
ZHOU, Y., WANG, S., XIE, Y., SHEN, X. and FERNANDEZ, C. 2023. Remaining useful life prediction and state of health 
diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning 

machine algorithm. Energy [online], 285, article 128761. Available from: 
https://doi.org/10.1016/j.energy.2023.128761  

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Remaining useful life prediction and state of 
health diagnosis for lithium-ion batteries based 
on improved grey wolf optimization algorithm-

deep extreme learning machine algorithm. 

ZHOU, Y., WANG, S., XIE, Y., SHEN, X. and FERNANDEZ, C. 

2023 

https://doi.org/10.1016/j.energy.2023.128761


Energy
 

Remaining useful life prediction and state of health diagnosis for lithium-ion
batteries based on Improved Grey Wolf Optimization Algorithm-Deep Extreme

Learning Machine Algorithm
--Manuscript Draft--

 
Manuscript Number: EGY-D-23-05143R2

Article Type: Full length article

Keywords: Lithium-ion batteries;  State of health;  health indicator;  grey wolf algorithm;  deep
extreme learning machine

Corresponding Author: Shunli Wang, Prof.Dr.

Mianyang, CHINA

First Author: yifei zhou

Order of Authors: yifei zhou

Shunli Wang

Yanxin Xie

Xianfeng Shen

Carlos Fernandez

Abstract: The prediction of SOH for Lithium-ion battery systems determines the safety of Electric
vehicles and stationary energy storage devices powered by LIBs. State of health
diagnosis and remaining useful life prediction also rely significantly on excellent
algorithms and effective indicators extraction. Since the data obtained from the aging
experiment of Lithium-ion batteries is rich in electrochemical and dynamic information,
useful health indicators can be extracted for SOH and RUL prediction of machine
learning. This paper presents a method for predicting SOH and RUL based on a data-
driven model of deep extreme learning machine based on improved Grey Wolf
optimization algorithm. Firstly, GWO algorithm is improved by piecewise chaotic
distribution and sine-cosine algorithm, and then multi-layer superposition is performed
on an extreme learning machine to form DELM. Additionally, the experimental data of
the Center for Advanced Life Cycle Engineering data set was extracted and analyzed,
the aging state of batteries was analyzed and verified from multiple scales, and the
strong correlation of aging characteristics was extracted and verified. After that, the
model was driven by the extracted health indicators, and the accuracy and robustness
of the results were checked.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Yifei Zhou: Writing - Original Draft, Software, Conceptualization, Methodology. 

Shunli Wang: Supervision. Yanxing Xie: Validation. Xianfeng Shen: Visualization. 

Carlos Fernandez: Writing - Review & Editing. 

Credit Author Statement

 The battery charging and discharging data are deeply analyzed to extract multi-level

health indicators.

 The DELM data-driven model based on improved GWO algorithm for RUL prediction

and SOH diagnosis is proposed.

 The aging state of the battery was analyzed and the correlation between the health

indicators and the capacity was verified.

 The accuracy and robustness of the model are verified by the extracted health indicators.

Highlights



Remaining useful life prediction and state of health diagnosis for 

Lithium-ion batteries based on Improved Grey Wolf Optimization 

Algorithm-Deep Extreme Learning Machine Algorithm 

Yifei Zhoua, Shunli Wanga*, Yanxing Xiea, Xianfeng Shena, Carlos Fernandezb 

aSchool of Information Engineering, Engineering and Technology Center, Southwest 

University of Science and Technology, Mianyang, China; bSchool of Pharmacy and 

Life Sciences, Robert Gordon University, Aberdeen, UK. 

Shunli Wang*, School of Information Engineering, Engineering and Technology 

Center, Southwest University of Science and Technology. 497420789@qq.com 

Abstracts 

The prediction of SOH for Lithium-ion battery systems determines the safety of Electric vehicles 

and stationary energy storage devices powered by LIBs. State of health diagnosis and remaining useful 

life prediction also rely significantly on excellent algorithms and effective indicators extraction. Since 

the data obtained from the aging experiment of Lithium-ion batteries is rich in electrochemical and 

dynamic information, useful health indicators can be extracted for SOH and RUL prediction of 

machine learning. This paper presents a method for predicting SOH and RUL based on a data-driven 

model of deep extreme learning machine based on improved Grey Wolf optimization algorithm. Firstly, 

GWO algorithm is improved by piecewise chaotic distribution and sine-cosine algorithm, and then 

multi-layer superposition is performed on an extreme learning machine to form DELM. Additionally, 

the experimental data of the Center for Advanced Life Cycle Engineering data set was extracted and 

analyzed, the aging state of batteries was analyzed and verified from multiple scales, and the strong 

correlation of aging characteristics was extracted and verified. After that, the model was driven by the 

extracted health indicators, and the accuracy and robustness of the results were checked. 

Keywords: lithium-ion batteries; state of health; health indicator; grey wolf algorithm; deep extreme 

learning machine; 
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1. Introduction

Figure 1 [3]. The complexity and nonlinearity of battery capacity aging are challenging to predict RUL 

accurately [4, 5]. The diversity and uncertainty of external operating conditions and internal side 

reactions of the LIBs make an accurate estimation of State of Health (SOH) a challenge [6]. Various 

methods for online capacity estimation are investigated. These methods mainly use external 

characteristic parameters for SOH and RUL prediction and include empirical-based methods, 

model-based methods, data-driven methods, and characteristic signal analysis methods. 

