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Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) is associated with the de-
velopment of acute respiratory distress syndrome (ARDS), which requires ventilation 
in critically ill patients. The pathophysiology of ARDS results from acute inflammation 
within the alveolar space and prevention of normal gas exchange. The increase in proin-
flammatory cytokines within the lung leads to recruitment of leukocytes, further propa-
gating the local inflammatory response. A consistent finding in ARDS is the deposition of 
fibrin in the air spaces and lung parenchyma. COVID-19 patients show elevated D-dimers 
and fibrinogen. Fibrin deposits are found in the lungs of patients due to the dysregulation 
of the coagulation and fibrinolytic systems. Tissue factor (TF) is exposed on damaged 
alveolar endothelial cells and on the surface of leukocytes promoting fibrin deposition, 
while significantly elevated levels of plasminogen activator inhibitor 1 (PAI-1) from lung 
epithelium and endothelial cells create a hypofibrinolytic state. Prophylaxis treatment of 
COVID-19 patients with low molecular weight heparin (LMWH) is important to limit co-
agulopathy. However, to degrade pre-existing fibrin in the lung it is essential to promote 
local fibrinolysis. In this review, we discuss the repurposing of fibrinolytic drugs, namely 
tissue-type plasminogen activator (tPA), to treat COVID-19 associated ARDS. tPA is an 
approved intravenous thrombolytic treatment, and the nebulizer form has been shown 
to be effective in plastic bronchitis and is currently in Phase II clinical trial. Nebulizer plas-
minogen activators may provide a targeted approach in COVID-19 patients to degrade 
fibrin and improving oxygenation in critically ill patients.
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1  | INTRODUC TION

In early December 2019 multiple cases of pneumonia of unknown 
etiology were reported in Wuhan, Hubei province, China.1-3 In 
January 2020 the World Health Organization declared that this was 
caused by a new type of coronavirus (SARS-CoV-2). The spread of 
SARS-CoV-2 has been exponential, resulting in a global pandemic 
with more than two million confirmed cases. While most people 
with COVID-19 develop only mild illness, characterized by a fever 
and continuous cough,2 approximately 14% develop severe disease 
that requires hospitalization and oxygen support and 5% require 
admission to intensive care. COVID-19 patients with respiratory 
distress present primarily with severe hypoxemia, yet respiratory 
system compliance can vary from near normal to exceptionally low.4 
In severe cases, patients with COVID-19 develop a type of acute re-
spiratory distress syndrome (ARDS), sepsis, and multi-organ failure. 
Older age and co-morbidities are associated with higher mortality.5

A hallmark of ARDS is increased alveolar-capillary permeabil-
ity triggered by exudation of fluid rich in cells and plasma pro-
teins, including albumin, fibrinogen, proinflammatory cytokines, 

and coagulation factors6,7 (Figure 1). This leads to recruitment of 
inflammatory leukocytes, including neutrophils,8 alveolar mac-
rophages,9 monocytes, and platelets, which propagate the local 
inflammatory response.10 Fibrin deposition in the air spaces and 
lung parenchyma are consistently observed with ARDS and con-
tribute to hyaline-membrane formation and subsequent alveolar 
fibrosis.11-14 This promotes the development and progression of 
respiratory dysfunction and right heart failure.15 Fibrin deposition 
is the net result of an alteration in the balance of the coagula-
tion and fibrinolytic pathways, and several therapeutic strategies 
have been explored to target the dysfunction of these systems in 
ARDS.16-19 Recent case studies describe fibrin deposits in biopsies 
of lung tissue from patients with COVID-19,20,21 with ARDS com-
monly reported.22,23 Consistent with this, large numbers of infil-
trating immune cells have been found in COVID-19 positive lung 
tissues, particularly monocytes and macrophages,21,23-25 alongside 
the formation of fibrin,15,21,25 proteinaceous hyaline membranes, 
and pulmonary fibrosis.24,25 Computed tomography (CT) scans 
of COVID-19 patients’ lungs reveal characteristic ground glass 
opacities (GGO), indicating partial filling of the bronchoalveolar 

