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Abstract: High precision state of health (SOH) estimation of lithium-ion batteries (LIBs) is a research 

hotspot in battery management system (BMS). To achieve this goal, an improved integrated algorithm 

based on multiple layer kernel extreme learning machine (ML-KELM) and eugenics genetic sparrow 

search (EGSS) algorithm is proposed to estimate the SOH of LIBs. First, a kernel version of ML-ELM 

model is constructed for initial SOH estimation of LIBs. The kernel function parameters are used to 

simulate sparrow foraging and anti-predatory behaviors, and the parameter optimization process is 

completed in the proposed EGSS algorithm by iteratively updating the position of sparrows to improve 

SOH prediction accuracy and model stability. The cycle data of different specifications of LIB units are 

processed to construct the high-dimensional health feature (HF) dataset and the low-dimensional fusion 

feature (FF) dataset, and each version of ML-ELM network is trained and tested separately. The 

numerical analysis of the prediction results shows that the best root mean square error (RMSE) of the 

comprehensive algorithm for SOH estimation is limited within 0.29%. The results of the multi-indicator 

comparison show that the proposed algorithm can track the true value stably and accurately with 

satisfactory high accuracy and strong robustness. 
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1. Introduction

The advantages of high energy density, long service life, and low environmental pollution make LIBs 

widely used in new energy vehicles, special robots, aerospace, and other fields [1, 2]. However, there 

are a series of safety problems caused by improper monitoring and management of LIBs [3-5]. Therefore, 

it is very important for the development of BMS and new energy vehicles to estimate the status of LIBs 

[6]. Accurate SOH value is the key prerequisite for the safe charging and discharging, service life 

prediction, and real-time power management of group batteries. The different working conditions of 

LIBs will lead to great differences in the internal chemical reaction rate of the batteries [7, 8]. Besides, 

the LIBs have a strong nonlinearity, which also causes errors in the measured values of sensors and 

increases the difficulty of accurate monitoring and prediction of the battery state [9-11].  

The SOH estimation methods of LIBs mainly include model-based [12-14] and data-driven [15-17] 

estimation methods. The model-based approach is based on the mechanism of battery internal 

performance degradation, establishing a physical model that can reflect the battery performance 

degradation characteristics, and then completing the SOH estimation of LIBs through model parameter 

identification, in which the electrochemical model [18] needs to be modeled independently based on 

different types of battery materials, structures, etc. The model is often complex, computationally 

intensive and does not have generalization. The equivalent circuit model (ECM) [19, 20] simulates the 

simplified electrochemical reactions inside the battery with electronic components, which is easy to 

implement but has poor accuracy, and it is often combined with filtering methods. Qiu et al. [21] apply 

the cuckoo search algorithm to optimize the particle filter algorithm, and Bi et al. [22] determine the 

parameters of the battery model by genetic resampling particle filtering method. Under such conditions, 

the prediction accuracy of the model is significantly improved. 

The data-driven estimation method does not need to analyze the internal mechanism of the LIBs [23]. 
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The battery operation process data (voltage, current, temperature, etc.) are collected and analyzed, from 

which the battery degradation information and rules are mined, and the SOH of LIBs is estimated using 

intelligent algorithms [24, 25]. Through learning the internal relationship of samples in the training 

dataset, the neural network continuously makes predictions and adjusts its structural parameters 

according to errors, making the model perform well under the test dataset [26, 27]. Patil et al. [28] 

combine the classification and regression stages of support vector machine (SVM) to extract key features 

from the curves of battery aging experimental data to improve the SOH prediction accuracy and 

computational efficiency of lithium-ion batteries. Li et al. [29] employed a modified long short-term 

memory (LSTM) neural network to get the SOH results using historical capacity and a significant 

amount of battery offline data as input and future capacity and offline capacity as output. 

Extreme learning machine (ELM) [30-32] is proposed with the idea of reducing parameter setting and 

selection through a stochastic mechanism, and has been rapidly developed as it shows faster learning 

and better generalization compared to back propagation (BP) algorithm. The architecture of ML-ELM 

is first defined by Kasun et al [33], who give the complete training procedure for this hierarchical 

information architecture. Given that ML-ELM integrates the advantages of developing ELM, it has been 

widely used in many fields. Nowadays, multidimensional health features derived from life-cycle data 

are frequently used as input in data-driven SOH prediction methodologies [34, 35]. When extracting the 

effective information layer by layer, the ML-ELM will be limited by the high-dimensional input, which 

causes a problem with prediction accuracy and increases the computational cost. Furthermore, the 

parameters of each hidden layer of ML-ELM are generated at random, resulting in significantly different 

prediction results. In addition, the reconstruction error caused by layer-by-layer pseudo-inverse 

operation will accumulate layer by layer and affect the model performance [36, 37]. 

In this paper, a high-precision SOH prediction method for lithium-ion batteries integrating multiple 
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layer kernel extreme learning machine (ML-KELM) modeling and eugenics genetic sparrow search 

(EGSS) algorithm is proposed to address the aforementioned issues. Firstly, a kernel version of ML-

ELM is established, and then the sparrow search algorithm is optimized based on genetic ideas, followed 

by the construction of a traditional high-dimensional feature dataset and a low-dimensional fused feature 

dataset for model training and testing. Finally, the prediction results are numerically evaluated under 

four evaluation indicators to demonstrate the accuracy advantages and robustness of the proposed 

algorithm. The main contributions are as follows. 

