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Abstract  

The precise assessment of the state of charge (SOC) of lithium-ion batteries (LIBs) is critical in battery management systems. This work offers 

a comprehensive learning particle swarm optimization (CLPSO) and extended Kalman filter (EKF) technique to forecast the SOC of LIBs in order 

to obtain an accurate SOC estimate for power batteries. Firstly, to address the challenge of identifying various parameters of the battery model, the 

bilinear transformation technique is employed to determine the parameters of the second-order RC equivalent circuit model. Secondly, to improve 

the fitness values for the conventional PSO algorithm, which is prone to entering local optimality, a learning strategy (𝑓𝑓𝑖𝑖) is added to the particle 

velocity update method. The optimized PSO and EKF algorithms are integrated to perform online prediction of the SOC of LIBs. The experimental 

results demonstrate that under the conditions of the Beijing Bus Dynamic Stress Test (BBDST), Dynamic Stress Test (DST), and Hybrid Pulse 

Power Characterization Test (HPPC), the parameter identification inaccuracy of CLPSO is restricted to 1%. After multi-metric evaluation, the 

maximum error and mean absolute error of the CLPSO-EKF algorithm in SOC estimation are 0.32% and 0.0652%, respectively, demonstrating 

a higher robustness and accuracy advantage over other versions. 

1 Introduction 

Due to their high energy density, extended lifespan, and low self-discharge rate, LIBs are frequently utilized in electric cars. One of the major 

technologies for electric vehicle battery management, which is crucial for battery protection, lifetime prediction, and temperature control, is the 

battery SOC estimate [1–3]. Therefore, correct SOC estimate is crucial for both theoretical studies and real-world battery applications [4–6]. 

The ampere-time integration approach is one of the current typical algorithms for power battery charge state SOC estimation [7] open-circuit 

voltage method [8,9], neural network method [10,11], and EKF method [12]. Each of these has flaws, and the algorithm's accuracy needs to be 

increased. Although simpler than the ampere-time integration method, it can be affected by the initial state of SOC [13,14]. The relevant state of 

the power cell is determined by the open-circuit voltage method, which is based on the SOC-OCV relationship curve. This method is not 
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appropriate for online estimation of SOC because it requires that the power cell is in an open-circuit state and stationary for a sufficient amount of 

time [15–17]. To achieve high accuracy, the neural network-based method for SOC estimate needs to be trained extensively on the data over a 

long period [18–20]. Most lithium batteries are estimated in practical life applications using the EKF algorithm, although this algorithm ignores 

the impact of noise variation on SOC in practical applications [21–23]. Therefore, some scholars proposed to use PSO algorithm to optimize EKF 

algorithm [24]. However, in the later stage of iterative optimization, the convergence speed of PSO algorithm gradually slowed down, and it was 

easy to fall into local optimization. In view of the shortcomings of PSO, some scholars proposed a collaborative particle swarm optimization 

(CPSO) to improve the problems existing in PSO. However, this method is unstable on multiple multi-peak functions, which will eventually lead 

to errors in the results [25]. 

There are numerous battery identification techniques, which can be broadly categorized into two groups: the first is based on conventional 

parameter identification techniques, like least squares [26–28], which is straightforward but produces inaccurate identification results, the method 

for adaptive fuzzy estimating [29–31], which performs well in nonlinear systems but has significant stability flaws and subpar identification out-

comes. Another type of algorithm is based on intelligent optimization, such as genetic algorithms [32–34], however, the calculation is more 

difficult due to a large amount of data. Although the PSO approach is straightforward to use with several parameters, it has the drawbacks of readily 

falling into local optimums and poor convergence accuracy [35–37]. 

Given the above examination, this paper takes the ternary lithium battery as the research object, selects the second-order RC model as the 

equivalent model of the lithium battery, and the CLPSO as the model parameter identification algorithm, which has certain advantages in terms of 

reliability and robustness compared with the traditional methods and is simple and easy to implement. Compared with the standard PSO algorithm, 

it does not have the disadvantages of the PSO algorithm and has higher accuracy. The EKF algorithm is also optimized using the CLPSO algorithm, 

which uses the historical best information of other particles to update the particle velocity strategy to improve the PSO algorithm. This algorithm 

avoids falling into prematureness to a certain extent and performs more consistently than the CPSO algorithm on multiple multi-peak functions.

The estimated results of SOC were estimated under three complex working conditions: HPPC, BBDST, and DST. Then the convergence, tracking 

performance, and estimation accuracy under actual working conditions are analyzed.  