To describe the aging behavior of the battery, a physical or empirical model of the battery is 

created mathematically. The model created using this method typically consists of a sequence of 

algebraic and differential equations. The SOH and RUL prediction model designed for a specific 

system only distinguishes the empirical-based method [7]. This paper [8] proposes a new hybrid 

Elman-Long Short-Term Memory (LSTM) method for forecasting the remaining battery life by 

combining the empirical model decomposition algorithm, long and short-term memory, and Elman 

neural network. In this paper [9], a fusion technique consisting of a correlation vector machine and 

particle filter is proposed and used to construct a battery aging model for RUL prediction. In this paper 

[10], several candidate health indicators are extracted from the peaks and valleys of part of the 

incremental capacity curve and screened. The fine-tuning process of particle swarm optimization based 
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To cope with the double pressure of the environment and energy and the urgent need to 

accomplish the carbon neutrality target, countries all over the world consider the development and 

utilization of new energy as an important strategy for sustainable development. This strategy has led to 

the increasing popularity of new energy vehicles. And Lithium-ion batteries (LIBs) as the heart of new 

progress of battery technology, the battery as the main power supply or energy storage component of 

the device has been widely used [1]. Lithium-ion batteries are widely used because of their high energy 

density, small package size and weight, no memory, low self-discharge rate, and high adaptability. 

Therefore the monitoring of real-time battery state of health (SOX) and remaining useful life (RUL) in 

the battery management system (BMS) has been the key concern [2]. Different charge-discharge 

distributions, ambient temperature, positive and negative electrode materials, capacity regeneration, 

and other factors lead to different battery capacity aging trends, the aging mechanism is shown in 

energy vehicles at the same time also attracted more attention. In more recent years with the gradual   



deep belief network is described in detail, and compared with three classical deep networks in terms of 

error and time consumption. In addition, this paper [11] introduces battery State of charge (SOC) as a 

factor to be included in the calendar life prediction model combined with an impedance-based 

electrothermal model. Nevertheless, operational conditions in real-world applications are frequently 

complicated and convergent, so empirically based approaches alone cannot reliably detect battery 

degeneration. 

The aging mechanism of Lithium-ion batteries is diverse and complex, and it is closely related to 

many interacting factors such as battery type, electrochemical reaction stage, and operating conditions. 

This literature [12] systematically summarizes the mechanism of action and diagnosis of Lithium 

battery aging. The model-based approach, on the other hand, consists mainly of an equivalent circuit 
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model (ECM) and an electrochemical model. ECM is more suitable for SOC estimation and the 

electrochemical model is more suitable for degradation analysis and SOH estimation [13, 14]. This 

paper [15], presents a reduced-order electrochemical model of an observer for estimating cathode and 

anode potentials, which requires only terminal voltages to track the cathode and anode po potentials 

Data-driven modeling is the direct use of historical data to build predictive models without relying 

on specific physical models through statistical and machine learning theories [17, 18]. Therefore, the 

approach based on data-driven models is more easily applied to different situations. This literature [19] 

proposes an improved ISSA-LSTM-based data-driven model and demonstrates experimentally that its 

the polarization process of the cell based on the conventional single-particle model. The main stress 

factors are used to compensate for and correct the key parameters of polarization to establish a more 

accurate single-particle model. However, building an accurate model of the cell mechanism is 

time-consuming and computationally expensive. 

and their internal charge concentrations. This work [16] investigates the main stress factors affecting 

RUL prediction method is more accurate and robust, which contributes to the rational use of 

Lithium-ion batteries. This study [20] proposes a novel hybrid model based on adaptive feature 

separable convolution (AFSC) and convolutional long and short-term memory (ConvLSTM) networks 

to improve the accuracy of RUL prediction and the interpretability of the model. This paper [21] 

introduces a Gaussian process regression for multi-step prediction based on the codec model, improves 

the codec fusion method, and smoothes the training set using the Savitzky-Golay method. A new kernel 

sliding window based on PF framework (GNN-SGMPF). 

function is designed to further improve computational accuracy. The estimated values of the GNN 

model are used as PF observations in this paper [22] to generate a grey model of the GNN fusion 



Based on the model, the extraction of battery health indicators (HIs) is also an important part of 

battery health state estimation. This study [23] proposes a new method for HIs extraction based on the 

u-chord curvature model based on a complete analysis of battery aging data. Compared with previous

feature extraction methods, this method divides the discharge process into different stages according to 

the curvature of the discharge curve and extracts many HIs highly relevant to the battery at the 

discharge plateau stage of the discharge curve. This literature [24] presents a probabilistic approach to 

battery degradation modeling and health prediction based on features extracted from the charging 

process using dynamic Bayesian networks (DBN). A voltage-temperature health feature extraction 

method is proposed [25] to improve the Prognostic and Health Management (PHM) of Lithium-ion 
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batteries by extracting voltage-dependent HIs from partial voltage profiles through the principle that 

the voltage changes during battery degradation, and it is not necessary to discharge the battery 

completely. Meanwhile, the battery surface temperature is selected as a thermally dependent health 

feature because battery aging is influenced by temperature. This paper [26] has three multiscale blocks 

Based on the above problems and the popularity of data-driven models based on deep learning 

methods in recent years, this paper proposes a deep limit learning machine algorithm based on an 

improved grey wolf optimization algorithm and a new feature extraction method with an emphasis on 

experimental data in battery health feature extraction. And the validity of the model and the strong 

correlation of the features are verified by bringing in data testing. The novelty and contributions of this 

study are summarized as follows: 

(MS-BLOCKs) by using a multiscale deep convolutional neural network (MS-DCNN) where three 

different sizes of convolutional operations are placed on each block in parallel. This structure improves 

the network's ability to learn complex features by extracting features at different scales. 

In this paper, it is presented a method based on multi-scale aging feature extraction, as shown in 

Figure 2, based on an optimized data-driven model constructed using the extracted multiple HIs and 

combined with the use of the sine-cosine optimization algorithm enhanced with the Grey Wolf 

optimization algorithm, which proposes a data-driven model for SOH and RUL prediction, optimized 

for the Deep Extreme Learning Machine. In this work, the accuracy and robustness of the model as 

and IC curve extracted from the experimental data of ten battery packs, the patterns of curve changes 

well as the reliability of the feature extraction were tested using aging data from 10 battery packs based 

on two types of batteries at the University of Maryland Center for Advanced Life Cycle Engineering. 