F I G U R E  1   Development of fibrin deposits in the alveolar space. Development of acute respiratory distress syndrome (ARDS) is 
characterized by the recruitment of inflammatory leukocytes, including neutrophils, macrophages, and monocytes to the pulmonary 
vasculature and alveolar air space. This leads to a massive insult in the alveolar-capillary membrane and exudation of fluid rich in cells and 
plasma proteins, including coagulation factors and fibrinogen. Damage to the endothelial membrane and pulmonary vasculature allows 
accumulation of coagulation factors within the alveoli. Tissue factor (TF) exposed on the surface of damaged endothelial cells and on the 
surface of macrophages and monocytes promotes fibrin formation. High levels of tissue necrosis factor β1 (TNF-β1) activate neutrophils to 
form neutrophil extracellular traps (NETs) and amplify TF exposure on the surface of macrophages and monocytes. Elevated plasminogen 
activator inhibitor (PAI-1) expression on the surface of monocytes and macrophages prevents degradation of fibrin deposits by inhibiting 
tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA)
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airspace with exudate.26,27 The timing of the accidental sampling 
in the COVID-19 patients with lung cancer suggests these early 
fibrin lung depositions present prior to clinical symptoms of pneu-
monia.21 Therefore, biomarkers to allow early identification of 
these changes would be highly beneficial in early diagnosis and 
timely treatment of COVID-19 patients. This review will focus on 
the molecular mechanisms and role of inflammatory cells in under-
pinning fibrin deposition and persistence in the lungs of critically 
ill COVID-19 patients and discuss potential therapeutic strategies 
to help support these patients.

2  | THE INFL AMMATORY RESPONSE IN 
ARDS

Sequestration of leukocytes, particularly neutrophils, within the mi-
crovasculature of the lung is central to the development of ARDS, 
leading to a massive insult to the alveolar-capillary membrane, un-
restricted inflammation, and microthrombus formation (reviewed by 
Matthay et al28). Neutrophils, resident alveolar macrophages, and 
monocyte-derived macrophages, as well as recruited monocytes, 
infiltrate the lungs, enhance lung injury, and play a key role in the 
pathogenesis of ARDS.29-32 Release of proinflammatory cytokines, 
including macrophage inflammatory protein 2 (MIP-2), interleukin 8 
(IL-8), interleukin-6 (IL-6), interleukin-10 (IL-10), and tumour necro-
sis factor α (TNF-α), encourage ongoing infiltration of immune cells 
from the intravascular compartment to the alveolar airspaces.33-35 
Indeed, these proinflammatory cytokines are used as biomarkers of 
ARDS and have been suggested to be important in progression of 
COVID-19 associated ARDS.28

Accumulation of coagulation factors in the lungs can also drive 
ARDS through the activation of protease-activated receptors (PARs), 
which are expressed on cells in the lungs including alveolar epithe-
lial cells, fibroblasts, monocytes, and macrophages.36,37 PAR signal-
ling induced by tissue factor, coagulation factor Xa, factor VIIa, or 
thrombin can augment fibrosis in addition to driving fibrin genera-
tion. Fibrosis is characterized by fibroblast migration, proliferation, 
and deposition of collagen in the intra-alveolar spaces. PAR-1 can be 
acted upon in fibroblasts by both thrombin and factor Xa to promote 
their proliferation, induce production of pro-collagen, and amplify 
expression of various growth factors including connective tissue 
growth factor (CTGF).38,39 PAR signalling can enhance inflammation 
in acute lung injury (ALI) by increasing the expression of pro-inflam-
matory cytokines, including IL-6,40 IL-8,40-42 and platelet derived 
growth factor.43