(1) In ML-ELM network, there are problems such as low prediction accuracy and poor stability caused 

by the accumulation of reconstruction errors and the random initialization of parameters. The radial basis 

function (RBF) is used to replace the random mapping mechanism of the ML-ELM network, which 

significantly enhances the prediction stability of the algorithm. 

(2) Aiming at the problem that traditional SS algorithms are prone to fall into local optima, the global 

optimal solution of the previous generation and the average fitness of some excellent individuals are 

introduced into the position update mode of contemporary sparrows responsible for foraging, while 

optimizing the position update mode of sparrows responsible for guarding, making the improved SS 

algorithm have stronger parameter optimization capabilities. 

(3) For SOH estimation, the prediction accuracy of ML-ELM is limited when dealing with a large 

amount of high-dimensional input data. In order to improve the performance of the algorithm, the highly 

correlated health features extracted from the aging data are fused according to the weight and used as 

network input to reduce the data dimension and noise interference caused by a large number of original 

data, so that the network has stronger stability and generalization ability.  

(4) The integrated algorithm is tested on two different dimensional feature datasets constructed, and 

the numerical results of four evaluation indicators show that the algorithm has the advantages of high 
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accuracy and strong robustness. 

The paper is organized as follows: Section 2 introduces data sets and data processing. Section 3 

describes the structure and operation of ML-KELM, as well as the mathematical equation of the SS 

algorithm, which is based on genetic idea optimization. Section 4 analyzes the experimental results from 

multiple dimensions. Section 5 summarizes the paper. 

2. Data description 

SOH reflects the current health status of LIBs, and its value represents the current capacity of the 

battery as a percentage of the rated capacity. Therefore, the state of health of LIBs is often characterized 

in the form of capacity, as defined in Eq. (1). 

𝑆𝑂𝐻𝑡 =
𝐶𝑡
𝐶𝑁
∙ 100% (1) 

In Eq. (1), 𝐶𝑡 denotes the capacity at time 𝑡, 𝐶𝑁 denotes the initial capacity at the beginning of 

aging, and 𝑆𝑂𝐻𝑡  denotes the SOH at time 𝑡 . In this research, the EGSS-ML-KELM algorithm is 

verified on public datasets 1 (from NASA Ames Prognostics Center of Excellence) [38, 39] and 2 (from 

the Center for Advanced Life Cycle Engineering) [40, 41] that are widely used for life and capacity 

testing of LIBs based on data-driven. A total of 7 LIBs units are selected from the two datasets. The 

capacity attenuation curve of LIBs obtained from the discharge measurements is shown in Fig. 1. 

  

(a) Capacity attenuation curve of LIBs in dataset 1 (b) Capacity attenuation curve of LIBs in dataset 2 

Fig. 1 Capacity attenuation curve of LIBs 
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In Fig. 1, all LIBs are charged in constant current (CC) mode until the battery voltage reaches the 

upper cut-off voltage, and then continue charging in constant voltage (CV) mode until the charging 

current drops below 20mA. During the discharge phase, all LIBs are discharged at a constant current 

until the battery voltage drops to the lower limit cut-off voltage, which is the end of a complete cycle. 

The specifications of the selected LIBs are shown in Tab. 1. 

Tab. 1 Specification of the selected LIBs 

Battery characteristic Specification 

Dataset 1 Dataset 2 

LIB1 LIB2 LIB3 LIB4 LIB5 LIB6 LIB7 

Cell type Cylindrical Prismatic 

Nominal capacity 2Ah 1.1Ah 

Charge current 1.5A 0.55A 

Discharge current 2A 1.1A 

Upper cut-off voltage 4.2V 4.2V 

Lower cut-off voltage 2.7V 2.5V 2.2V 2.7V 

Among them, the data of dataset 1 is collected from the customized battery prediction test bench, 

which mainly includes programmable DC electronic load and power supply, thermocouple sensor, 

voltmeter, ammeter, electrochemical impedance spectrum and data collector based on PXI chassis. The 

impedance measurement is conducted through the frequency scanning of electrochemical impedance 

spectrum from 0.1 Hz to 5 kHz to measure the battery capacity. The cycling of the battery in dataset 2 is 

completed by conducting multiple charge and discharge tests using the Arbin BT2000 battery testing 

system at room temperature. The Coulomb counting method is used to estimate the capacity of the test 



7 

 

battery, as a complete charge-discharge cycle is conducted. For the raw measurement data (voltage, 

current, temperature, etc.) in the dataset, there are often abnormal points or noises, which will lead to 

large prediction errors if these data are directly used as neural network input. Therefore, it is necessary 

to preprocess the original data. The parameter change curve in the process of life degradation is extracted 

from two sets of datasets, and some examples are shown in Fig. 2. 

  

(a) capacity attenuation curve (b) Charge current curve 

  

(c) Discharge voltage curve (d) Temperature curve in discharge stage 

Fig. 2 Characteristic curve of raw data 

The data outliers due to the capacity recovery effect will cause the final results to be abnormal. Smooth 

function shown in Eq. (2) is used for processing to improve the prediction accuracy of the algorithm, 

and the optimized capacity attenuation curve is shown in Fig. 2(a). 