The main contributions can be summarized as follows: (1) Using the current curve, voltage curve, 



are found to extract the multi-scale battery HIs, and their strong correlation with battery capacity is 

verified by Pearson's correlation formula; (2) A novel Lithium-ion battery SOH and RUL prediction 

framework combining sine-cosine and traditional Grey Wolf Optimization (GWO) algorithm is 

proposed to optimize the deep limit learning machine; (3) Using the optimized deep limit learning 

machine model, the extracted constant current charging time (CCCT), constant voltage charging time 

(CVCT), ICCP (IC curve peak) and other relevant aging characteristics and the actual battery capacity 

are input to build the model, and the prediction results are obtained after training; (4) SOH and RUL 

analyses are performed on the capacity data predicted by the output of the new driver model to verify 

the accuracy and robustness of the model by comparing the metrics. 
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Figure 1. Schematic diagram of Lithium-ion battery aging causative factors and results 
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Step 3. SOH and RUL prediction
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Figure 2. Schematic diagram of the IGWO-DELM algorithm for SOH and RUL prediction 

2. Improved GWO-DELM Algorithm 

2.1. DELM method 

Extreme learning machine (ELM) is a kind of feed-forward neural network, which was first 

proposed by Prof. Huang Guangbin from Singapore, and the paper pointed out that ELM has good 

generalization performance and extremely fast learning ability [27]. Unlike traditional neural networks, 

ELM does not need to adjust the weights based on the directional propagation of the gradient but sets 
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the weights by Moore-Penrose generalized inverse (GIR). The traditional neural network requires the 

input value multiplied by the weight value plus the bias value for the activation function calculation, 

and repeats the first three steps at each layer, while ELM does not repeat the calculation, and calculates 

the output value directly, which makes the operation volume significantly reduced, and replaces the 

error backpropagation step with one matrix inverse operation is determined once by solving the system 

of equations. Therefore, instead of using the tried and tested gradient-based algorithm in traditional 

neural networks, ELM uses randomized input layer weights and biases, and the output layer weights 

are calculated by generalized inverse matrix theory. The computational procedure of ELM is very 

similar to that of a standard back-propagation neural network, but the weight matrix between the 

hidden layer and the output is a pseudo-inverse matrix. The calculation formula is as follows: 

 

1 1

( ) ( ) ( ), 1,...,
L L

L i i i i j i

i i

f x g x g x b j N  
 

         (1) 

where L is the number of hidden units, N is the number of training samples, β is the weight vector 

between the i-th hidden layer and the output, ω is the weight vector between the input and the output, g 

is the activation Equation (1) expressed in terms of the logistic sigmoid function, b is the bias vector, 

and x is the input vector. 
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The structure of a typical single implicit layer feedforward neural network is shown in Figure 3, 

which consists of an input layer, an implicit layer, and an output layer, with full connectivity between 

the input layer and the implicit layer, and between the implicit layer and the output layer neurons. 

Among them, the input layer has n neurons, corresponding to n input variables, and the hidden layer 

has l neurons; the output layer has m neurons, corresponding to m output variables. Let the connection 

weights w between the input layer and the implicit layer be shown in Equation (3): 
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where wn denotes the connection weight between the i-th neuron in the input layer and the j-th 

neuron in the hidden layer. 

As shown in Equation (4), the connection weight between the implicit layer and the output layer is 
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β. 
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where self βjk denotes the connection weight between the j-th neuron of the hidden layer and the 

k-th neuron of the output layer. 

As shown in Equation (5), the threshold b of the hidden layer neuron is: 
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As shown in Equation (6), let the input matrix X and output matrix Y of the training set with Q 

samples be: 
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(6) 

From Figure 3, let the activation function of the hidden layer neuron be g(x), then the output T of 

the network is shown in Equation (7): 
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(7) 

The above formula can be expressed as Hβ=TT. 

Where TT is the transpose of the matrix T, H is the output matrix of the hidden layer of the neural 

network. The specific form is shown in Equation (8) below: 
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Autoencoder (AE) can copy the input to the output after training. Training an autoencoder is 

unsupervised because no labeled data is required. Therefore, the idea of AE is applied to ELM so that 

the input data of ELM is also used for the output, i.e., the output Y = X. The network structure of the 

Extreme Learning Machine ELM-AE, which is used as an autoencoder, is shown in Figure 3. 
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Figure 3. Extreme Learning Machine Auto-Encoder Schematic 

When m is greater than L in Figure 3, ELM-AE realizes dimensional compression and maps the 

high-dimensional data into low-dimensional feature expressions; when m is equal to L, ELM-AE 

obtains equal-dimensional feature expressions. When m is smaller than L, ELM-AE successfully 

expresses the high-dimensional features of the original data in a sparse way. In summary, ELM-AE is a 

generalized approximator characterized by making the output of the network the same as the input and 

randomly generating orthogonal input parameters (ai, bi) for the hidden layer. Orthogonalization has the 

following advantages, according to the J-L (Johnson-Lindensrauss) theorem, orthogonalization of 

weights and biases can map the input data to spaces of different or equal dimensions, thus enabling the 

feature representation of different functions. The orthogonal design of weights and biases removes 

noise beyond the features and makes the features more homogeneous and linearly independent, thus 

enhancing the generalization ability of the system. 

The output of ELM-AE can be expressed in the following expression: 
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Where a is the matrix of ai and b is bi. The output weight of the hidden layer is: 
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Where X = [x1, ..., xN] is the input data. 

In this paper, the DELM is built based on ELM combined with the deep learning method. Under 

the condition of inheriting the high efficiency of deep learning, the reverse cycle optimization of 

traditional deep learning is replaced by ELM-AE, which further improves the efficiency of the 

algorithm, encapsulates multiple ELM-AE, improves the precision and accuracy, and makes it easier to 

solve complex problems in real-time. 