2 Mathematical Analysis 

2.1 Second-order RC modeling 

The most common model is the Thevenin model, which can simulate the internal chemical reaction of the battery, but the single RC circuit 

cannot fully characterize the dynamic characteristics of the lithium battery. The second-order RC model which is based on the Thevenin model, 
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3 

connects the second-order resistive network in series and uses the resistive circuit's delay properties to replicate the linearity of battery. When 

compared to the Thevenin model, the simple structure of the second-order RC model and straightforward operation are better able to represent the 

static and dynamic characteristics of the battery [38,39]. In light of this, parameter identification is performed using the second-order RC model, as 

demonstrated in Figure 1. 

R1 R2

R0 +

-

U
UOC

I
C1 C2

U1 U2

Figure 1. The Second-Order Circuit Model 

In Figure 1, 𝑈𝑈𝑂𝑂𝑂𝑂 is the sign of the open way taken by the electric current electric force, which is related to SOC. 𝑅𝑅0 is ohmic inside stopping 

effect, and 𝑅𝑅1 and 𝑅𝑅2 denote the battery polarization resistance. 𝐶𝐶1 and 𝐶𝐶2 denote the battery polarization capacitance, 𝐼𝐼 is the current flowing 

through the circuit, and 𝑈𝑈 is the terminal voltage of the battery. The voltage and current expressions of the equivalent circuit can be determined 

using Kirchowski's law by evaluating the created second-order RC model, as shown in equation (1). 

⎩
⎪
⎨

⎪
⎧
𝑈𝑈 = 𝑈𝑈𝑜𝑜𝑜𝑜(𝑠𝑠𝑠𝑠𝑠𝑠) − 𝐼𝐼(𝑡𝑡)𝑅𝑅0 − 𝑈𝑈1 − 𝑈𝑈2
𝑑𝑑𝑈𝑈1
𝑑𝑑𝑡𝑡

= −
𝑈𝑈1
𝑅𝑅1𝐶𝐶1

+
𝑖𝑖
𝐶𝐶1

𝑑𝑑𝑈𝑈2
𝑑𝑑𝑡𝑡

= −
𝑈𝑈2
𝑅𝑅2𝐶𝐶2

+
𝑖𝑖
𝐶𝐶2

(1) 

For the selected second-order model, [𝑆𝑆𝑆𝑆𝐶𝐶 𝑈𝑈1  𝑈𝑈2]𝑇𝑇 is selected as the state variable, and the state space equation can be listed as shown in 

equation (2) by combining equation (1) and the definition of SOC after discretization. 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
�
𝑆𝑆𝑆𝑆𝐶𝐶𝑘𝑘+1
𝑈𝑈1,𝑘𝑘+1
𝑈𝑈2,𝑘𝑘+1

� = �
1 0 0
0 𝑒𝑒−∆𝑡𝑡/𝜏𝜏1 0
0 0 𝑒𝑒−∆𝑡𝑡/𝜏𝜏2

 � �
𝑆𝑆𝑆𝑆𝐶𝐶𝑘𝑘
𝑈𝑈1,𝑘𝑘
𝑈𝑈2,k

� +

⎣
⎢
⎢
⎢
⎡ −

𝜂𝜂∆𝑡𝑡
𝑄𝑄𝑁𝑁

𝑅𝑅1�1 − 𝑒𝑒𝑇𝑇/𝜏𝜏1�
𝑅𝑅2�1 − 𝑒𝑒𝑇𝑇/𝜏𝜏2�⎦

⎥
⎥
⎥
⎤
𝐼𝐼𝑘𝑘 + 𝑊𝑊𝑘𝑘

𝑈𝑈𝐿𝐿,𝑘𝑘+1 = �𝜕𝜕𝑈𝑈𝑂𝑂𝑂𝑂
𝜕𝜕𝑆𝑆𝑆𝑆𝐶𝐶

−1 −1� �
𝑆𝑆𝑆𝑆𝐶𝐶𝑘𝑘
𝑈𝑈1,𝑘𝑘
𝑈𝑈2,𝑘𝑘

� − 𝐼𝐼𝑅𝑅0 + 𝑉𝑉𝑘𝑘

(2) 

In the above equation, 𝑅𝑅1𝐶𝐶1 and 𝑅𝑅2𝐶𝐶2 are the cutoff angular frequencies, ∆𝑡𝑡 is the sampling interval, 𝑇𝑇 is the time constant, 𝑇𝑇1 = 𝑅𝑅1𝐶𝐶1, 