{
 
 

 
 
𝑦(1) = 𝑐(1)

𝑦(2) =
1

3
(𝑐(1) + 𝑐(2) + 𝑐(3))

𝑦(𝑖) =
1

5
(𝑐(𝑖 − 2) + 𝑐(𝑖 − 1) + 𝑐(𝑖) + 𝑐(𝑖 + 1) + 𝑐(𝑖 + 2))      𝑖 = 3,4,5, …

 (2) 
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In Eq. (2), 𝑦  denotes the capacity data after smoothing, 𝑐  denotes the raw capacity data, and 𝑖 

denotes a positive integer greater than or equal to 3. That is, average moving filtering is performed on 

the capacity data, and the moving step is set to 5. 

The aging of LIBs is a long-term process. In data-driven algorithms for estimating the capacity of 

LIBs, health features highly related to the life decay of lithium-ion batteries are usually used as network 

inputs rather than directly using these large amounts of raw data. Nevertheless, health features are often 

defined and constructed by researchers, which leads to higher dimensions of input data of the network, 

and increases computational complexity and estimation efficiency. In this research, the extracted 

multiple health features are fused through the idea of weighting, which greatly reduces the dimensions 

of data while retaining effective information. The specific process is shown in Fig. 3. 

 

Fig. 3 Schematic diagram of weighted fusion features 

In Fig. 3, the current, voltage and temperature change curves of each cycle are extracted from the two 

datasets, and the curve change rate, equal voltage drop discharge time, unit time capacity change, etc. 

are selected to construct multiple health features. In order to screen out features that contain duplicate 

information, the constructed features are processed using principal component analysis (PCA) as shown 

in Tab. 2 and transformed into linearly independent features. 

Tab. 2 The steps for the PCA method 

Step 1: Form the original data into a matrix 𝑋 of 𝑛 ∗ 𝑚. 
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Step 2: Each element of matrix 𝑋 minus the mean of the row in which it is located. 

Step 3: Calculate the covariance matrix 𝐶 (𝐶 =
1

𝑚
𝑋𝑋𝑇) of matrix 𝑋. 

Step 4: Calculate the eigenvalues and corresponding eigenvectors of matrix 𝐶. 

Step 5: The corresponding eigenvectors are arranged in rows according to the magnitude of the 

eigenvalues to form a matrix, and the first 𝑘 rows are taken to form a matrix 𝑃. 

Step 6: Calculate the objective matrix 𝑌 (𝑌 = 𝑃𝑋). 

The constructed health features are processed by the above steps to obtain k mutually independent 

health features. Then, the correlation analysis of the obtained k features is performed according to the 

Pearson correlation coefficient shown in Eq. (3). 

𝜌(𝑥, 𝑦) =
𝐶𝑜𝑛(𝑥, 𝑦)

𝜎(𝑥)𝜎(𝑦)
=

∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)
2𝑛

𝑖=1 √∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

 (3) 

In Eq. (3), 𝐶𝑜𝑛(𝑥, 𝑦) is the covariance of variables 𝑥 and 𝑦, 𝜎 is the standard deviation, 𝑛 is the 

length of the variable, and �̅� and �̅� are the means of 𝑥 and 𝑦. 

Then, based on the overall correlation coefficient of each feature, the two features with the highest 

correlation with LIBs aging are selected from four categories of current, voltage, temperature, and 

capacity respectively. The specific definition of retained features are shown in Tab. 3. 

Tab. 3 Definition of retained high correlation features 

Features Definition 

𝐹𝐼1 The time of the constant current charging stage. 

𝐹𝐼2 The area enclosed by the current curve of each cycle and the x-axis in charge stage. 

𝐹𝑉1 The time it takes for the voltage curve to decrease to specified value in discharge stage. 

𝐹𝑉2 The area enclosed by the voltage curve of each cycle and the x-axis in discharge stage. 

𝐹𝑇1 The time it takes for the temperature curve to rise to specified value in discharge stage. 



10 

 

𝐹𝑇2 The area enclosed by the temperature curve of and the x-axis in discharge stage. 

𝐹𝐶1 The decay rate of the capacity curve after smoothing in steps of 5 cycles. 

𝐹𝐶2 The area enclosed by the capacity curve and the x-axis in steps of 5 cycles. 

Based on the retained health features in Tab. 3, construct the traditional high-dimensional feature 

dataset. Then, these features are weighted and fused to construct a low-dimensional fused feature dataset. 

The overall correlation coefficients of the above retained features are shown in Tab. 4. 

Tab. 4 Overall correlation coefficient of retained features 

Battery Feature correlation coefficient (𝜌) 

 𝐹𝐼1 𝐹𝐼2 𝐹𝑉1 𝐹𝑉2 𝐹𝑇1 𝐹𝑇2 𝐹𝐶1 𝐹𝐶2 

LIB1 0.8284 0.7878 0.7881 0.7586 0.8027 0.7883 0.9521 0.8987 

LIB2 0.7704 0.7720 0.7723 0.7518 0.7515 0.7487 0.9156 0.9043 

LIB3 0.8729 0.8088 0.8094 0.7448 0.8327 0.8632 0.9212 0.9330 

LIB4 0.8829 0.8747 0.8692 0.8850 0.8202 0.8949 0.9201 0.9470 

LIB5 0.9101 0.8916 0.8262 0.8556 0.8037 0.8825 0.9745 0.8780 

LIB6 0.8954 0.8828 0.9196 0.8531 0.8538 0.9167 0.9709 0.8877 

LIB7 0.86272 0.9082 0.8321 0.8095 0.7917 0.8908 0.9304 0.9487 

Then, based on the overall correlation coefficient 𝜌 in Tab. 4, the features are weighted and fused 

according to the principle shown in Eq. (4). 

