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Abstract

The liver synthesizes the majority of pro- and anti-coagulant and fibrinolytic pro-
teins, and during liver dysfunction synthesis of these proteins is reduced. The end
point of conventional hemostatic tests, such as the prothrombin time (PT), occurs
when only 5% of thrombin generation (TG) has taken place and is not sensitive to the
effects of natural anti-coagulants. The aim of this study was to determine whether
TG in the presence of thrombomodulin (TM) provides more useful information
about coagulation potential, in comparison to the PT. Analysis was performed on ST
Genesia, a novel TG analyzer from Diagnostica Stago. TG was measured using STG-
Thromboscreen, a reagent containing an intermediate concentration of human tissue
factor (TF) £ rabbit TM to account for anti-coagulant protein C (PC) activity. Platelet-
poor plasma (PPP) samples were from the Intensive Care Study of Coagulopathy-2
(ISOC-2), which recruited patients admitted to critical care with a prolonged PT
(3 seconds above the reference range). Despite a prolonged PT, 48.0% and 60.7% of
patients in the liver and non-liver groups had TG parameters within the normal range.
Addition of TM reduced TG by 34.5% and 41.8% in the liver and non-liver groups, re-
spectively. Interestingly, fresh frozen plasma (FFP) transfusion had no impact on TG.
Measurement of TG with addition of TM provides a more informative assessment of
coagulation capacity and indicates that hemostasis is balanced in patients with liver
disease during critical illness, despite conventional tests suggesting that bleeding risk

is increased.
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1 | INTRODUCTION

Thrombin generation (TG) is an essential part of normal hemosta-
sis and contributes to an individual's risk of bleeding or thrombo-
sis. Conventionally, TG is assessed using the prothrombin time (PT)
and activated partial thromboplastin time (APTT). However, we now
know that these basic coagulation tests provide limited assessment
of thrombin generation in vivo and are poor at predicting clinical
bleeding.® This is due to several factors: (a) the tests record clotting
time when only 5% of TG has occurred; (b) the tests reflect only the
pro-coagulant factors, and do not take in to account natural anti-
coagulants;s'8 and (c) they are insensitive to modest, but clinically
relevant reductions in factor concentrations.

As a consequence, there remains a need for better hemostatic
tests to reliably predict whether patients with (or without) pro-
longed PTs are at risk of bleeding and whether they obtain any
benefit from plasma transfusion prior to traumatic procedures.
This study uses samples obtained from the Intensive Care Study of
Coagulopathy 2 (ISOC-2), a heterogeneous group of critically ill pa-
tients on intensive care units (ICUs) in which there was uncertainty
with regard to bleeding risk and requirement for fresh frozen plasma
(FFP) transfusion.>’ Introduction of a novel diagnostic assay to as-
sess coagulation, such as TG, could avoid delays in interventional
procedures, avoid complications of unnecessary plasma transfusion,
and reduce bleeding. FFP is not without risk for the patient®*® and
yet is frequently administered to non-bleeding patients with mild or
moderate abnormalities of PT, for example, as prophylaxis prior to
invasive procedures, although evidence indicates negligible effects
on correction of any PT prolongation when conventional doses are
used.}”28

A problem with the introduction of TG into clinical practice is
that it is typically a research tool and performed retrospectively
on batched blood samples. A novel TG analyzer (ST Genesia,
Diagnostica Stago, Asnieres, France) provides the technology
to deliver standardized and fully automated assays in vitro,?*
helping to regulate temperature and eliminate manual pipetting
errors and reagent variation. The TG measurement is based on
the fluorescence principle originally described by Hemker et al.?®
Quality control checks incorporate a reference plasma alongside
a low, normal, or high TG plasma to allow validation of the patient
results.

Three kits are available commercially: STG-BleedScreen
(low TF) to evaluate bleeding risk in hemophilia patients; STG-
DrugScreen (high TF) to monitor the effect of anti-thrombotic
drugs, such as direct oral anti-coagulants (DOAC) and Vitamin K
antagonists (VKA); and STG-ThromboScreen (intermediate TF) to
evaluate thrombotic risk in patients with thrombophilia or recur-
rent deep vein thrombosis (DVT). In this study, we use the STG-
ThromboScreen kit, which incorporates thrombomodulin (TM)
into the TG test allowing activation of the potent PC anti-coag-
ulant pathway and allowing assessment of both arms of hemosta-
sis. Our earlier work on ISOC-2 identified that many patients had
evidence of normal endogenous thrombin potential coagulopathy
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Essentials

e The end point of conventional hemostatic tests occurs
when only 5% of thrombin generation has taken place
and is insensitive to natural anti-coagulants.

e Thrombin generation performed on a fully automated
analyzer in the presence of thrombomodulin may pro-
vide a more accurate interpretation of an individual's
coagulation potential.

e Patients with liver disease have balanced hemostasis
and are not significantly different from those without
liver disease.

e Fresh frozen plasma transfusion did not alter a patients
thrombin generation and may not be necessary for

minor procedures.