According to the characteristic capability of ELM-AE, it is taken as the basic unit of the deep 

extreme learning machine DELM [28]. The same as the traditional deep learning algorithm, DELM 

also uses the hierarchical greedy training method to train the network. The input weights of each 

hidden layer in DELM are initialized with ELM-AE and hierarchical unsupervised training is 

performed. DELM doesn't require the reverse fine-tuning procedure, in contrast to the conventional 

deep learning method. 
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Figure 4. Deep learning combined with extreme learning machine works schematically 

The idea of DELM is to minimize the reconstruction error so that the output can be infinitely close 

to the original input. Through the training of each layer, the advanced features of the original data can 

be learned. Figure 4 describes the training process of the DELM model. The input data sample X is 

taken as the target output (X1 =X) of the first ELM-AE, and then the output weight β1 is calculated. 
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Then, the output matrix H1 of the first hidden layer of DELM is taken as the input and target output (X2 

= X) of the next ELM-AE, and the training is conducted layer by layer by layer and the last layer is 

trained with ELM. Equation (4) is used to solve the output weight βi+1 of the last hidden layer of 

DELM. In Figure 4, Hi+1 is the output matrix of the last hidden layer, T is the sample label, and the 

input weight matrix of each hidden layer of Hi+1 is Wi+1= β
i+1

T
. 

The idea of DELM is to minimize the reconstruction error so that the output can be infinitely close 

to the original input. Through the training of each layer, the advanced features of the original data can 

be learned. 

2.2. SCA-GWO Algorithm 

Hunring

Attacking Prey

Search for Prey

( 1) ( ) ( ) ( )p pX t X t A C X t X t     

1

2

2

2

A a r a

C r

  

 

( ) 2 2
t

a t
MaxIter

 

Initalize parameters

N, tmax, a, A, C

Generate a random initial gray 

wolf position through Piecewise 

Chaotic Convergence




































1)(1,
)(1

1)(5.0,
5.0

)(1

5.0)(,
5.0

)(

)(0,
)(

)1(

txp
p

tx

ptx
p

txp

txp
p

ptx

ptx
p

tx

tx

Social Hieracrchy

Encircling Prey

)
1

(1)(
m

iW txi










 t

m
mct

1

t

cxxx

i
c

txWtxWtxW
Aug

tctt
)(...)()(

)()(2)(1 21 
)()(

)()(

)()(

3

2

1

tXtXCD

tXtXCD

tXtXCD













t less than tmax
YES

END










































maxmax

max

max

max

2

1

2

1
,

2

1

)1cos(
1

)(

2

1
,

2

1

)1cos(
1

)(

ttt
t

t

aaaa

tt
t

t

aaaa

n

finalinitialfinal

n

finalinitialfinal





NO

α 

β 

γ 

ω 

The class system of Gray wolf

321

3

3

321

2

2

321

1

1

XXX

X
w

XXX

X
w

XXX

X
w






















5.0)()()cos()(

5.0)()()sin()(
)1(

4321

4321

rtXtPwwwtXAug

rtXtPwwwtXAug
tX

i

j

ii

i

j

ii

i

，

，

1 1

2 2

3 3

X X A D

X X A D

X X A D

 

 

 

  

  

  

1 2 3( ) ( ) ( )
( 1)

3

X t X t X t
X t

 
 

Convergence based on cosine regularity

Sine-cosine optimization algorithm

Figure 5. Schematic diagram of the improved GWO algorithm 

2.2.1. Piecewise Chaos Mapping 

The more uniform the distribution of the initial population in the search space, the better it is for 

improving the optimization efficiency and solution accuracy of the algorithm [29]. Chaos theory has 

been widely introduced into swarm intelligence algorithms to enhance the diversity of the initial 
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population to improve the optimization performance of the algorithm because of its randomness, 

ergodicity, and non-repetition. Compared with random search, chaos theory can perform a 

comprehensive search of the search space. In summary, to make the initial population individuals 

utilize the information of the solution space as much as possible, this paper introduces the Piecewise 

(PW) Chaos mapping in chaos theory to improve the population initialization of GWO algorithm, 

whose mathematical model is shown in Equation (11). 
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where p is taken to be 0.4 and X(t) is a random number from 0 to 1. 

2.2.2. GWO Algorithm 

Grey Wolf Optimization Algorithm (GWO), inspired by the Grey Wolf. GWO algorithm simulated 

the leadership hierarchy and hunting mechanism of natural grey wolves [30]. Four types of grey wolves, 

such as α, β, λ and ω, were used to simulate the leadership class. In addition, the three main steps of 

hunting were realized: Finding prey, Surrounding prey, and Attacking prey. 

In the algorithm, Wolf α is regarded as the optimal solution, Wolf β and Wolf λ as the second and 

third best solutions, and the remaining candidate solutions are assumed to be ω. In the GWO algorithm, 

Wolf α, β and λ lead the hunting and Wolf ω follows them. 

Encircling prey 

During hunting, the behavior of grey wolves that round up prey is defined as follows. 

 ( 1) ( ) ( ) ( )p pX t X t A C X t X t       (12) 

X and Xp are the position vectors of the individual gray wolf and the prey, respectively, t is the 

current iteration number, and A and C are the coefficient vectors as expressed in Equation (14). 
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r1 and r2 are random vectors between [0,1] respectively. a is called the distance control parameter 

and its value decreases linearly from 2 to 0 as the number of iterations increases, as expressed in 
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Equation (14). 
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MaxIter indicates the maximum number of iterations. 
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Where Dα, Dβ, and Dδ are the distances between Wolf α, β, δ, and other individuals. 

Attacking prey  

The mathematical model of a wolf pack attacking its prey is shown in the following equation. 
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Where w1, w2, and w3 are the weights occupied by wolves α, β, δ. Xα, Xβ, and Xδ are the position 

vectors of α, β and δ. The calculations of A1, A2, and A3 are similar to those of A, C1, C2, and C3 are 

similar to those of C. 

Study found that when |A| > 1, the grey Wolf group will expand the search scope to find prey, 

namely global searching and fast convergence rate; When the |A| < 1, the grey Wolf population will 

shrink the search scope to attack their prey, the local search, slow convergence speed. Therefore, the 

size of A is closely related to the global and local search capabilities of GWO algorithm. It can be seen 

from Equation (13) that A changes with the change of convergence factor a, which linearly decreases 

from 2 to 0 with the number of iterations. However, the algorithm is not linear in the process of 

continuous convergence, so it can be seen that the linear decreasing convergence factor cannot fully 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



reflect the actual optimization search process. Therefore, this paper proposes a convergence factor 

based on the cosine law of change, whose modified expression is shown in Equation (19): 
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Where ainitial and afinal are the initial and final values of the convergence factor a. In this paper, 

ainitial = 2, afinal = 0, t is the number of iterations, tmax is the maximum number of iterations, n is the 

declining index, and 0 < n ≤ 1. The transformation of a is shown in Figure 5. 