𝑇𝑇2 = 𝑅𝑅2𝐶𝐶2, 𝑊𝑊𝑘𝑘 is the state error and 𝑉𝑉𝑘𝑘 is the measurement error, which is the zero-mean white noise of the covariance matrix 𝑄𝑄 and 𝑅𝑅, respec-

tively, 𝑄𝑄𝑁𝑁 is the rated capacity of the battery, 𝜂𝜂 is the Coulomb efficiency, which is set to 0.98. The parameters to be identified by the model are 

the open-circuit voltage 𝑈𝑈𝑂𝑂𝑂𝑂 , the ohmic internal resistance 𝑅𝑅0, the polarization internal resistance 𝑅𝑅1、𝑅𝑅2 and polarization capacitance 𝐶𝐶1、𝐶𝐶2. 
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4 

2.2 CLPSO-based parameter identification 

PSO is a population-based optimization tool that is based on the development of the swarm intelligence approach. It is also known as the 

conventional PSO algorithm [40–42]. The algorithm explores the solution space by following the optimal particle, which is simple to implement 

and has greater accuracy. 

Accepting that the hunt space is 𝐷𝐷 layered, it very well may be communicated as equation (3). 

⎩
⎪
⎨

⎪
⎧
𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑚𝑚}
𝑥𝑥𝑖𝑖 = {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … . , 𝑥𝑥𝑖𝑖𝑖𝑖}
𝑣𝑣𝑖𝑖 = {𝑣𝑣𝑖𝑖1,𝑣𝑣𝑖𝑖2, … . , 𝑣𝑣𝑖𝑖𝑖𝑖}
𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 = {𝑃𝑃𝑃𝑃𝑖𝑖1,𝑃𝑃𝑃𝑃𝑖𝑖2, … . ,𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛}
𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 = {𝐺𝐺𝑃𝑃𝑖𝑖1,𝐺𝐺𝑃𝑃𝑖𝑖2, … . ,𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛}

 𝑖𝑖 = 1,2, … . ,𝑚𝑚 (3) 

Where 𝑥𝑥 is the population containing 𝑚𝑚 particles, 𝑥𝑥𝑖𝑖 is the position of the 𝑖𝑖 the particle in 𝐷𝐷 dimensional space for 𝑛𝑛 iterations, indicating a 

possible position in the search space, also called a candidate solution, 𝑣𝑣𝑖𝑖 is the flight speed of the 𝑖𝑖 the particle in 𝐷𝐷 dimensional space for  𝑛𝑛 

iterations, 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 is the individual extreme value, 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 is the global extreme value. The particle updates its velocity and position according to the two 

extreme values, as shown in equation (4) and equation (5). 

𝑣𝑣𝑖𝑖𝑛𝑛+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑛𝑛 + 𝑎𝑎1𝑃𝑃1(𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 − 𝑥𝑥𝑖𝑖𝑛𝑛) + 𝑎𝑎2𝑃𝑃2(𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 − 𝑥𝑥𝑖𝑖𝑛𝑛) (4) 

𝑥𝑥𝑖𝑖𝑛𝑛+1 = 𝑥𝑥𝑖𝑖𝑛𝑛 + 𝑣𝑣𝑖𝑖𝑛𝑛+1 (5) 

where 𝑤𝑤 is the inertia weight, 𝑎𝑎1 and 𝑎𝑎2 are two learning factors, which represent the particle state vector and are usually taken as positive 

integers, 𝑃𝑃1 and 𝑃𝑃2 are two random numbers between [0,1] and uniformly distributed, 𝑛𝑛 is the number of current iterations. 

When the fundamental PSO algorithm is used to identify battery parameters, it is easy to fall into a local optimum during the search for the 

best. As a result, the best results for parameters like polarization capacitance, polarization resistance, and ohmic resistance are not accurate enough, 

but these parameters will affect the ability of EKF to estimate the battery SOC, which will result in a significant error in the final estimated SOC. 

A new learning strategy is proposed based on the classic PSO algorithm, changing the velocity update of the particle equation from (4) to (6) to 

produce more beneficial results. 

𝑣𝑣𝑖𝑖𝑛𝑛+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑛𝑛 + 𝑎𝑎𝑃𝑃𝑖𝑖𝑛𝑛�𝑃𝑃𝑃𝑃𝑓𝑓𝑖𝑖(𝑛𝑛)
𝑛𝑛 − 𝑥𝑥𝑖𝑖𝑛𝑛� (6) 

where 𝑓𝑓𝑖𝑖 = [𝑓𝑓𝑖𝑖(1),𝑓𝑓𝑖𝑖(2), … . 𝑓𝑓𝑖𝑖(𝑛𝑛)] defines the source of the best experience to be learned by particle 𝑖𝑖 in each dimension, the best expe-