Accumulation of neutrophils in the lungs further contributes 
to the pathophysiology of ARDS.28 Neutrophils release their DNA 
alongside their nuclear and cytoplasmic contents into the extracellu-
lar environment during the cell death process, NETosis. These web-
like cellular extrusions, termed neutrophil extracellular traps (NETs) 
form a scaffold of chromatin decorated with cytoplasmic and granule 
proteins and histones. NETs play a role in the fight against invading 
pathogens. However, if not tightly regulated, NETs can contribute to 

the pathogenesis of non-infectious diseases where they can exac-
erbate coagulation and inflammation44 and have recently been re-
ported as a contributing player in the pathogenesis of ARDS and ALI 
where they cause further damage to the lungs.45,46 NET production 
has been identified in the lungs during ARDS, where levels of NETs 
are greatly increased in the bronchoalveolar lavage (BAL) of both 
ARDS patients and mouse models of induced ALI and ARDS.45,47-49 
Increased NETs correlate with the severity of ARDS45,48 and disease 
severity is reduced in mouse models when NETs are degraded using 
DNase1.45

3  | DYSREGUL ATION OF COAGUL ATION 
AND FIBRINOLYSIS IN ARDS

A hypercoagulable state exists in the lungs of ARDS patients, lead-
ing to the deposition of fibrin in the intra-alveolar space50 (Figure 1). 
Inflammation modulates coagulation by activating C-reactive pro-
tein (CRP), thereby augmenting tissue factor exposure on mono-
cytes and alveolar macrophages51,52 which in turn promote thrombin 
generation and deposition of fibrin. Hepatic synthesis of fibrinogen, 
an acute phase protein, is increased 2- to 10-fold in plasma during in-
fection53 and local synthesis in the lung epithelium is evident during 
pneumonia54 thereby further exacerbating fibrin deposition. Fibrin 
deposition augments inflammation and fibrosis as well as damaging 
lung surfactant.49,55,56

This is coupled with a hypofibrinolytic state in the alveolar space, 
where fibrinolytic inhibitors have been shown to be elevated. Levels 
of thrombin activatable fibrinolysis inhibitor (TAFI) and protein C in-
hibitor were found to be significantly elevated in the bronchoalveo-
lar fluid of patients with interstitial lung disease when compared to 
healthy controls.57 Furthermore, it has been reported that α2-mac-
rogloblin levels are increased in obstructive lung disease, which may 
correlate with the increase in plasminogen observed in the BAL of 
ARDS patients.58,59 However, the principal fibrinolytic inhibitor 
described in the pathogenesis of ARDS is plasminogen activator in-
hibitor 1 (PAI-1), which is known to be elevated in severe acute respi-
ratory syndrome coronavirus (SARS-CoV) and ALI.11,60

In ARDS, CRP promotes local release of PAI-1 from endothelial 
cells.61,62 Additionally, infiltration of platelets, the major circulating 
pool of PAI-1, may result in local release. We have recently shown 
that a significant amount of this active PAI-1 remains associated 
with the stimulated platelet membrane.63,64 Elevated levels of PAI-1 
in ARDS depresses urokinase (uPA) activity in the bronchoalveolar 
fluid.11 Attenuation of the plasminogen activation system leads to 
abnormal turnover of fibrin in the alveolar space. Plasma PAI-1 levels 
have been reported as an independent risk factor for poor progno-
sis and mortality in ALI.59,61,62,65-68 Prabhakaran et al61 reported a 
significant increase in PAI-1 antigen and activity in plasma and the 
edema fluid in ALI, with evidence of significant pulmonary produc-
tion.61 A clear role for PAI-1 as a prognostic marker in ARDS was con-
firmed by a prospective observational study which demonstrated 
5-fold higher levels in patients who progressed to ARDS than those 
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with uncomplicated aspiration pneumonitis (2687 versus 587 ng/
mL, respectively).67