(ETP-coagulopathy), despite prolongation of PT, but did not incor-
porate TM in the TG assay.s'9

TM is a transmembrane protein expressed on the surface of
endothelial cells that forms a complex with thrombin, switching
its function from pro- to anti-coagulant.?*?® The thrombin-TM
complex activates PC, which in turn downregulates coagulation by
cleavage of activated factor V (FVa) and factor VIII (FVII1a).2¢28 It
also activates thrombin activatable fibrinolysis inhibitor (TAFI) to
attenuate fibrinolysis.??"3' Addition of TM enables the TG mea-
surement to test these aspects of the coagulation system in pa-
tients with complex hemostatic alterations, including those with
liver disease. In liver disease, coagulation factor synthesis is de-
creased because the liver is responsible for synthesizing many
anti-coagulant and fibrinolytic factors, as well as pro-coagulant
factors.2 This group of patients is frequently regarded as hypoco-
agulable, although research has indicated that in fact hemostasis
may be re-balanced in this group of patients.>*3¢ Here, we discuss
the use of a novel TG analyzer to monitor critically ill patients with
liver disease, to compare findings with patients without liver dis-
ease, and to determine the effects of plasma transfusion on TG

parameters.

2 | METHODS
2.1 | Plasma samples

Platelet-poor citrated plasma (PPP) samples were obtained from the
ISOC-2 trial,®> which recruited patients admitted to critical care with
impaired coagulation. This was defined by a PT 3 seconds above
the upper limit of the normal reference range within 48 hours of
admission. Any patients with evidence of active clinical bleeding or
receiving treatment-dose anti-coagulant therapy were excluded.
Samples were not taken from lines used for heparin infusions or
those blocked and flushed with fibrinolytic drugs. Anti-factor Xa
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levels were performed in all samples to check for heparin contami-
nation. One patient received prophylaxis with an anti-platelet agent
(epoprostenol). Samples were taken upon admission, pre-plasma in-
fusion, post-plasma infusion, and at the end of the study (5 days after
entry). PPP samples were stored at -~80°C since commencement of
the original ISOC-2 study in 2014 and did not undergo any freeze-
thaw cycles prior to the analysis performed in this substudy. This
substudy focuses on patients with liver disease (n = 78) as assigned
by the treating clinician, which are compared to those critically ill pa-
tients without liver disease (n = 94). Liver disease was defined by the
referring clinician (Figure 1). Baseline clinical characteristics for both
patient groups are described in Table 1. Normal reference ranges
were calculated as mean + 1.96 x standard deviation (SD) from 45

healthy volunteers.

2.2 | Thrombin generation

The ST Genesia incorporates a fully automated and standardized TG
method.?*%73% On each day of testing a new calibration test, three
levels of quality control (low, normal, and high TM resistance), and a
reference plasma to normalize parameters are assessed. PPP sam-
ples were thawed at 37°C for 10 minutes before beginning the TG
test, which was performed using the STG-Thromboscreen kit, which
contains pro-coagulant phospholipids, an intermediate picomolar
concentration of human recombinant TF + rabbit lung TM. TG was
initiated by addition of the fluorogenic substrate and calcium chlo-
ride. Lag time, peak height, time to peak, velocity index, start tail,

and ET), were extracted from the Thrombograms.

cancer - I 3

2.3 | Data analysis

Access to the full ISOC-2 case report form (CRF) allowed compari-
son of TG parameters with conventional laboratory tests and inci-
dence of bleeding. Bleeding was defined using the Hemorrhage
Measurement (HEME) assessment tool. Results are represented as
individual data points and display the mean * SD. Statistical analysis
was performed using Graph Pad Prism 8.0 and normality assessed
using a D'agostino-Pearson omnibus test. A non-parametric Mann-

Whitney t-test was used to analyze the data. P < .05 was considered

significant.
3 | RESULTS
3.1 | TM-ETP

The ST Genesia was used to measure TG in two groups of patients
from the ISOC-2 study: those with liver disease (n = 78) and non-
liver disease patients (n = 94; Figure 1, Table 1). Patients recruited
to the study had abnormal routine clotting test results, but despite
a prolonged PT, many of the patients had TG parameters within the
normal range.