As can be seen from Figure 6, the image of the original convergence factor a decreases linearly 

and decreases at the same rate in the iteration process, while the image of the improved convergence 

factor a is a curve based on the law of cosine change, which decreases slowly in the early iteration, 

making the convergence factor a maintain a large value for a long time, to improve the search 

efficiency. In the later iteration period, the decrease is faster, so that A can keep A small value for a long 

time so that a can keep a small value for long time, to improve the search accuracy. Therefore, the 

global search ability and local search ability of the algorithm are balanced. Therefore, Equation (19) is 

used instead of Equation (14) to improve the ability of the algorithm to find the global optimal. 

 
Figure 6. Comparison chart of optimization parameters a 

2.2.3. Sine-cosine optimization algorithm 

The iteration strategy is summarized into two threads: global search and local development. In the 

global search thread, a large random wave is applied to the solution in the current solution set to search 

the unknown region in the solution space [31]. In the local development thread, a weak random 
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perturbation is applied to the solution set to adequately search the neighborhood of the current solution. 

SCA uses the periodic volatility of sine and cosine functions to construct an iterative equation to 

realize the global search and local development of two thread functions. Through this concise update 

iteration equation, perturbation is applied and the solution set is updated. The specific iteration equation 

is divided into the following. 

Sine iterative or cosine iterative equations of two kinds: 
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Where t represents the number of current iterations, Xj
i(t) represents the component of the 

position of individual i in the t-th iteration in the j-th dimension, r1, r2, and r3 are random parameters, r1 

is determined by the update function, r2~U [0, 2π] and r3 ϵ (0, ∞), Pj(t) represents the component of 

the optimal candidate solution in the j-th dimension in the t-th iteration. 

To eliminate the correlation between iteration step size and direction, random parameters r4~U 

[0,1] were used to combine the above two iteration equations into a complete iteration equation 
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To improve the late search oscillation caused by the inertia weight of parent individual 

information in the iterative process, this paper proposes a weight updating mechanism using individual 

fitness adjustment. 

In addition to the current optimal solution and disturbance amplitude, each candidate solution is 

also affected by a weight-adjusted linearly according to its fitness, which depends on the ranking value 

of its fitness in the candidate set. Candidate sets with higher fitness are assigned higher weights, which 

have a greater impact on the following generation of candidate solution sets in the updating process: 
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After determining the weight of each candidate solution, select a part of candidate sets with high 

fitness to calculate the component of the average bit: 

 1( ) 2( ) ( )1 2( ) ( ) ... ( )
t t c tx x x c

i

t

W X t W X t W X t
Aug

c

  
  (23) 

Where t represents the number of current iterations; Xi(t) represents the candidate solution with 
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the i-th fitness in the t-th iteration; Wxi(t)
 represents the weight obtained in the t-th iteration; mω 

denotes the size of the candidate solution set (wolf ω). 

ct is the scale of the optimal candidate solution involved in the average position calculation, which 

decreases with the increase of the number of iterations, the computational equation is shown in 

Equation (24). 

 1
tc m t

m




 
  
 

 (24) 

To enable the SCA optimization algorithm to be used to optimize the local search and global 

search capabilities of the grey wolf algorithm, the relevant parameters of Equation (25) of the SCA 

algorithm are replaced with the relevant parameters in the grey wolf algorithm, allowing the advantages 

of the SCA algorithm to be utilized. 
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(25) 

Replacing the original random parameters r1, r2, and r3 of SCA with purposeful w1, w2 and w3 of 

Grey Wolf optimization algorithm makes the algorithm more purposeful in finding the best, and 

improves the efficiency of the algorithm. w1, w2, and w3 are obtained from Equation (18). r is a random 

number from 0 to 1 that switches the sine and cosine functions equally. The iterative equation of 

Equation (17) is replaced by Equation (25) to improve the ability of the algorithm to find the global 

optimal.  

3. Feature Extraction 

To accurately predict the state of health of Lithium-ion batteries and better ensure the safety and 

reliability of Lithium-ion battery use, battery health feature extraction is a very important part. By 

observing the changing pattern of relevant parameters during the aging process of the battery, the 

indicators comparable to the changing trend of the capacitance curve are identified and put into the 

IGWO algorithm for capacity estimation. The accuracy of health feature extraction directly determines 

the accuracy of capacity prediction. 

In this thesis, it was chosen to use the publicly available dataset from the University of Maryland 

CALCE laboratory and selected data from two batteries, CS2 and CX2, as experimental samples, with 
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the specific parameters of the two batteries as seen in Table 1 [32]. 

 

Table 1. Parameters related to battery packs used in battery aging experiments 

 Battery name 

CS2 Battery CX2 Battery 

Battery 

Parameters 
Specifications (Value) Specifications (Value) 

Capacity Rating 1100 mAh 1350 mAh 

Cell Chemistry 
LiCoO2 cathode (EDS showed 

trace elements of Manganese) 

LiCoO2 cathode (EDS showed 

trace elements of Manganese) 

Weight (w/o 

safety circuit) 
21.1g 28g 

Dimensions 5.4 × 33.6 × 50.6 mm 6.6 × 33.8 × 50 mm 

All CS2 cells were subjected to the same charging configuration, using a standard 

constant-current/constant-voltage scheme with a constant-current rate of 0.5°C until the voltage 

reached 4.2 V, and then held at 4.2 V until the charging current dropped to less than 0.05 A. All cells 

were charged at a constant-current rate of 0.5°C until the voltage reached 4.2 V and then held at 4.2 V 

until the charging current dropped to less than 0.05 A. Unless otherwise noted, the discharge cutoff 

voltage for these cells was 2.7 V. All CS2 cells were randomly numbered and named accordingly. The 

CS2 cell numbered n is named "CS2_n".CS2_35, CS2_36, CS2_37, and CS2_38 were cycled at a 

constant current of 1°C, and CS2_33 and CS2_34 were cycled at a constant current of 0.5°C. CX2 was 

tested in the same way as CS2, respectively, at a constant current of CX2-34, CX2-36, CX2-37, and 

CX2-38 were cycled at constant flow at 0.5°C. CS2 cells were cycled at constant flow at 0.5°C. Cycle 

CS2 cells at 0.5°C under constant flow. Cycle CS2 cells at 0.5°C under constant flow. Cycle CS2 cells 

at 0.5°C under constant flow. 