Importantly, a hypofibrinolytic state and increased PAI-1 was 
observed in the SARS-CoV epidemic in 2002 and 2003.60 Gralinski 
et al used a non-biased systems biology approach to study the dys-
functional fibrinolytic pathway in an infection model of SARS-CoV.60 
Fibrin persistence was mediated by over-expression of PAI-1, which 
overcomes local uPA and tissue-type plasminogen activator (tPA).60 
SARS-CoV infected cells contain high levels of TGF-β1, which in turn 
stimulates expression of extracellular matrix protease inhibitors, in-
cluding PAI-1,68 which has been specifically linked to ARDS induced 
by SARS-CoV.69 These studies illustrate a clear role for PAI-1 in the 
etiology of ARDS and suggest it is a key protein contributing to ab-
normal turnover of fibrin in the alveolar space.

Plasma PAI-1 has been reported as a potential biomarker for pre-
dicting disease progression in ALI to ARDS, with one study conclud-
ing that PAI-1 antigen > 640 ng/mL was a 100% positive predictor 
for mortality.61 Similar pathology of fibrin depositions in the lungs 
has been identified in COVID-19,21,25 suggesting PAI-1 may be a use-
ful prognostic marker for patients at risk of developing ARDS and 
thus requiring critical care and ventilation.

4  | THER APEUTIC OPTIONS FOR ARDS IN 
COVID -19 PATIENTS

A common finding with COVID-19 patients requiring hospitalization 
is increased levels of D-dimers and fibrin degradation products (FDP) 
which are associated with a higher risk of mortality.70 Prothrombin 
time and activated partial thromboplastin time show a mild elonga-
tion.70 Coupled with the fact critically ill COVID-19 patients will be 
immobilized, there is an increased risk of hospital-associated ve-
nous thromboembolism (VTE).71 These findings have led to a recent 
recommendation for prophylactic anticoagulant therapy with low 
molecular weight heparin (LMWH) for patients hospitalized with 
COVID-19, without contraindications, to limit the extent of the coag-
ulopathy.72,73 Heparin treatment (both unfractionated and LMWH) 
reduces inflammatory biomarkers,74 and therefore may be benefi-
cial in reducing the inflammatory state in COVID-19. Disseminated 
intravascular coagulation (DIC) is often observed in patients with 
ARDS where fibrin and microthrombi are detected in the lungs12 and 
BAL.59 Consistent with this, numerous patients infected during the 
SARS-CoV epidemic in 2002-2003 displayed DIC75 and elevated lev-
els of fibrinogen76 and D-dimers.77

Anticoagulant therapy is essential to limit ongoing fibrin depo-
sition and microthrombi formation in ARDS and treat the systemic 
prothrombotic complications in these patients. However, LMWH 
will be ineffective in clearing fibrin clusters deposited in the alve-
olar space. There is therefore a requirement to readdress the bal-
ance of fibrinolysis in the lung, either by enhancing plasminogen 
activation or downregulating fibrinolytic inhibitors. The significant 
increase in PAI-1 in ARDS and ALI curtails local uPA, but also tPA, 
activity.11,17,78,79 In a pig model of trauma, administration of tPA or 

uPA prevented development of ARDS, with animals displaying nor-
mal PaO2.80 A phase 1 clinical trial revealed a significant improve-
ment in PaO2 at 24 hours in 19 out of 20 patients with severe ARDS 
secondary to trauma or sepsis following administration of uPA or 
streptokinase.81,82 These patients had a PaO2 of <60 mm Hg, usu-
ally considered fatal, which increased to 231.5 mm Hg following 
thrombolytic therapy with an overall 30% survival rate and no in-
cidence of bleeding.82 The use of tPA to treat ARDS in COVID-19 
patients has recently been proposed by Moore et al.15 An initial case 
report from three patients from the current SARS-CoV-2 pandemic 
demonstrates a transient improvement in P/F ratio in two cases and 
sustained 50% improvement in one case following administration of 
a 25 mg bolus of intravenous tPA followed by a further 25 mg infu-
sion.83 The authors suggest that there is a precedent for increasing 
the dose of the bolus of tPA while maintaining heparin infusion, as 
the anticoagulant is effective against sub-massive pulmonary em-
bolism.83,84 In addition to readdressing the fibrinolytic balance, ad-
ministration of tPA to ARDS patients may confer anti-inflammatory 
effects, as it has been shown to suppress neutrophil activation in a 
rat model of ALI induced by IL-1α.85