rience to be learned by particle 𝑖𝑖 in the 𝑛𝑛th dimension from the 𝑓𝑓(𝑛𝑛) th particle. For a problem with 𝐷𝐷 dimensions per particle, 𝑛𝑛 dimensions are 

chosen at random to learn from the population's best experience. The learning probability 𝑃𝑃𝑜𝑜 is then employed in the remaining dimensions to 

determine whether to learn from the learning paradigm 𝑃𝑃𝑓𝑓𝑖𝑖(𝑛𝑛)
𝑛𝑛  at this time, which can be any particle, including the 𝑖𝑖th particle itself. A random 
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5 

number will be created for each dimension of particle 𝑖𝑖, and if this random number is bigger than 𝑃𝑃𝑜𝑜𝑖𝑖, the best experience of the particle itself will 

be learned in that dimension, otherwise, the best experience of other particles will be taught in this dimension. Liang et al [43] postulated that 

various particles have to vary 𝑃𝑃𝑜𝑜 values, so that the particles in the population have different exploration and exploitation capacities. A random 

number is created for each dimension of a particle. If 𝑃𝑃𝑜𝑜𝑖𝑖 is exceeded by this random number, the related dimension will learn from its own best 

position 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛, otherwise, it will learn from the best position 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 of another particle. The following is the equation for the learning probability 𝑃𝑃𝑜𝑜𝑖𝑖 

of particle 𝑖𝑖 is shown as shown in equation (7). 

𝑃𝑃𝑜𝑜𝑖𝑖 = 0.05 + 0.45 ×
𝑒𝑒𝑥𝑥𝑒𝑒 �5(𝑖𝑖 − 1)

𝑀𝑀− 1 � − 1

𝑒𝑒𝑥𝑥𝑒𝑒(5) − 1
(7) 

where the population size is 𝑀𝑀 and the particle number is 𝑖𝑖.  

All 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 can generate new positions in the search space using the data from the past best placements of various particles. An update threshold 

 𝑚𝑚 is defined, indicating the maximum number of consecutive failures to get updates that the algorithm will tolerate, to make sure that the particles 

learn from the paradigm and limit the time wasted going in the wrong direction. A variable called "𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑖𝑖" is set with a starting value of 0 for each 

particle 𝑖𝑖. This variable is used to monitor whether or not the particle has been updated. If the particle's historical best position, 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛, has changed 

during the iteration, 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑖𝑖 is reset to 0, otherwise, 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑖𝑖 is added to 1. If 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑖𝑖 reaches the set value of 𝑚𝑚, it means that the current particle has 

not been updated for a long time, which means that the template particle it is to learn can no longer guide it to fly to a better solution. At this time, 

the process in Figure 2 should be followed again, and the particle 𝑖𝑖 should re-select the template to learn. 

Start

d=1

rand<Pci

[ ]
[ ]

1 ( ) 1 ( )*

2 ( ) 2 ( )*
i i

i i

f d rand d N

f d rand d N

=

=

( )if d i=

( ) 2 ( )i if d f d= ( ) 1 ( )i if d f d=

[ ]
[ ]

( 1 ( ))

( 2 ( ))
i

i

Fit pBest f d

Fit pBest f d

<

Figure 2. Selection of exemplar dimensions for particle 𝑖𝑖 

The CLPSO algorithm [44–46] has three advantages over the PSO algorithm: 

(1) 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛of all particles could be used as exemplars to direct the flight direction of the particles rather than 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 and 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛of particles. 

(2) Unlike CLPSO, which allows particles in each dimension to learn the optimal position of various particles in the corresponding dimension, 

normal PSO requires that all dimensions learn from the same paradigm particles.  

(3) While each iteration in the traditional PSO algorithm learns from two paradigms ( 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 and 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 ), particles in the CLPSO algorithm 
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6 

only learn from one paradigm for each dimension. 

The particle 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 and the particle 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 belong to the same local optimum region in the CLPSO algorithm's learning strategy, but 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 can 

learn from 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 of other particles to fly in other directions. As a result, the CLPSO algorithm's learning approach can depart from the local optimum 

thanks to population-wide cooperation. The CLPSO algorithm's progression is depicted in Figure 3. 

 

1
( )( )n n n n n

i i i fi n iv wv ab pb x+ = + −
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0
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=
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x
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1k k= +

Figure 3. Flow chart of CLPSO algorithm 

Analyze excitation response of the battery, gather information on the battery's external input and output of current and voltage, and then 

indirectly gather data for each parameter in the battery model, using a CLPSO technique. Parameter identification is accomplished by: 

Step 1: The objective function will be determined, the speed and position of the group will be initialized, and the overall group size and search 

space dimension will be determined based on the characteristics of the process. Five battery parameters make up the objective function, and the 

recursive formula is as shown in equation (8). 

