGF-β).61–63 PAI-1 is highly expressed in the vasculature, within endothelial cells and smooth 
muscle cells64,65 and while the contribution of these cells to the circulating pool is unclear, its synthesis is 
clearly driven by cytokine regulation.66 PAI-1 is also synthesized by adipocytes with increased expression in 
adipose tissue derived from obese humans and mice.67 Several human ex vivo studies have shown that PAI-1 
repleased from visceral adipose tissues contribute to plasma PAI-1 levels.43,68,69 However, the relationship is 
complex, as an increase in adipocyte PAI-1 mRNA does not always translate to an increase in the plasma 
concentration. For example, PAI-1 gene expression in subcutaneous adipose tissue was increased in obese 
patients on a low-calorie diet, while plasma PAI-1 levels decreased.70 

 

 
PAI-1 as a Risk Factor for Thrombosis 

Inhibition of fibrinolysis by PAI-1 promotes a prothrombotic state by reducing fibrin degradation. PAI-1 is a key 
protein in the progression of vascular events and is linked to both arterial (myocardial infarction [MI],2,3,5 

stroke4) and venous thrombosis (deep vein thrombosis [DVT]6 and microvascular thrombosis71). Plasma PAI-1 
concentration has been shown to increase prior to MI5 with levels persistently elevated in survivors.2 
Additionally, plasma PAI-1 levels are associated with heart failure, death, and a strong independent predictor of 
mortality at 30 days in patients with acute ST-elevated MI (STEMI).72 Hypofibrinolysis has recently been 
recognized as a risk factor for patients with STEMI and our recent work has shown that shear-induced platelet 
reactivity was associated with an increased rate of thrombin generation and is correlated with reduced 
endogenous fibrinolysis.73 As platelets harbor high concentrations of PAI-1, it is hypothesized that platelet-
derived PAI-1 is driving hypofibrinolysis in STEMI patients. Following acute MI, the renin-angiotensin II system 
(RAS) is strongly activated, triggering PAI-1 synthesis via angiotensin II.74 PAI-1 displays circadian rhythm with 
a peak in early morning, that coincides with the time of onset of MI.75 Both the clock system and RAS have 
been linked to  circadian variation of PAI-1 with the angiotensin type 1 receptor linked to tissue-specific 
circadian oscillations in this inhibitor. To this degree it has been suggested that angiotensin-converting enzyme 
inhibitors targeted to the RAS system may decrease PAI-1 levels and reduce the risk of “early morning” MI.76 

Increased serum levels of PAI-1 are evident in patients with atherosclerotic disease, including coronary artery 
disease77 and stroke.78 Dysregulation of the fibrinolytic system in atherosclerotic plaque development has been 
attributed to reduced vascular smooth muscle cell migration, via inhibition of Vn binding to the integrin αvβ3.79 A 
large meta-analysis has indicated that PAI-1 is implicated in the pathogenesis of atherosclerotic disease80 with 
elevated levels of PAI-1 detected within atherosclerotic plaques.81–83 Schneiderman et al found significantly 
elevated levels of PAI-1 mRNA in severely dis- eased arteries in patients undergoing aortic occlusion surgery 
compared to normal vessles.81 Further analysis revealed that PAI-1 mRNAwas abundant in the base of the plaque, 
within the intima of the atherosclerotic arteries, and in cells contained within the necrotic core and in endothelial 
cells of the adventitial vessels.81 PAI-1 may also contribute to the developing atherosclerotic plaque by exerting 
a stabilizing effect on the surrounding fibrin matrix and allowing fibrin to act as a scaffold for migrating 
cells.84 

 

 

 



 

A higher incidence of DVT85 and venous thrombosis86 has been noted in Asian Indian patients harboring the 
4G poly-morphism.85,86 Similar studies in white Caucasian populations have described association of the 4G 
polymorphism with idiopathic DVT and inherited thrombophilia.87 Generally, perioperative DVT has been linked 
to increased levels of circulating PAI-16 and interestingly preoperative plasma PAI- 1 levels have been identified as 
an independent risk factor for the onset of DVT in patients undergoing total hip arthroplasty.88 Furthermore, 
elevated levels of plasma PAI-1 were identified as an independent risk factor for venous thrombosis in a study 
comparing the clot lysis times of 770 thrombosis with 743 healthy controls.89 

 

PAI-1 as a Biomarker for Obesity, Diabetes, and Metabolic Syndrome 
Plasma PAI-1 is associated with obesity and significantly correlates with a variety of adiposity measures, 

including body mass index (BMI), waist-to-hip ratio, total fat mass, and visceral and subcutaneous adipose 
tissue.90–92 The Insulin Resistance Atherosclerosis Study was the first to report that PAI-1 antigen and activity 
positively correlate with BMI (r ¼ 0.314/0.425, respectively).93 

Adipocytes from obese humans harbor twice as much PAI-1 mRNA resulting in an approximate sixfold increase 
in secretion of PAI-1 and plasma PAI-1 activity compared to lean individuals.54 Weight loss in obese subjects 
reduces plasma PAI-,91,94,95 indicating that circulating levels are directly related to the degree of adipose 
tissue. In line with this, pharmacological inhibition of plasma PAI-1 in animal models results in weight loss, as 
well as a reduction in adipose tissue and adipocyte volume.62,67,96,97 