A major consideration in anticoagulant or thrombolytic therapy 
is the undesirable complication of bleeding. In respiratory medicine, 
treatments are often delivered as aerosolized protein therapeutics as 
diffusion of proteins from the blood to the lungs can be limited.86 
Interestingly, nebulized anticoagulant therapy with antithrombin or 
heparin has been shown to reduce lung injury without an increase in 
systemic bleeding in animal models87-89 and ALI patients.90 However, 
as discussed, heparin will prevent further fibrin deposition but will 
be ineffective in the removal of pre-existing fibrin. A recent publica-
tion compared the efficacy of the nebulized form of the plasminogen 
activator, streptokinase, and nebulized heparin in the treatment of 
ARDS.91 The primary outcome in this trial was the change in PaO2/
FIO2 ratio, which was significantly higher in the streptokinase group 
from day 1 to day 8, compared to the heparin and standard-of-care 
groups. Importantly, intensive care unit (ICU) mortality was signifi-
cantly lower in streptokinase patients compared to other groups.91 
A 1999 case report92 describes a young woman with ARDS who was 
resistant to conventional therapeutics and was treated with nebu-
lized and intravenous tPA, followed by continuous treatment with 
nebulized unfractionated heparin. The patient stabilized following 
fibrinolytic treatment and demonstrated a significant enhancement 
in pulmonary gas exchange.

Plastic bronchitis is a condition that can develop from several 
respiratory disorders, resulting in casts of compacted mucous that 
have been shown to contain fibrin.93 Plastic bronchitis is primarily 
observed in children and has been described in cases of influenza 
A (H1N1)94,95 and human bocavirus.96 Nebulized tPA has been 
shown to be effective in preventing recurrent cast formation in 
plastic bronchitis.93 Reports thus far are from single case stud-
ies; however, there is an ongoing phase II clinical trial of nebu-
lized tPA (PLATyPuS; alteplase, NCT02315898) for treatment of 
plastic bronchitis. These data clearly indicate that use of nebulized 
fibrinolytics could allow a more targeted approach to correct the 
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hemostatic imbalance that results in fibrin deposition, while limit-
ing the risk of systemic activation of fibrinolysis that may trigger 
unwanted bleeding (Figure 2). Inhaled tPA is absorbed into the 
vasculature thus increasing fibrinolytic capacity in the plasma97 
and the potential to lyse the microthrombi observed in COVID-19 
patients. However, it is conceivable that intravenous infusions of 
tPA may be necessary to disperse larger thrombi in the circulation. 
A potential caveat of a nebulizer formulation is that aerosolized 
proteins are susceptible to degradation so the formulation and ex-
cipient used must be considered.86 However, in the case of tPA, an 
extreme advantage is that a formulation of nebulized alteplase has 
been developed and is currently being tested in a Phase II clinical 
trial.86

5  | CONCLUDING REMARKS

The COVID-19 global pandemic has necessitated a demand for 
novel therapeutics to limit the complications of ARDS and/or re-
duce the burden on ventilatory support in intensive care units. 
The indication that fibrin deposits occur prior to symptoms21 of 
the disease suggests that targeting the fibrinolytic system to pro-
mote fibrin resolution could limit severity and improve pulmonary 
function. Given the urgent time scale of the clinical requirement, 
repurposing of existing therapies, such as nebulized tPA, to pro-
mote fibrin dissolution in the lung and improve oxygenation is a 
pragmatic approach in addressing the ARDS complications associ-
ated with COVID-19.
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