The ETP is the most commonly reported TG parameter and has
been taken to represent an individual's risk of bleeding or thrombo-
sis. Despite a prolonged PT as a requirement for recruitment to the
ISOC-2 study, 48% of patients in the liver group had normal ETP
(912.4-1715.6 nmol/L/min), and the remaining 52% were below the

normal limit (<912.4 nmol/L/min) (Figure 2A). In the non-liver group,
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FIGURE 1 Etiology of liver disease. Bar chart illustrating the number of patients within the liver cohort and the diagnosis or cause of liver

disease for each patient
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TABLE 1 Baseline clinical characteristics for patients in the liver
(n = 78) and non-liver (n = 94) cohorts

Liver Non-liver
Route of administration
Age (years) 54 +13 64 + 15
Sex (male) 50 (64) 50(53.2)
Weight (kg) 79 +19 78 + 28
PT on enrollment (s) 27 £13 24+7
APTT (s) 41+13 39+10
Fibrinogen (g/L) 28+2 39+2
Platelet (x 107/L) 107 + 71 161 + 113
Emergency department 18 (23) 25 (26)
Ward 29 (37) 56 (59)
Hospital transfer 11 (14) 1(1)
Operating room 20 (25) 12 (13)
ICNARC code
Sepsis 0 69 (73)
Liver 78 (100) 0
Gastrointestinal 0 8(9)
Respiratory 0 4 (4)
Cardiovascular 0 10 (11)
Neurological 0 1(1)
Endocrine 0 1(1)
Haemotologic 0 1(1)

Note: This includes the mean age, sex, weight, and prothrombin time
test result that triggered enrollment to the initial Intensive Care Study
of Coagulopathy-2 study. Patients are assigned a pathway to intensive
care unit admission: emergency department, ward, hospital transfer,
or operating room. Patients with liver disease were identified by

the referring clinician and given an intensive care national audit and
research centre (ICNARC) liver category code. The remaining group of
patients (non-liver) had varied ICNARC codes.

more variation was observed; 34%, 60.7%, and 5.3% of patients had
low, normal, or elevated ETP, respectively (Figure 2A).

Addition of TM (TM-ETP) reduced thrombin generation in both
groups, as well as normal controls (Figure 2B). In the liver group 42%
of patients had normal TM-ETP, and 21.8% and 35.9% of patients
had low and high TM-ETP, respectively (Figure 2B). In the non-liver
group, 21.3% of patients were within the normal range for TM-
ETP, and 28.7% and 50% had low and high TM-ETP, respectively
(Figure 2B). The liver and non-liver groups were not significantly dif-
ferent in the presence of TM (Figure 2B).

The effect of TM was recorded as the % ETP inhibition,
which was lower in both liver and non-liver patients (34.5 + 2.5%
and 41.8 + 2.4%, respectively) compared to healthy volunteers
(59.7% + 2.9%; Figure 2C). After addition of TM, the inter-individ-
ual variation in ETP was reduced in both patient groups, which was
expressed as the coefficient of variance of the ETP + TM; 42.42%
versus 66.52% in the non-liver group and 40.71% versus 36.2% in
the liver group (Figure 2A,B).
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3.2 | The effect of TM on TG parameters

The effect of TM was evaluated in the remaining TG parameters
(Figure 3). Addition of TM significantly altered the lag time, peak
height, and ETP in both groups of patients, and time to peak in non-
liver patients (Figure 3A-C, Figure 1A,B, P <.0001). TM did not influ-
ence the velocity index or start tail (Figure 3D-E).

Despite a prolonged PT, 79.5% of the liver patients and 56.6%
in the non-liver group had a normal TM-lag time (1.3-4.6 minutes;
Figure 4A). The TM lag time in patients with liver disease was sig-
nificantly shorter than those without (3.8 + 1.6 versus 5.9 + 2.8 min-
utes, respectively; Figure 4A).

The TM peak height was not significantly different between the
two patient groups, again suggesting that patients with liver disease
do not have unduly impaired coagulation (Figure 4B). Interestingly,
the TM time to peak was significantly shorter in the liver group than
in the non-liver group: 6 + 2 versus 8.8 + 3.6 minutes, respectively
(Figure 4C). Additionally, 75.6% of liver patients had a TM time to
peak within the normal range (3.3-6.9 minutes) in comparison to only
46.4% in the non-liver group (Figure 4C). The difference in TM time
to peak between liver and non-liver patients may be due to increased
PC activation in the non-liver group. Activated PC (APC) limits the
concentration of FVa, thus prolonging the time to peak, and the lack
of effect on the TM-peak height may be explained by reduction in

other anti-coagulant factors.