To extract the appropriate HIs, the complete current-voltage curve of a particular cycle of the 

battery is first analyzed, as seen in the figure below, a complete cycle of current-voltage is roughly 

divided into three phases, constant current charging section (CCCS), constant voltage charging section 

(CVCS), and constant current discharging section (CVDS). The current-voltage variation curve in the 

charge-discharge cycle is shown in Figure 7, and the charge-discharge capacity is shown in Figure 8. 
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Figure 7. Battery current and voltage curves during the complete charge and discharge cycle 

 

Figure 8. Capacity change curve in the charge and discharge cycle 

As seen in Figure 9 and Figure 10, by extracting and analyzing the changes of the current-voltage 

curves at different cycles, it can be observed that the time to complete a cycle is gradually becoming 

shorter and the duration of CCCS and CVCS is also significantly shortened as the number of cycles 

continues to increase as the battery aging experiment proceeds. Therefore, it can be proved that there is 

a correlation between the aging characteristics and the duration of the charging and discharging process 

as the battery ages. In this paper, it was chosen to further extract CCCT and CVCT for Pearson 

correlation analysis. 
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Figure 9. The contrast of voltage curves of different cycles 

 

Figure 10. The contrast of current curves of different cycles 

From Figure 11 and Figure 12, it can be seen that the CCCT of the extracted cycles showed a 

decreasing trend and the CVCT showed an increasing trend, with a few protrusions but the overall 

trend remained consistent. The correlation analysis was performed by Pearson's formula, and the 

correlation coefficients were all higher than 0.8 indicating that they have high correlation and can be 

used as good HIs for capacity estimation. 
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(a) (b) 

Figure 11. (a) CX2 batteries (b) CS2 batteries constant current charging time 

(a) 

 

(b) 

Figure 12. (a) CX2 batteries (b) CS2 batteries constant voltage charging time 

From Figure 13 and Figure 14, it can be seen that as the battery aging experiment proceeds, the 

available capacity of the battery gradually decreases, while the resistance of the internal resistance of 

the battery also gradually increases. The phenomenon that the electrode potential deviates from the 

equilibrium electrode potential when current is passed through the electrode is called electrode 

polarization. Polarization includes ohmic polarization, electrochemical polarization, and concentration 

polarization. The polarization resistance is the internal resistance caused by the polarization of the 

positive and negative electrodes of the battery during the electrochemical reaction, which can reflect 

the internal consistency of the battery, but it is not applicable in production due to the influence of 

operation and method. The internal resistance of polarization is not constant and changes over time 

during the charging and discharging process because the composition of the active material, the 

concentration of the electrolyte, and the temperature are constantly changing. The ohmic internal 

resistance obeys Ohm's law, and the polarized internal resistance increases with the increase of current 

density, but it is not a linear relationship. It often increases linearly with the logarithm of the current 

density. 
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(a) (b) 

Figure 13. (a) CX2 (b) CS2 battery pack internal resistance change graph

(a) (b) 

Figure 14. (a) CS2_35 (b) CX2_36 battery aging process resistance change graph 

The concept of incremental capacity (IC) analysis was first introduced by Thompson and applied 

to materials research [30], and in recent years it has only been used for battery SOH estimation. In the 

study of lithium battery capacity degradation, the IC curve represents the increment of battery power 

per unit voltage. Theoretically, it is derived from the U-Q curve, but in practical applications, the 

derivation of discrete data is usually calculated by the difference method with the equation shown in 

Equation (26). 

U

Q

dU

dQ
IC






(26) 

Where Q is the battery capacitance, U is the battery voltage, I is the battery current. 

(a) (b) 

Figure 15. (a) CX2_36 (b) CS2_35 Partial IC curve extraction diagram 

0 500 1000 1500 2000
0.09

0.10

0.11

0.12

0.13
 CX2_34 

 CX2_36 

 CX2_37 

 CX2_38 

R
es

is
ta

n
ce

(W
)

Cycle

0 200 400 600 800 1000

0.08

0.10

0.12

0.14
 CS2_35

 CS2_36

 CS2_37

 CS2_38

R
es

is
ta

n
ce

(W
)

Cycle

-100 0 100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1.0

1.2

C
ap

ac
it

y
(A

h
)

Cycle

In
tern

al R
esistan

ce (W
)

0.085

0.090

0.095

0.099

0.104

0.109

0.114

0.118

0.123

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.6

0.8

1.0

1.2

1.4

C
ap

ac
it

y
(A

h
)

Cycle

In
tern

al R
esistan

ce (W
)

0.095

0.098

0.102

0.105

0.109

0.112

0.116

0.119

0.123

3.6

3.8

4.0

4.2

0

1

2

3

4

5

1600

1200

800

400

0

d
Q

/d
V

(A
h

/V
)

Voltage(V)

Cycle

3.6

3.8

4.0

4.2

0

5

10

15

20

800

600

400

200

0

d
Q

/d
V

(A
h

/V
)

Voltage(V)

Cycle

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Analysis of the reasons for the increase of the internal resistance of the battery, the loss of 

electrolyte, the blockage of the diaphragm micropores, the continuous thickening of the SEI film and 

CEI film, the precipitation of lithium dendrites on the surface of the negative electrode, the structural 

damage caused by the leaching of metals from the positive electrode material, the poor contact between 

the part of the active material and the collector, etc. due to the volume change of the graphite negative 

electrode, the flaking of graphite particles due to the co-embedding of the electrolyte and lithium ions, 

and the corrosion of the collector and the adhesive are all possible reasons for the increase of the 

internal resistance. With the cyclic aging process, the loss of lithium ions and active materials occurs 

inside the battery, the ohmic voltage drop, and the polarization voltage inside the battery increase, and 

the result is an increase in the voltage plateau during battery charging. As the lithium battery charging 

voltage curve is flat, the difference cannot be directly observed, and after transforming into the capacity 

increment curve, it can be found that the overall shift of the capacity increment curve to the left occurs, 

indicating the decrease of the voltage plateau during battery charging. 