Metabolic syndrome encompasses several conditions that considerably elevate the risk of cardiovascular 
disease (CVD) and type 2 diabetes mellitus (T2DM). Diagnosis of metabolic syndrome includes at least three of 
the following criteria98,99: abdominal obesity, dyslipidemia, hypertension, hyperglycemia, or insulin resistance. 
A correlation between metabolic syndrome and PAI-1 levels was established in the late 1980s.100 Elevated levels 
of PAI-1 in individuals with metabolic syndrome has been demonstrated using criteria defined by both the World 
Health Organisation101 and the National Cholesterol Education Program Expert Panel on Detection, Evaluation 
and Treatment of High Blood Cholesterol in Adults.102 Elevated levels of PAI-1 in humans predicted the 
incidence of metabolic syndrome in two prospective studies.103,104 It is well established that PAI-1 correlates 
with risk of CVD105 and onset of T2DM.106 Together, these data have led to the interpretation that PAI-1 is a true 
component of metabolic syndrome107 and could be an important clinical criterion for development of future 
CVD.108 

There is accumulating evidence implicating PAI-1 in the development of hypertension,109 and plasma PAI-1 is 
associated with several risk factors for hypertension, including obesity,110,111 insulin resistance,111,112 and 
inflammation.113 Studies reveal a direct correlation between plasma PAI-1 and hypertension as well as its 
associated conditions,114–120 namely, arterial stiffness121 and atherosclerosis.122 Interestingly, the 4G allele for 
PAI-1 is associated with increased systolic, diastolic, and mean arterial blood pressure,123 disclosing a direct link 
between plasma PAI-1 and blood pressure. Despite plasma PAI-1 correctly predicting the risk of hypertension in 
human studies, it did not provide a significant advantage over conventional risk factors, such as fasting glucose, 
alcohol consumption, BMI, cigarette smoking, or C-reactive protein (CRP).124 

 
PAI-1 as a Biomarker for Respiratory Disease 
ARDS develops due to the increased alveolar-capillary permeability associated with the secretion of a fluid rich in 
cells and plasma proteins that results in the recruitment of inflammatory leukocytes and platelets which elevate 
the local inflammatory response.125,126 Elevated PAI-1 has previously been associated with ARDS, including in 
severe acute respiratory syndrome coronavirus (SARS-CoV) and acute lung injury (ALI).127,128 In ARDS, CRP 
promotes local release of PAI-1 from endothelial cells,129,130 and infiltration of platelets and subsequent 
activation may result in local release. Attenuation of the plasminogen activation system leads to abnormal 
turnover of fibrin in the alveolar space. In ALI, a significant increase in PAI-1 antigen and activity levels in plasma 
and edema fluid have been reported, with plasma PAI-1 identified as an independent risk factor for poor 
prognosis and mortality.129–135 One study concluded that PAI-1 levels > 640 ng/mL in edema were a 100% 
positive predictor of mortality.129 

Thrombosis, both venous and arterial, is associated with severe coronavirus disease 2019 (COVID-19).136– 

140 Large vessel thrombi are present in almost half of critically ill COVID-19 patients and microthrombi are  
 
 
 



observed in more than 80% of cases.141 These thrombotic complications are observed despite prophylactic and 
full-dose anticoagulation.139 Importantly, a hypofibrinolytic state and elevated PAI-1 was previously observed in 
the SARS-CoV epidemic in 2002 and 2003.127 Studies have shown that fibrin persistence was mediated by 
overexpression of PAI-1 which inhibits local uPA and tPA.127 SARS-CoV infected cells contain high levels of TGF-β1, 
which in turn stimulates expression of extracellular matrix protease inhibitors, including PAI-1.142 Our recent 
work has shown that a hypofibrinolytic state driven by elevated PAI-1 is also present in COVID-19.143 

Several studies align with observations of increased PAI-1 in COVID-19, which is associated with platelet 
activation, thereby exacerbating the hypercoagulable and hypofibrinolytic state in severely ill patients.143–145 An 
increase in Vn, the stabilizing cofactor of PAI-1, and its substrate, tPA, have also been observed.143–145 

Interestingly, inflammatory cytokines, including interleukin 6 (IL-6), IL-8, TGF-β, and TNF-α, were significantly 
increased and strongly correlated with PAI-1 antigen and activity levels in COVID-19 patients.143,146 The source of 
plasma PAI-1 in COVID-19 is currently unknown but it has been suggested to correlate with obesity in severely 
ill patients.147 

These studies illustrate a clear role for PAI-1 in the etiology of ARDS and suggest this inhibitor is a key driver 
in the abnormal turnover of fibrin in the alveolar space. 

 
Conclusion and Perspectives 

Since the early discovery of an alternative fibrinolytic inhibitor in the 1960s8 and subsequent elucidation of PAI-1 
synthesis, secretion, and function in the 1980s,14,15,17 the understanding of this complex serpin has significantly 
evolved. It is now evident that PAI-1 harbors many additional functions, peripheral to its role in fibrinolysis, of 
which our understanding is still in its infancy. The source of plasma PAI-1 remains an enigma, as are the effector 
molecules and inflammatory stimulus that may influence the source and the pathophysiological function of this 
serpin. A large number of factors are proposed to interact and modify PAI-1 function, including, Vn, fibrin, and 
heparin. Further study of these interactions will develop a better understanding of their importance and how they 
alter the pathophysiology of thrombosis, ARDS, and metabolic syndrome and its associated pathologies, in which 
PAI-1 is now understood to play a crucial role. 
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