{
  
 

  
 
𝜔𝑗𝑖 =

1
𝜌𝑗𝑖

∑
1
𝜌𝑗𝑖

2
𝑖=1

𝐹𝑗 =∑𝜔𝑗𝑖 ∗ 𝐹𝑗𝑖

2

𝑖=1

 (4) 

In Eq. (4), {𝑖 = 1, 2;  𝑗 = 𝐼, 𝑉, 𝑇, 𝐶} , 𝜔𝑗𝑖  denotes the weight of each feature, 𝜌𝑗𝑖  denotes the 
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correlation coefficient of each feature, 𝐹𝑗  denotes the fusion feature, and 𝐹𝑗𝑖  denotes each feature 

sequence.. The seven LIB cells life cycle data are processed identically to obtain the corresponding 

health feature dataset and the corresponding fusion feature dataset. 

3. Methodology 

3.1 The kernel version of ML-ELM modeling

Automatic encoder (AE) is a simple and efficient calculation method. ELM-AE combines ELM and 

AE as an unsupervised neural network model, whose output is equal to the input. The learning process 

of ML-ELM is completed by stacking multiple ELM-AEs to extract effective information hierarchically. 

To reduce the instability of prediction results caused by random initialization of ML-ELM network 

parameters (weights, thresholds, etc.) and the reconstruction errors accumulated layer by layer, a kernel 

learning mechanism is introduced to replace the structural parameters of each layer by a kernel function 

matrix, and the eugenics genetics sparrow search algorithm introduced in Section 3.2 is used to perform 

extreme value seeking on the kernel function parameters to achieve high accuracy SOH prediction of 

LIBs. The principle structure of ML-KELM is shown in Fig. 4. 

 

Fig. 4. The ML-KELM network topology. (a) The RBF kernel function. (b) The 𝑖𝑡ℎ KELM-AE of ML-ELM. (c) The 
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ML-KELM structure diagram 

In Fig. 4(c), multiple ELM-AE stack structure is used to extract sample features of input data layer by 

layer without supervision to complete the learning process, while a single ELM is used as the final 

supervised regression layer to complete the prediction output. Therefore, the kernel version of ELM-AE 

shown in Fig. 4(b) needs to be built first. 

For a dataset containing n pieces of training samples, assume that it can be represented as ℵ =

{(𝑋𝑘 , 𝑇𝑘)|𝑘 = 1,2, … , 𝑛}, where 𝑋𝑘 = [𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑑], 𝑇𝑘 = [𝑡𝑘1, 𝑡𝑘2, … , 𝑡𝑘𝑐]. Then for hidden layer 

node ℎ𝑚  (input weight is 𝑎𝑚  and bias is 𝑏𝑚 ), its output weight 𝛽𝑚 = [𝛽𝑚1, 𝛽𝑚2, . . . , 𝛽𝑚𝑐]
𝑇  and 

output matrix ℎ𝑚(𝑎𝑚, 𝑏𝑚, 𝑥) = 𝑎𝑚𝑥 + 𝑏𝑚 . For all hidden layer nodes, the output matrix can be 

expressed as Eq. (5). 

𝑯 = [
ℎ1(𝑎1, 𝑏1, 𝑥1) ⋯ ℎ𝐿(𝑎𝐿 , 𝑏𝐿, 𝑥1)

⋮ ⋱ ⋮
ℎ1(𝑎1, 𝑏1, 𝑥𝑛) ⋯ ℎ𝐿(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑛)

] (5) 

And the corresponding weight matrix and target matrix can be expressed as Eq. (6). 

𝜷 = [
𝛽1
𝑇

⋮
𝛽𝐿
𝑇
], 𝑻 = [

𝑡11 ⋯ 𝑡1𝑐
⋮ ⋱ ⋮
𝑡𝑛1 ⋯ 𝑡𝑛𝑐

] (6) 

Then, an ELM-AE model can be expressed in matrix form as Eq. (7). 

𝑯𝜷 = 𝑻 (7) 

In order to prevent the prediction results from over fitting and limit complexity of the model, the 

regularization coefficient 𝐶 is introduced, so an ELM-AE model can be expressed as Eq. (8). 

𝑓𝐸𝐿𝑀−𝐴𝐸(𝒙) = 𝒉(𝒙)𝑯
𝑻 (
𝐼

𝐶
+ 𝑯𝑯𝑻)

−1

𝑻 (8) 

To reduce the impact of random generation of input weights 𝒂 and bias 𝒃 in Eq. (5), replace 𝑯𝑯𝑻 

in Eq. (8) with the kernel function matrix 𝚽 shown in Eq. (9). 

𝚽(𝑥𝑘, 𝑥𝑗) = exp(−𝜆‖𝑥𝑘 − 𝑥𝑗‖
2
) (9) 

In Eq. (9), 𝚽(𝑥𝑘, 𝑥𝑗) is the radial basis function with single parameter 𝜆. Then, the kernel version 
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of ELM-AE model can be expressed as Eq. (10). 