Figure 16. CS2_35 battery IC curve at 50 cycles 

As shown in Figure 16, the IC curve of the CS2_35 battery pack at the 50th cycle shows two 

obvious peaks, while as shown in Figure 15, with the aging experiments of the Lithium-ion battery, the 

IC curve shows only one peak. Therefore, to minimize the extraction error, this paper chooses to extract 

the IC value with the largest peak as the health indicator ICCP. 

From Figure 17, it can be seen that the extracted ICCP shows a significant downward trend, which 

is consistent with the previous analysis because when the battery aging phenomenon occurs, it leads to 

a decrease in the voltage plateau of the battery charging process. The Pearson correlation analysis can 

be concluded that it has a strong correlation with the battery capacity. 
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(a) (b) 

Figure 17. (a) CX2 (b) CS2 extracting peak dQ/dV values from IC curve 

By conducting Pearson correlation analysis on the extracted features of the ten battery groups, as 

shown in Equation (27), when the absolute value of the correlation coefficient is greater than 0.8, the 

two variables are strongly correlated, indicating that the extracted HIs all have high correlation and are 

suitable for the estimation of battery health status, and the correlation results are shown in Figure 18 

below. 
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where XA
i  is the i-th sample of sample A and �̅�A is the mean of sample A, XB

i  is the i-th sample 

of sample B and �̅�𝐵 is the mean of sample B, and P is the Pearson correlation coefficient.

Figure 18. Pearson correlation coefficient plot of relevant health indicators against battery capacity 

4. Experimental results

The SOH level is described by the capacity degradation characteristic, from which the end-of-life 

(EOL) value is calculated and taken to be 80% of the rated capacity. Specific information on the 

relationship between SOH and RUL is shown in Figure 19. 
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Figure 19. SOH and RUL relationship diagram 
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y
SOH

is the real SOH, Cn is the current capacity and Cinitial is the initial capacity of the battery. RULT 

is the RUL value measured from the experimental data and RULP is the RUL value predicted from the 

data-driven model. nEOL
T  is the number of EOL cycles measured experimentally. nEOL

P  is the number 

of EOL cycles predicted by the prediction program. nt is the current number of cycles. ERUL is the 

prediction error or residual. 

In this experiment, root mean square error (RMSE) and coefficient of determination (R2) values 

were used to verify the accuracy of the prediction and the model. The error (ERUL), mean absolute error 

(MAE), and mean absolute percentage error (MAPE) was also introduced for performance evaluation. 

The calculation process of the error evaluation index is mathematically expressed in the following 

equation: 
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where ŷ
SOH

 is the SOH value predicted by the data-driven model.

Figure 20 shows the SOH prediction results of the experimental data of the CS2 battery pack of 35, 

36, 37, and 38 cells under the condition of constant current discharge aging at 1℃, i.e., the prediction 

results of the four algorithms in sequence, and it can be seen that the experimental curve of the 

IGWO-DELM algorithm follows the best, and the error is also shown to be the smallest and closest to 0, 

which indicates the optimization effect of SCA on the GWO algorithm. It can well prevent GWO from 

falling into the local optimum in the process of finding the optimum so that the global optimum can be 

found to obtain better training results. The details of Figure 20 also show that the errors of improved 

GWO-DELM remain very good from the beginning to the end, all converging to Figure 21 shows the 

RMSE, MAE, and MAPE values of the four cells, and it can be seen that the accuracy of the algorithm 

is improved with the optimization of the superposition, and the prediction effect of the GWO algorithm 

is enhanced with the addition of the SCA algorithm. The experimental results of the four cells show 

that the IGWO-DELM predicts SOH and RUL superiorly, and the analysis of the results shows that 

MAE is below 2%, RMSE is below 2.5%, and MAPE is below 2.5%, all of which are kept at a low 

level. Table 2 shows, the results of RUL prediction for the CS2 battery pack, indicating that the 

prediction error EOL cycle number of IGWO-DELM is the closest among the four algorithm estimates 

and the most accurate prediction, showing the robustness and accuracy of IGWO-DELM algorithm. 
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(c) (d) 

Figure 20. (a) CS2_35 battery (b) CS2_36 battery (c) CS2_37 battery (d) CS2_38 battery comparison experimental results and 

error details graph 

(a) (b) (c) 

Figure 21. (a) RMSE (b) MAE (c) MAPE analysis of RUL forecast results 

Table 2. RUL prediction results for CS2 battery pack cycled at a constant current of 1℃ 

Battery name Model EOL Cycle Absolute Error Estimate Cycle RMSE MAE MAPE 

CS2_35 

ELM 515 21 537 0.041 0.024 0.050 

DELM 76 591 0.024 0.017 0.030 

GWO-DELM 65 580 0.020 0.013 0.021 

IGWO-DELM 28 543 0.016 0.010 0.017 

CS2_36 

ELM 484 83 567 0.076 0.068 0.144 

DELM 65 549 0.055 0.049 0.103 

GWO-DELM 29 513 0.034 0.027 0.055 

IGWO-DELM 29 513 0.024 0.020 0.040 

CS2_37 

ELM 565 18 583 0.086 0.052 0.120 

DELM 52 617 0.059 0.051 0.092 

GWO-DELM 18 583 0.020 0.017 0.029 

IGWO-DELM 11 576 0.015 0.012 0.022 

CS2_38 
ELM 574 138 712 0.116 0.086 0.163 

DELM 24 598 0.081 0.061 0.114 
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GWO-DELM 54 628 0.021 0.017 0.025 