3.3 | Effectof PC

Lower TG in the liver group compared to non-liver disease patients
may be explained by decreased PC.3%40 Therefore, to establish
whether PC was also reduced in non-liver patients and responsible
for low TG, PC activity was measured (Figure 4D); PC was recorded
below the normal limit (0.7 1U/mL) in 98% of patients in both liver
and non-liver groups (Figure 4D). The liver patients had significantly
lower PC than the non-liver group (0.3 + 0.2 versus 0.42 + 0.2 U/
mL, P <.01).

3.4 | Correlation of TG parameters and
conventional tests

Analysis of the remaining TG parameters revealed a strong posi-
tive correlation between TM peak height and TM-ETP (2 = .6552;
Figure 5A). No correlation was observed between the other TG pa-
rameters, suggesting that each parameter describes a different as-
pect of coagulation.

Interestingly, no TG parameters correlated with conventional
laboratory tests, including PT, APTT, von Willebrand factor (VWF),
C-reactive protein (CRP), Clauss fibrinogen, or platelet count
(Figure 5B). This was reflected in the 12 correlation co-efficients with
TM-ETP: .0036, .004, .0041, .00051, and .0061 for VWF, CRP, PT,
platelet count, and fibrinogen, respectively (Figure 5B).
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FIGURE 2 Thrombomodulin in thrombin generation (TG) provides a global assessment of pro- and anti-coagulant factors. TG was
measured using ST Genesia and STG-Thromboscreen (STG-TBS) kits. STG-TBS initiates TG with an intermediate concentration of human
recombinant tissue factor + rabbit lung thrombomodulin (TM). Patients were split into two distinct groups: non-liver and liver patients.
Normal reference ranges were calculated as mean £ 1.96 x standard deviation from 45 healthy volunteers (dotted line). A, Endogenous
thrombin potential (ETP) in the absence and (B) presence of TM (TM-ETP). C, % ETP inhibition is calculated by the analyzer and represents

the extent of activated protein C inhibition on TG. *P < .05, ****P < .0001

3.5 | Longitudinal changes

Samples taken upon enrolment to the study (Day 1) and at the end
of the 5-day study period (Day 5) were not significantly different
from one another when measuring TM-ETP (Figure 6). However, the
PT measurement was significantly different between the two time
points, showing a shortening of the PT over time (Figure 6). This may
be explained by the contribution of anti-coagulant factors to the TG
test, for which the PT test does not account.

Often patients are administered blood components or drug
treatments based on routine coagulation test results. In our anal-
ysis, FFP transfusion had no identifiable effect on TG parameters
(Figure 7A, P = .81).

3.6 | Assessment of bleeding events using
TG parameters

As discussed in our earlier manuscript,5 16 major bleeds, defined as
blood loss >300 mL, were recorded and 4.9% of these patients were
treated with FFP transfusion (Figure 7B). The majority of major bleeds
(84%) were within the liver group. A further 28 bleeding events were
recorded as minor bleeds of whom 3.8% received FFP (Figure 7B).
Interestingly, only 42% of patients who received FFP transfusion had
a prothrombin ratio > 2% and 75% had normal TG, defined as TM-ETP
within 387.32 - 561.88 nmol/L/min.

Thrombin generation parameters were split into three catego-
ries: low, normal, and elevated TM-ETP. This was defined as < 387.3,
387.3 - 561.9, and > 561.9 nmol/L/min (Figure S1 in supporting in-
formation). Patients were then categorized as having low or high
platelets (< or > 100 x 107 plts/L) and low or high fibrinogen (<
or > 2 g/L), and bleeding events analyzed in each category (Figure
S1). Interestingly, bleeding events were identified across all catego-
ries, including patients with elevated TM-ETP, fibrinogen, or plate-
lets (Figure S1).