�

𝑈𝑈 = 𝑈𝑈𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝐶𝐶) − 𝑅𝑅0𝐼𝐼 − 𝑈𝑈1 − 𝑈𝑈2
𝑈𝑈1,𝑘𝑘+1 = 𝑈𝑈

1,𝑘𝑘𝑒𝑒
−∆𝑡𝑡/𝜏𝜏1 + 𝑅𝑅1𝐼𝐼𝑘𝑘�1 − 𝑒𝑒−∆𝑡𝑡/𝜏𝜏1�

𝑈𝑈2,𝑘𝑘+1 = 𝑈𝑈
2,𝑘𝑘𝑒𝑒

−∆𝑡𝑡/𝜏𝜏2 + 𝑅𝑅2𝐼𝐼𝑘𝑘�1 − 𝑒𝑒−∆𝑡𝑡/𝜏𝜏2�
(8) 

Step 2: Determine each particle's position and new velocity following equations (4),(5), and (6). 
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7 

Step 3: Determine the fitness of particles. This paper uses an adaptive variation to reduce the possibility of particles entering the local optimum, 

preventing the algorithm from entering it. When the cumulative error is used as the fitness function, the following results are shown in equation 

(9): 

𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = �|𝑈𝑈𝑘𝑘 − 𝑈𝑈𝑚𝑚𝑘𝑘|
𝑀𝑀

𝑘𝑘=1

 (9) 

where 𝑀𝑀 denotes the overall number of sampling intervals, 𝑈𝑈𝑘𝑘 denotes the sampling interval, and 𝑈𝑈𝑚𝑚𝑘𝑘 denotes the sampling interval, denot-

ing the end voltage of the output of the battery model simulation. 

Step 4: By contrasting the adaptation value with the best value realized and choosing the optimal value, the objective function is optimized to 

track the actual voltage. 

Step 5: The related parameters also converge to a stable value when the goal function reaches the optimal value, indicating whether this 

moment has passed or not. 

Input voltage and current data, repeated cycles of the aforementioned method, using the aforementioned method to determine the battery 

identification parameters, obtaining the best results for parameter identification, obtaining a final result by data fitting the identification results, 

inserting the identification results into the validation model, and then determining the accuracy of this algorithm identification. 

2.3 Estimation of battery SOC based on CLPSO-EKF 

The EKF method is frequently employed in nonlinear power battery systems. The EKF algorithm's iterative process can be viewed as a 

Gauss-Newton iterative algorithm, and the algorithm's detailed flow is shown in Figure 4. 

Nonlinear time invariant system

     Step 1         
Initialize the X0、P0、Q0、R0

( )

0 0 0 0 0

0 0
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Figure 4. Flowchart of  EKF algorithm 

By using Taylor's formula to expand the nonlinear system and remove the higher-order terms, the EKF algorithm is utilized to linearize the 
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nonlinear system. Then the Kalman filter algorithm is used to estimate the SOC. The linearization technique introduces truncation error, even 

though this is a straightforward method, and it overlooks the impact of noise variation on the SOC. So that the statistical features of the noise in the 

EKF algorithm can be updated with changes in the estimation results during state estimation, we suggest integrating the CLPSO algorithm into the 

EKF technique. The fitness function constrains each particle's motion trend as a valid condition to stop the update during the CLPSO-EKF opti-

mization process. The mean square error between the measured value 𝑧𝑧𝑘𝑘 of the EKF transformed second-order RC circuit state equation and the 

filtered input value 𝑥𝑥𝑘𝑘 is used as the fitness function, and the EKF shall minimize the influence of measurement error and system error in each 

prediction of the next state process, as shown in equation (17). 

𝑓𝑓(𝛿𝛿𝑖𝑖𝐺𝐺) =
1
𝑀𝑀
�𝑎𝑎𝑃𝑃𝑠𝑠 �𝑍𝑍𝑘𝑘 − 𝑋𝑋𝑘𝑘(𝛿𝛿𝑖𝑖𝐺𝐺)�

2
𝑀𝑀

𝑘𝑘=1

(17) 

In the following formula: 𝑀𝑀 is the number of iterations, 𝛿𝛿𝑖𝑖𝐺𝐺 is the optimized parameter value of the 𝑖𝑖 the individual at the iteration to the Gth 

generation. 𝑓𝑓(𝛿𝛿𝑖𝑖𝐺𝐺) is the error between the measured value and the input value of the 𝑖𝑖 the individual at the iteration to the 𝐺𝐺 the generation. 