𝑓𝐾𝐸𝐿𝑀−𝐴𝐸(𝒙) = 𝒉(𝑥)𝑯
𝑻 (
𝐼

𝐶
+ 𝚽)

−1

𝑻 (10) 

In Eq. (10), 𝒉(𝒙)𝑯𝑻 = [
𝚽(𝑥, 𝑥1)

⋮
𝚽(𝑥, 𝑥𝑛)

], which means that the hidden layer becomes a kernel matrix 𝚽. 

Then, the kernel version of ELM-AE is obtained, where the input matrix 𝑿(𝑖) = [𝑥1
(𝑖), … , 𝑥𝑑

(𝑖)] , the 

kernel matrix 𝚽(𝑖) = [Φ1
(𝑖), … , Φ𝑛

(𝑖)] , the transformation matrix 𝛙(𝑖) = [𝛽1
(𝑖), … , 𝛽𝑛

(𝑖)] . Under this 

premise, by building the ML-KELM structure shown in Fig. 4(c), the prediction results can be obtained 

through the following data conversion process. 

Assume that the input matrix is 𝑿(1), output matrix is T, kernel parameter of all hidden layers is 𝜆𝑖, 

regularization coefficient of all layers is 𝐶𝑖, the number of KELM-AE is N, and the activation function 

is 𝑔𝑖. Similarly, for the 𝑖𝑡ℎ ELM-AE (𝑖 = 2,3, …𝑁), Eq. (11) can be obtained by replacing 𝜷 with 

𝛀(𝒊) and 𝑻 with 𝑿(𝑖) in Eq. (7). 

𝑯(𝑖)𝛀(𝒊) = 𝑿(𝑖) (11) 

Then, through the pseudo-inverse matrix of the output matrix 𝑯(𝑖), the transformation matrix 𝛀(𝒊) 

can be obtained as shown in Eq. (12). 

𝛀(𝒊) = (𝑯(𝑖))
𝑻
(
𝐼

𝐶
+ 𝑯(𝑖)(𝑯(𝑖))

𝑻
)
−1

𝑿(𝑖) (12) 

When the iterative calculation of each KELM-AE is completed, it indicates the end of the learning 

process. At this time, the output of the last KELM-AE can be expressed as Eq. (13). 

𝑿(𝑁) = 𝑔(𝑿(𝑁)(𝛀(𝑁))𝑻) (13) 

In Eq. (13), 𝑿(𝑁) is not only the output of the last KELM-AE, but also the input of the single ELM 

used for regression. Therefore, the final output can be expressed as Eq. (14). 

𝑿(𝑁)𝜷final = 𝑻 (14) 

In Eq. (14), 𝜷final is the output weight matrix of the ELM, which can be calculated by Eq. (15). 



14 

 

𝜷final = 𝑿(𝑁) (
𝐼

𝐶
+ 𝑿(𝑁)(𝑿(𝑁))

𝑻
)
−1

𝑻 (15) 

In ML-ELM, ELM-AE uses pseudoinverse to solve the transformation matrix 𝛀(𝒊) corresponding to 

each input matrix 𝑿(𝑖), so each layer will produce reconstruction error, while ML-ELM will minimize 

the reconstruction error of each ELM-AE, and the reconstruction error will accumulate and propagate 

layer by layer in the process of determining that each 𝛀(𝒊) is used for subsequent iterations, which will 

produce larger reconstruction error compared with the exact inverse. In addition, the hidden layer nodes 

𝒉𝑖 of each ELM-AE in ML-ELM need to be set manually, and the problem of model instability caused 

by random generation of input weight 𝒂𝑖 and bias 𝒃𝑖 cannot be ignored. 

Inspired by the fact that the kernel learning method can perform well without adjusting parameters 

𝒉𝑖, 𝒂𝑖, and 𝒃𝑖, the 𝑯𝑯𝑻 matrix of each ELM-AE in ML-ELM is replaced by the corresponding kernel 

function matrix 𝚽, as shown in Eq. (10), to obtain ML-KELM. In this case, the burden of setting 𝒉𝑖 of 

each hidden layer and the unstable influence caused by randomly generating 𝒂𝑖 and 𝒃𝑖 are eliminated. 

Besides, under the invertible kernel matrix 𝚽 , the transformation matrix 𝛀(𝒊)  can be calculated by 

exact inversion rather than pseudo inversion, which greatly reduces the reconstruction error.  

In Fig. 4(c), the hidden layer of each KELM-AE is replaced by a kernel function matrix 𝚽(𝑖), so that 

under the fixed kernel parameter 𝛌𝑖, ML-KELM can complete the training process at one time without 

spending too much time to explore the optimal combination of 𝒉𝑖 , 𝒂𝑖 , and 𝒃𝑖 . However, the 

performance of the kernel function often depends directly on its parameters. Therefore, how to determine 

the optimal value of each kernel parameter 𝛌𝑖 is another problem that needs to be solved urgently. In 

this research, the foraging and anti-predation behavior of sparrows in nature are simulated by kernel 

parameter 𝜆, and the global optimal values of 𝛌𝑖 are obtained through continuous updating of sparrows' 

positions. Details are shown in Section 3.2. 
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3.2 The eugenics genetic sparrow search algorithm 

Similar to other population optimization algorithms, inspired by sparrow population activities, 

researchers established a discoverer-follower model by simulating their foraging process and added a 

monitoring and early warning mechanism, the so-called sparrow search algorithm [42-45]. However, 

when the algorithm starts to iterate, the discoverers will approach the global optimal value, which greatly 

reduces the search scope of the algorithm and limits the optimization effect. Therefore, this research 

proposes an improved SS algorithm based on genetic thought. 