IGWO-DELM 1 573 0.013 0.009 0.013 

Figure 22 shows the SOH prediction results obtained from the SOH prediction results obtained by 

the data-driven model output with the input of extracted HIs for the four cells of CX2 batteries 34, 36, 

37, and 38 discharged at constant current at 0.5℃. It can be seen that the IGWO-DELM algorithm 

shows a clear advantage among the four compared algorithms, maintaining high robustness and high 

accuracy. The error detail plot shows that IGWO-DELM has maintained low error in the test set, and it 

can be seen in Figure 23 that the SOH prediction results of IGWO-DELM are also at a better level for 

all indicators, with MAE below 3%, RMSE below 3.5%, and MAPE below 4% in all four batteries. 

The data of the four batteries in Table 3 also show that the RUL prediction ability of IGWO-DELM is 

ranked first among the four algorithms. 
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(c) (d) 

Figure 22. (a) CX2_34 battery (b) CX2_36 battery (c) CX2_37 battery (d) CX2_38 battery comparison experimental results and 

error details graph 

(a) (b) (c) 

Figure 23. (a) RMSE (b) MAE (c) MAPE analysis of RUL forecast results 

Table 3. RUL prediction results for CX2 battery pack cycled at a constant current of 0.5℃ 

Battery name Model EOL Cycle Absolute Error Estimate Cycle RMSE MAE MAPE 

CX2_34 

ELM 648 83 731 0.068 0.051 0.067 

DELM 312 960 0.056 0.052 0.132 

GWO-DELM 78 726 0.024 0.020 0.053 

IGWO-DELM 40 688 0.017 0.013 0.014 

CX2_36 

ELM 734 10 744 0.066 0.052 0.067 

DELM 11 745 0.074 0.059 0.076 

GWO-DELM 0 734 0.030 0.020 0.027 

IGWO-DELM 3 737 0.014 0.014 0.018 

CX2_37 

ELM 736 372 1108 0.086 0.072 0.075 

DELM 194 930 0.034 0.028 0.028 

GWO-DELM 153 583 0.019 0.016 0.016 

IGWO-DELM 0 736 0.010 0.008 0.008 

CX2_38 

ELM 711 59 770 0.100 0.080 0.135 

DELM 1 710 0.066 0.051 0.089 

GWO-DELM 133 844 0.035 0.028 0.040 

IGWO-DELM 65 776 0.031 0.027 0.038 

Figure 24 shows the experimental SOH results for cells 33 and 34 in the CS2 battery pack with 

constant current discharge at 0.5℃. The SCA optimization of GWO significantly improves the global 

optimal solution of DELM, and it can be seen that the SOH prediction curves of IGWO-DELM follow 

the experimentally obtained cell capacity curves very closely, which reflects the excellent performance 

of IGWO. The comparison in Figure 25 shows that the MAE, RMSE, and MAPE values of IGWO are 

better than those of the other three comparative algorithms. The RUL prediction EOL error shown in 

Table 4 is also the lowest among the four algorithms. 
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(a) (b) 

Figure 24. (a) CS2_33 battery (b) CS2_34 battery comparison experimental results and error details graph 

(a) (b) (c) 

Figure 25. (a) RMSE (b) MAE (c) MAPE analysis of RUL forecast results 

Table 4. RUL prediction results for CS2 battery pack cycled at a constant current of 0.5℃ 

Battery name Model EOL cycle Absolute Error Estimate Cycle RMSE MAE MAPE 

CS2_33 

ELM 501 71 572 0.059 0.051 0.129 

DELM 28 529 0.050 0.028 0.127 

GWO-DELM 4 505 0.025 0.020 0.091 

IGWO-DELM 5 506 0.019 0.014 0.028 

CS2_34 

ELM 448 99 547 0.060 0.044 0.058 

DELM 102 550 0.031 0.027 0.032 

GWO-DELM 102 550 0.022 0.018 0.021 

IGWO-DELM 37 572 0.017 0.014 0.017 
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the SOH and RUL of lithium-ion batteries using experimentally measured battery capacity and 

HIs extracted from the analysis of experimental data. The CALCE Data Center of the University 

of Maryland's open data set, which contains 10 experimental data sets of CS2 and CX2 batteries, 

is used in this study. 

At the same time, this paper proposed a multi-scale feature extraction method to extract the 

characteristics of battery constant-current charging time, constant-voltage charging time, and 

internal resistance from the current-voltage experimental data, and analyzed the IC curve of 

charge and discharge stage to extract the relevant features, and verified the strength of the 

correlation using Pearson correlation coefficient equation. In the previous mechanism analysis and 

curve comparison, it was found that the curve of some data has an obvious downward trend or 

fluctuation trend with the aging degree of the battery, that is, the extracted features can reflect the 

degradation process of the lithium-ion battery. These characteristics are based on the battery aging 

experiment charge and discharge test data and the attenuation mechanism of the electrochemical 

battery, and achieve high precision optimized data-driven. 

The extracted battery capacity and lithium-ion battery HIs were input into the IGWO-DELM 

data-driven model for SOH prediction. It can be seen from the experimental output that with the 

enhancement of the optimization model, the evaluation indexes of the optimization and 

improvement model are significantly reduced, and the RMSE of the test battery is lower than 4%, 

MAPE is lower than 3.8%, and MAE is lower than 2.7%, which verifies the effectiveness and 

robustness of the algorithm. And can accurately predict the decline of battery health. In future 

work, further study of SOH estimation using partially charged or discharged battery data will be a 

feature work. This work can provide a solution to the practical application problem of LIBs in the 

case of partial charge or discharge. 
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5. Conclusion

In this paper, a data-driven model based on deep extreme learning machine and improved 

Gray Wolf optimization algorithm is proposed to process the capacity data of lithium-ion batteries 

and predict the health state and remaining service life of the batteries. The model aims to predict 
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