Figure 5 depicts the CLPSO-based EKF optimization process, where 𝑅𝑅 represents the measurement noise covariance matrix and 𝑄𝑄 repre-

sents the system noise covariance matrix. By updating the measurement and time depending on the chosen filter parameters, the input value 𝑥𝑥𝑘𝑘, 

and the measurement value  𝑧𝑧𝑘𝑘, the EKF determines the best approximation of the system state at each instant. The CLPSO algorithm is used to 

optimize the filter 𝑅𝑅 parameters and 𝑄𝑄 following the values of the objective function and filter parameters at each instant. Up until the optimized 

state estimates are obtained, the optimized parameters are used as filtering parameters in the EKF.  

Function of 
fitness

CLPSO 
algorithm

R,Q

Adjust the parameters of 
EKF model

kz

kx

Figure 5. Flowchart of CLPSO-EKF algorithm 

The process of CLPSO optimization of the EKF is： 

Step 1: Setting the initial values of the state input value 𝑥𝑥𝑘𝑘 and the error covariance matrix 𝑧𝑧𝑘𝑘 of the EKF. 

Step 2: Initialize the positions and velocities of all particles in the particle swarm. 

Step 3: Set 𝑓𝑓(𝛿𝛿𝑖𝑖𝐺𝐺) as the particle 𝑖𝑖 fitness function, and calculate the fitness value. 

Step 4: To get the optimum location 𝑃𝑃𝑓𝑓𝑖𝑖(𝑛𝑛)
𝑛𝑛  at this time, decide whether the probability 𝑃𝑃𝑜𝑜𝑖𝑖 is learning to the learning paradigm 𝑃𝑃𝑓𝑓𝑖𝑖(𝑛𝑛)

𝑛𝑛  according 

to the current dimension; if not, resampling is done. 
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Step 5: The best value is determined by comparing the current value of 𝑓𝑓(𝛿𝛿𝑖𝑖𝐺𝐺) with the historical fitness value, if it satisfies the update termina-

tion requirement, it is assigned to 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 in; otherwise, 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 in remains unchanged. 

Step 6: If the update termination condition is satisfied, compare 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛in to the historical optimal fitness 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 in of other particles in the swarm, if 

the value is deemed optimal, 𝐺𝐺𝑃𝑃𝑖𝑖𝑛𝑛 it is assigned to 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 in; otherwise, 𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛 in is left unchanged. 

Step 7: Repeat steps (5) and (6) until all particles are compared and the particle value with the optimal solution is output and assigned to the 

measurement noise covariance matrix 𝑅𝑅 and the system noise covariance matrix 𝑄𝑄. 

According to the aforementioned analysis, CLPSO-EKF, when compared to EKF, adds the estimation of noise characteristics on the original 

basis and makes real-time corrections to 𝑅𝑅 and 𝑄𝑄 to achieve the goal of continuous correction of the SOC estimates of state variables. This resolves 

issues with the traditional EKF measurement of noise covariance and the impact of SOC valuation bias caused by system noise covariance, thereby 

increasing the accuracy of SOC estimation. 

3 Analysis of experimental results 

The effectiveness of the CLPSO algorithm for model parameter identification is therefore verified under BBDST conditions, and SOC ex-

periments are performed under two different complex conditions of HPPC and BBDST and compared with other algorithms. This is done to 

confirm the scientific validity of the algorithm proposed in this paper. 

3.1 Experimental platform construction 

 LIB with a rated capacity of 72 Ah and a ternary lithium battery with an actual capacity of 69.23 Ah produced by Deliphone Battery Tech-

nology Co. The battery test system is BTS200-100-104, provided by Shenzhen Yakeyuan Technology Co. as the charge and discharge test equip-

ment for lithium-ion batteries.A room temperature (25°C) thermostat (TT-5166-7) provides room temperature for the experimental cell. 

The experimental platform architecture is shown in Figure 6. 
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Figure 6. Lithium battery experimental platform architecture 

3.2 Results of parameter identification 

This paper validates the parameter results under BBDST conditions to obtain the variation of the internal parameters of LIBs at various points 

and then uses these obtained data as the simulated voltages in the model so that we can compare and analyze the simulated and actual measured 

voltages, and then we can verify the accuracy of this parameter identification.  

The parameters also reach the matching reasonable value when the objective function reaches a steady convergence value. In essence, the 

objective function search is used to carry out the parameter identification. The CLPSO algorithm is used in this study, 𝐶𝐶1 and 𝐶𝐶2 are set to 1.3 and 

1.7, respectively, 𝑤𝑤 , the inertia weight is set to a maximum of 0.9 and a minimum of 0.4, 50 is the number of populations, and 50 is the maximum 

number of iterations. The server with a 2.30 GH i7 CPU and 16 G of memory was utilized for computing during the experiment, and the full 

computation took around 20 seconds. The parameter identification results and the fitness function graph can be obtained by comparing the identi-

fied results with the actual values, as shown in Figure 7. 