Based on the traditional SS algorithm, the position of the discoverer is optimized by introducing the 

global optimal solution of the previous generation and the mean of fitness for some excellent individuals 

(eugenics). In analogy with the genetic algorithm, by assigning the good genes from the parent to the 

offspring, the search range of the discoverer will be significantly increased, effectively avoiding the 

effect of falling into local optimization. The optimized position update method is shown in Eq. (16). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ∙ (𝑓𝑗,𝑔

𝑡 − 𝑋𝑗,𝑎
𝑡 ) ∙ 𝑊       𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄                               𝑅2 ≥ 𝑆𝑇

 (16) 

In Eq. (16), 𝑡 is the current number of iterations, 𝑋𝑖,𝑗
𝑡+1 is the fitness value of the 𝑖𝑡ℎ sparrow in the 

𝑗𝑡ℎ dimension of the next generation, 𝑓𝑗,𝑔
𝑡  is the global optimal solution obtained by iteration in the 𝑗𝑡ℎ 

dimension of the current generation, 𝑋𝑗,𝑎
𝑡   is the mean fitness of the selected individuals of current 

generation. 𝑊 is a random number of [-1,1], and 𝑄 is a random number subject to normal distribution. 

𝑅2 and 𝑆𝑇 (𝑅2, 𝑆𝑇 ∈ [0,1]) are early warning value and safety value respectively, which means that 

when the early warning value of the sparrow is below the safety value (𝑅2 < 𝑆𝑇), the discoverer can 

conduct extensive search operations. When the early warning value is higher than the safety value (𝑅2 ≥

𝑆𝑇), the sparrow will alert other sparrows and move to a safe position. 

The number of sparrows responsible for vigilance generally accounts for 10%~20% of the population, 
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and their initial positions are randomly generated in the population. The position update of this part of 

the sparrow will affect the optimization range of the algorithm, so the improved position update method 

is shown in Eq. (17). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ (𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 )              𝑖𝑓 𝑓𝑖 ≠ 𝑓𝑔   

𝑋𝑖,𝑗
𝑡 + 𝛽 ∙ (𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 )          𝑖𝑓 𝑓𝑖 = 𝑓𝑔

 (17) 

In Eq. (17), when 𝑓𝑖 = 𝑓𝑔, the sparrow in the middle of the population has realized the danger and 

moved closer to other sparrows. If the sparrow is in the best position, it will be randomly adjusted to a 

position between the worst position. If not, no position change is made. When 𝑓𝑖 ≠ 𝑓𝑔, its position will 

be updated to a random position except the worst position. 

3.3 Converged architecture for the SOH estimation 

ML-ELM is a multi-layer neural network formed by stacking multiple ELM-AEs. Compared to deep 

learning networks, ML-ELM requires no fine-tuning, and has the advantages of fast training speed and 

high efficiency in feature information extraction. Therefore, the introduction of the EGSS-ML-KELM 

algorithm into the SOH estimation model can not only quickly complete the training process with fixed 

kernel parameters, but also enhance the robustness of the system while ensuring the prediction accuracy. 

The entire process is roughly divided into three components: data processing and fusion feature 

construction; EGSS algorithm is iteratively updated to obtain the optimal kernel function parameter 

values and construct the optimal model architecture; train the model to achieve SOH estimation. The 

SOH estimation framework for multi-algorithm synthesis is shown in Fig. 5. 
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Fig. 5 SOH estimation framework 

In Fig. 5, multidimensional health features are extracted from two datasets, and gray correlation 

analysis and principal component analysis are used to sort and screen out features that contain duplicate 

information. According to the correlation, the residual features are weighted and fused within the four 

factors of capacity, current, voltage, and temperature to obtain a 4-dimensional fusion feature dataset 

and perform data partitioning. After initializing the ML-KELM network and the EGSS algorithm, the 

RMSE of the prediction result is used as the fitness function of the EGSS algorithm, and the iteration 

and update of parameter optimization are started until the optimal kernel function parameter 𝜆𝑖 and 

regularization coefficient 𝐶𝑖 for each ELM-AE are obtained. Assign the optimal parameters to the initial 

ML-KELM network, and use multiple evaluation indicators to test the accuracy of the optimized network 

on the test dataset to complete the SOH estimation process. 
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3.4 Evaluation metrics 

In order to better evaluate the performance of the algorithm, the experimental results are further 

calculated and analyzed by the following three indicators. 

(1) Maximum Error (ME) 

𝑀𝐸 = max (|𝑆𝑂𝐻𝑡𝑟𝑢𝑒 − 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡|) (18) 

(2) Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑆𝑂𝐻𝑡𝑟𝑢𝑒 − 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡|

𝑁

𝑖=1
 (19) 

(3) Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑂𝐻𝑡𝑟𝑢𝑒 − 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

2
𝑁

𝑖=1
 (20) 

(4) Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑆𝑂𝐻𝑡𝑟𝑢𝑒 − 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑆𝑂𝐻𝑡𝑟𝑢𝑒

| × 100%
𝑁

𝑖=1
 (21) 

In the equations above, 𝑁 denotes the number of samples, 𝑆𝑂𝐻𝑡𝑟𝑢𝑒 represents the true value of 

SOH, 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡 indicates the prediction value of SOH. In the subsequent verification and analysis 

section, the SOH prediction performance of each version of the ML-ELM algorithm is evaluated using 

the above four criteria. 