4 | DISCUSSION

It was previously thought that liver patients were hypocoagula-
ble due to their decreased levels of measured coagulation factors
and prolonged clotting in conventional tests. Our results support
evidence®®*48 that the reduction of pro-coagulant factors is bal-
anced by the simultaneous reduction of anti-coagulant factors in
liver disease. In the literature, PC is described as the key factor
responsible for re-balancing hemostasis; however, it is important
to note the contribution of other pro- and anti-coagulant fac-
tors.224751 |t has recently been shown that FVIIl and VWF syn-
thesis is increased,®>°%°% whereas antithrombin and tissue factor
pathway inhibitor (TFPI)-protein S levels are decreased®® in liver
disease. This provides a rationale for the addition of TM in the
TG assay and our findings for longitudinal monitoring suggest
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measured using Berichrom Protein C kit (Siemens) and Sysmex CS-5100 haemostasis analyzer. ** P < .01

many patients have a stable profile of TG during admission, de- includes post-transplant patients, sepsis associated with underly-
spite many changes in treatment and condition. A limitation of our ing liver disease, and cirrhosis; all which have different disease
study is the heterogenous nature of the liver patient group, which etiology (Figure 1).
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FIGURE 6 Comparison of thrombomodulin endogenous thrombin potential (TM-ETP) and prothrombin time (PT) over the study time
period. TM-ETP and PT were measured at Day 1 and Day 5 in liver and non-liver patients. Thrombin generation (TG) was measured using
ST Genesia and STG-Thromboscreen (STG-TBS) kits. STG-TBS initiates TG with an intermediate concentration of human recombinant tissue
factor in the presence of rabbit lung TM. PT was measured at sample collection during the Intensive Care Study of Coagulopathy-2 study

and obtained from the case report form. **P < .01

This study explored whether an algorithm could better predict
bleeding in patients admitted to critical care with the aim to re-
duce unnecessary FFP transfusion. We were unable to develop a
clear relationship between any of the coagulation parameters and
bleeding risk (Figure S1), suggesting bleeding is multi-factorial, ie,
low platelets and high factor VIII or high VWF and low fibrinogen.
Other reasons might include the limited number of bleeding events
recorded, additional factors contributing to bleeding in an individual
patient, and the circumstances around bleeding. It remains possible
that any coagulation test, including TM-ETP, is insensitive to bleed-
ing risk prediction and this may argue against emphasizing the need
for coagulation testing in many patients, such as prior to invasive
procedures. A limitation to our study was the absence of precise
details of the bleeding events, and it is important to recognize that
many of the bleeds may be associated with surgical or mechanical
interventions, and not with hemostatic failure per se. The site of
the bleed may be another factor determining outcomes, for example
intracranial compared to wound-related or non-traumatic intra-ar-

ticular bleeds.

A recent study carried out by the European Society of Intensive
Care Medicine (ESICM) surveyed transfusion practice in the
non-bleeding critically ill.>> The study found practice in plasma and
platelet transfusion is heterogenous and local transfusion guidelines
were lacking in the majority (71%) of ICUs.>® Our results indicate the
inefficacy of FFP transfusion on TG and continues to provide reas-
surance to clinicians that it is not necessary for patients within near
normal, conventional coagulation tests. Samples taken upon enrol-
ment (Day 1) and at the end (Day 5) of the study were not signifi-
cantly different when measuring TM-ETP (Figure 6). We were unable
to determine the effect of prophylactic plasma transfusion on PT in
this cohort; however, other studies have addressed this question and
found no effect 7192123

Although TG provides a different assessment of an individual's
hemostatic status than conventional coagulation tests, and is a more
representative test of what occurs in vivo, it remains incompletely
physiological in some aspects. These include replacement of plate-

56,57

lets with synthetic phospholipids, absence of cell and vessel

wall components including endothelial cells (which is where TM is
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expressed),”®>” and as this is a static system, the impact of flow,
which removes activated factors, and alters thrombus formation
and subsequently, structure.’®¢® A disadvantage of using TM-ETP
is that it cannot be calculated until TG has come to an end, ie, when
all thrombin in the sample has been inhibited by anti-thrombin. In
critically ill patients, this can take up to 120 minutes (Figure 4C).
Thus, TM peak height may be beneficial as a predictor of TM-ETP
and for use in clinical monitoring of critically ill patients. The lack
of correlation of TM-ETP with conventional laboratory tests, such
as VWEF, CRP, platelet count, or fibrinogen, supports our hypothesis
that current hemostatic tests provide only a limited assessment of
hemostatic capacity.

Our data support previous observations that measurement of
TG in the presence of TM provides a global assessment of pro- and
anti-coagulant factors. Second, comparison of TM-ETP and ETP
indicates that hemostasis is balanced in critically ill patients with
liver disease, and that this results from their decreased levels of PC
(Figure 2 A,B; Figure 4D). In summary, our results support the need
for a novel diagnostic strategy based on TG, and the ST Genesia
should be considered for future use in clinics to identify critically ill

patients who do not require FFP transfusion.
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