(a) R0 under parameter identification (b) R1 under parameter identification 
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11 

(c) R2 under parameter identification (d) C1 under parameter identification 

(e) C2 under parameter identification (f) Graph of the fitness function 

(g) Comparison curves of simulated and actual voltage output 

after parameter identification 

(h) Simulated output voltage error curve 

Figure 7. Parameter identification results and fitness function 

Figures 7 (a), (b), (c), (d), and (e) illustrate 𝑅𝑅0、𝑅𝑅1、𝑅𝑅2、𝐶𝐶1、𝐶𝐶2 under the identification of the CLPSO algorithm. From the figures, we 

can see that initially, due to the initial value of each parameter not being set accurately enough, they all fall into the situation of local optimum and 

fluctuate greatly, but with the continuous iterative update of the algorithm, the parameter values gradually tend to smooth out. When comparing 

FFRLS, PSO, and CLPSO for parameter identification, it can be observed from Figure 7 (g) that the CLPSO method has a greater impact and a 

higher level of accuracy. The simulation output voltage error curves between these three different algorithms and the real voltage are shown in 

Figure 7 (h), and the analysis results show that all three algorithms can identify the battery model parameters with better results. The FFRLS and 

PSO algorithms are close to one another for the model parameters identification, and the error is within 5%, while the CLPSO algorithm identifies 

the accuracy within 1%, which is better than the above two algorithms. It is further demonstrated that the CLPSO is quicker and more accurate for 
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battery model identification by comparing the fitness functions of PSO and CLPSO in Figure 7 (f). The CLPSO algorithm converges with the best 

fitness value of 0.00102 after 30 iterations, while the standard PSO algorithm converges with the best fitness function value of 0.0022 after 45 

iterations. greater accuracy. 

3.3 Validation of  SOC estimation based on CLPSO-EKF algorithm 

The hybrid pulse power characterization (HPPC) operating condition data at room temperature (25°C) is chosen for the model estimate in 

this research to test the algorithm's precision. Figure 8 (a) compares SOC estimation outcomes for various algorithms using CLPSO parameter 

identification, while Figure 8 (b) compares estimation errors for various algorithms using the same parameter identification circumstances. These 

results are then used in the CLPSO-EKF method. 

(a) Comparison of SOC estimation results under different algorithms (b) Error of SOC estimation results under different algorithms
Figure 8. SOC estimation results and errors under HPPC working conditions 

All three algorithms exhibit a stepped-down tendency over time, as seen in Figure 8 (a). PSO-EKF is superior to the conventional EKF 

algorithm but also has the drawback of slipping into the local optimum, which is not significant to the optimization of EKF. The estimated value 

of the EKF method deviates from the reference value. The CLPSO-EKF method produces the best results, while there is a difference from the 

reference value, it is more stable. Given that the reference value is assumed to be the actual value, the deviation of the CLPSO-departure EKF 

from the actual value can be viewed as a systematic error and improved by linear compensation. The maximum errors for each of the three algo-

rithms are shown in Figure 8 (b). The maximum errors for the EKF algorithm are 5.152%, and the maximum errors for the PSO-EKF algorithm 

are 2.443%, demonstrating how the CLPSO-EKF improves the errors brought on by process noise in the pre-discharge period of the EKF and 

PSO-EKF. And a large convergence is achieved when the CLPSO algorithm is optimized for the EKF method to estimate lithium-ion SOC.

To further validate the estimation algorithm's response to the charge status of the LIB under more complex application situations, the model 

is simulated and validated using experimental data from the BBDST conditions. The experimental data of BBDST is more convincing in proving 

the algorithm's viability. Figure 9 (a) compares the SOC estimation results obtained using various algorithms with parameter identification from 

the CLPSO, and Figure 9 (b) compares the estimation errors obtained using various algorithms with parameter identification from the same source. 
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(a) Comparison of SOC estimation results under different algorithms (b) Error of SOC estimation results under different algorithms

Figure 9. SOC estimation results and errors under BBDST working conditions 

When comparing the estimation results of the three algorithms in Figure 9, it can be seen that, according to the HPPC condition, all three 

algorithms converge quickly in the early stage, but as the condition progresses, the estimation error increases. The EKF algorithm deviates signif-

icantly in the late stage due to the accumulation of errors, with a maximum error of 3.207%, while the PSO-EKF algorithm optimizes this flaw of 

the EKF algorithm, but in the early stage. By including learning elements, the CLPSO-EKF reduces its local optimum deficiency. The CLPSO-

EKF estimation is the best, and the error bias value always presents a stable state throughout the full experimental process simulation, which is 

caused by systematic error, and its maximum error is 0.478%. Figure 9 (b) displays the corresponding errors under each of the three techniques. 