4. Results and discussion 

4.1 Hyper-parameter design of EGSS-ML-KELM network 

After determining the estimation framework of SOH, it is necessary to set the parameters of ML-

KELM network and EGSS algorithm to meet the high-precision SOH estimation of LIBs. For ML-

KELM network, excessive number of hidden layers can lead to significant increases in computing costs, 

while conversely, it can cause significant estimation errors. For EGSS algorithm, the selection of 

population size and iteration times has a particularly significant impact on the optimal solution. 



19 

 

Excessive population size or iterations can lead to significant computational burden and time loss, 

although this may slightly improve the ability to optimize parameters. 

The setting of all parameters does not traverse all possible values, but rather is roughly set to make 

the prediction result within an acceptable accuracy range. After a series of attempts, considering the 

impact of data volume, and balancing computational accuracy and efficiency, the setting of each 

parameter is shown in Tab. 5. 

Tab. 5 Parameters of the algorithm 

Algorithm Parameters Values 

ML-KELM Kernel function RBF 

Number of hidden layers 𝑁 = {6, 8, 10, 12, 15} 

EGSS The population size 𝑃 = {30, 40, 60, 80} 

The maximum number of iterations 𝑇𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = {300, 400, 500} 

The initial proportion of discoverers 20% 

The proportion of guards 20% 

The alert value 0.8 

The proportion of eugenic individuals 10% 

The parameter settings for each test are roughly adjusted within the range given in Tab. 5. The 

algorithm verifications are conducted using MATLAB 2019b running on a computer with 3.2GHz AMD 

R7-5800H CPU and 16GB RAM. 

4.2 SOH estimation with EGSS-ML-KELM network 

The life-cycle data of LIBs in public datasets 1 and 2 are used to validate the model in Section 3.1. 

The first 90 life cycles (168 cycles in total) of each LIB in dataset 1 and the first 500 life cycles (800 

cycles in total) of each LIB in dataset 2 are used as training data, and the remaining life cycles are used 
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for testing. The SOH estimation results of different versions of ML-ELM under the input of health 

features and fusion features are shown in Fig. 6. 

 

(a-1) SOH estimation results of LIB1 

 

(a-2) SOH estimation errors of LIB1 
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(b-1) SOH estimation results of LIB2 

 

(b-2) SOH estimation errors of LIB2 
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(c-1) SOH estimation results of LIB3 

 

(c-2) SOH estimation errors of LIB3 

 

(d-1) SOH estimation results of LIB4 

 

(d-2) SOH estimation errors of LIB4 
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(e-1) SOH estimation results of LIB5 

 

(e-2) SOH estimation errors of LIB5 
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(f-1) SOH estimation results of LIB6 

 

(f-2) SOH estimation errors of LIB6 

 

(g-1) SOH estimation results of LIB7 

 

(g-2) SOH estimation errors of LIB7 

Fig. 6 SOH estimation results for LIBs   

In Fig. 6, S0 denotes the reference value, S1, S3, S5, and S7 denote the prediction values of ML-ELM, 

ML-KELM, SS-ML-KELM, and EGSS-ML-KELM algorithms under traditional health feature, and S2, 
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S4, S6, and S8 denote the prediction values of these algorithms under fusion features, respectively. It 

can be observed that ML-ELM network with kernel functions have better tracking ability and accuracy 

advantages for SOH estimation of LIBs. After optimizing the kernel function parameters, the accuracy 

advantages of SS-ML-KELM and EGSS-ML-KELM are further enhanced. In addition, each version of 

the ML-ELM network has better performance in fusion features compared to traditional health features 

as input of the network. 

4.3 Model reliability evaluation 

To further evaluate the SOH tracking performance of each curve in Fig. 6 for the LIB, the four criteria 

in Section 3.4 are applied to analyze the advantages of each version of the ML-ELM network, and the 

comparison results of the evaluation metrics under different specifications of the LIB cycle data are 

shown in Tab. 6. 

Tab. 6 Reliability assessment of models 

LIB cycle data ME MAE 

ML- 

ELM 

ML-

KELM 

SS-ML-

KELM 

EGSS-

ML-

KELM 

ML- 

ELM 

ML-

KELM 

SS-ML-

KELM 

EGSS-

ML-

KELM 

LIB1 HF 0.0578 0.0296 0.0201 0.0106 0.0160 0.0120 0.0087 0.0041 

FF 0.0308 0.0321 0.0193 0.0090 0.0166 0.0086 0.0060 0.0029 

LIB2 HF 0.0439 0.0330 0.0272 0.0166 0.0183 0.0134 0.0090 0.0047 

FF 0.0369 0.0273 0.0200 0.0099 0.0153 0.0098 0.0063 0.0021 

LIB3 HF 0.0333 0.0146 0.0108 0.0156 0.0109 0.0092 0.0052 0.0035 

FF 0.0290 0.0213 0.0120 0.0114 0.0098 0.0059 0.0050 0.0025 

LIB4 HF 0.0688 0.0642 0.0470 0.0349 0.0236 0.0143 0.0100 0.0058 

FF 0.0438 0.0539 0.0225 0.0198 0.0166 0.0089 0.0078 0.0051 
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LIB5 HF 0.1104 0.0630 0.0407 0.0303 0.0180 0.0125 0.0106 0.0059 