This demonstrates that the CLPSO-EKF algorithm performs significantly better in the estimation of lithium-ion SOC.  

The reliability of this algorithm is studied again under the DST condition, which is of greater value for our experimental results analysis. From 

the error plot in Figure 10, we can see that the error of the EKF algorithm under the DST condition fluctuates greatly, and the EKF algorithm after 

PSO optimization has improved significantly. The maximum error is reduced from 2.441% to 0.058%, and their maximum error is within 3%, 

which is within a controllable range. To prevent the PSO algorithm from falling into the local optimum, the CLPSO algorithm is used, and it can 

be seen from the error plot that the SOC value estimated by the CLPSO-EKF algorithm almost overlaps with the true value, and the error is much 

lower than that estimated by several other algorithms. This also verifies that the algorithm in this paper is the correct choice of algorithm. 

(a) Comparison of SOC estimation results under different algorithms (b) Error of SOC estimation results under different algorithms

Figure 10. SOC estimation results and errors under DST working conditions 
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According to the research results of the above three working conditions, the CLPSO-EKF algorithm has a high precision effect on 

SOC estimation. To further confirm the correctness of the proposed algorithm, MAE and RMSE are selected to further compare the cal-

culation results. The detailed calculation as shown in equations (18) and (19).  

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑆𝑆𝑆𝑆𝐶𝐶′(𝑡𝑡) − 𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡)|𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (18) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �∑ �𝑆𝑆𝑆𝑆𝐶𝐶′(𝑡𝑡) − 𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡)�2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
(19) 

The mean absolute error (MAE) represents the mean of the absolute error between the predicted value and the measured value. The 

smaller the MAE value, the smaller the error between the estimated value and the true value. The root mean square error (RMSE) represents 

the sample standard deviation (known as the residual) of the difference between the predicted and measured values. RMSE represents the 

degree of dispersion of the samples. The smaller the RMSE value, the better the prediction ability of the algorithm. 

(a) Comparison of  MAE estimation results under different working 

conditions 
(b) Comparison of  RMSE estimation results under different working 

conditions 

Figure 11. Comparison of error results under different working conditions 

The results obtained are shown in Figure 11. It can be seen from the data graph that the error result of CLPSO-EKF is the smallest 

under three different working conditions. The optimization of the EKF algorithm by CLPSO can accurately estimate SOC with high 

accuracy and is consistent with the real SOC curve. 

4 Conclusion 

The major aspect and complexity of LIB state monitoring is accurate SOC estimation. In this paper, we characterize the state and output 

characteristics of LIBs using a second-order RC model, identify the parameters of the battery model using a CLPSO algorithm, and determine the 

relationship between the circuit model parameters and the change in LIB charge state at different discharge stages. This clever technique is also 

utilized to improve the EKF algorithm's accuracy in estimating SOC. The following conclusions are drawn through experimental analysis: 
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(1) In the parameter identification process, compared to the traditional FFRLS algorithm and PSO algorithm for the problem of multi-param-

eter identification of battery models, the CLPSO algorithm combined with bilinear transformation processing to identify the parameters of battery 

models not only achieves the results of online parameter identification but also overcomes the problem that PSO is easy to fall into local optimums. 

The graph also demonstrates that CLPSO has high accuracy and low error for battery model identification, and the method is easy and not time-

consuming, therefore, we can infer that employing the CLPSO algorithm for parameter identification is an innovation in parameter identification. 

(2) The learning method (𝑓𝑓𝑖𝑖) is used in the battery SOC estimate to optimize several PSO difficulties, such as the tendency to fall into the 

local optimum and the sluggish convergence speed. Furthermore, the CLPSO algorithm solves the problems of the EKF algorithm in terms of 

measurement noise covariance and the impact of the SOC valuation bias caused by system noise covariance, and it is known from literature 

analysis that the CLPSO algorithm is more stable than other improved PSO algorithms. The validation findings show that the error of the CLPSO-

EKF estimation of battery SOC is controlled within 0.5% under diverse complex settings, confirming the high accuracy and robustness of the 

CLPSO-EKF method in LIB SOC estimation. 

(3) It is clear from the verification of the entire experimental process in this research that the CLPSO algorithm produces better results, and 

we can try to apply this strategy to other algorithms more frequently in future work. 
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