FF 0.0862 0.0860 0.0596 0.0167 0.0127 0.0099 0.0066 0.0046 

LIB6 HF 0.0490 0.0268 0.0212 0.0307 0.0148 0.0093 0.0057 0.0029 

FF 0.0340 0.0246 0.0187 0.0202 0.0131 0.0070 0.0055 0.0026 

LIB7 HF 0.0531 0.0400 0.0194 0.0184 0.0137 0.0101 0.0070 0.0038 

FF 0.0496 0.0250 0.0271 0.0164 0.0127 0.0067 0.0061 0.0029 

LIB cycle data RMSE MAPE 

ML-

ELM 

ML-

KELM 

SS-ML-

KELM 

EGSS-

ML-

KELM 

ML-

ELM 

ML-

KELM 

SS-ML-

KELM 

EGSS-

ML-

KELM 

LIB1 HF 0.0229 0.0132 0.0100 0.0051 0.0244 0.0175 0.0125 0.0060 

FF 0.0184 0.0115 0.0072 0.0036 0.0240 0.0128 0.0087 0.0042 

LIB2 HF 0.0193 0.0147 0.0103 0.0064 0.0280 0.0200 0.0134 0.0075 

FF 0.0161 0.0111 0.0081 0.0029 0.0234 0.0146 0.0101 0.0032 

LIB3 HF 0.0143 0.0095 0.0062 0.0043 0.0151 0.0124 0.0071 0.0047 

FF 0.0125 0.0079 0.0055 0.0037 0.0135 0.0081 0.0068 0.0035 

LIB4 HF 0.0285 0.0198 0.0128 0.0074 0.0384 0.0238 0.0162 0.0091 

FF 0.0208 0.0137 0.0103 0.0066 0.0273 0.0145 0.0122 0.0080 

LIB5 HF 0.0258 0.0163 0.0126 0.0076 0.0325 0.0215 0.0171 0.0098 

FF 0.0194 0.0143 0.0110 0.0056 0.0220 0.0164 0.0124 0.0078 

LIB6 HF 0.0181 0.0110 0.0068 0.0056 0.0211 0.0129 0.0079 0.0044 

FF 0.0157 0.0088 0.0063 0.0041 0.0184 0.0097 0.0074 0.0038 

LIB7 HF 0.0172 0.0124 0.0078 0.0055 0.0185 0.0135 0.0091 0.0050 

FF 0.0159 0.0086 0.0068 0.0040 0.0171 0.0090 0.0079 0.0040 
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Tab. 6. summarizes the results of the numerical evaluation of the SOH prediction performance of the 

ML-ELM, ML-KELM, SS-ML-KELM, and EGSS-ML-KELM on different specifications of LIB cycle 

data. The results show that the kernel version of ML-ELM optimized by EGSS algorithm has advantages 

such as high accuracy and strong robustness on each LIB compared with other versions of ML-ELM. 

With health features as input, the maximum values of ME, MAE, RMSE and MAPE for ML-ELM are 

11.04%, 2.36%, 2.85% and 3.84%, respectively, while the maximum values of EGSS-ML-KELM for 

the four metrics are 3.49%, 0.59%, 0.76% and 0.98%, respectively. By replacing health features with 

fusion features, the maximum values for the four metrics of ML-ELM are 8.62%, 1.66%, 2.08%, and 

2.73%, respectively, while those of EGSS-ML-KELM are 2.02%, 0.51%, 0.66%, and 0.80%, 

respectively. Obviously, regardless of which version of ML-ELM, when fusion features are used as input, 

the values of the four metrics significantly decrease, which means that fusion features can effectively 

improve the degradation of model performance caused by high-dimensional health features as input, 

while retaining the valid information of the original features.  

To more visually demonstrate the ability of different versions of ML-ELM for SOH prediction, the 

numerical results of MAE, RMSE and MAPE metrics in Tab. 6 are shown as bar graphs in Fig. 7. 

 

(a) Evaluation results of each algorithm for SOH estimation of LIB1 
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(b) Evaluation results of each algorithm for SOH estimation of LIB2 

 

(c) Evaluation results of each algorithm for SOH estimation of LIB3 

 

(d) Evaluation results of each algorithm for SOH estimation of LIB4 
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(e) Evaluation results of each algorithm for SOH estimation of LIB5 

 

(f) Evaluation results of each algorithm for SOH estimation of LIB6 

 

(g) Evaluation results of each algorithm for SOH estimation of LIB7 

Fig. 7 Evaluation results of each algorithm for SOH estimation 

Fig. 7 visualizes the results of the numerical evaluation of the three metrics, MAE, RMSE and MAPE 
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on the performance of each version of ML-ELM for SOH prediction in seven different specifications of 

LIB cycle data. Overall, compared to ML-ELM, EGSS-ML-KELM reduces the maximum values of four 

metrics, ME, MAE, RMSE, and MAPE, from 11.04%, 2.36%, 2.85%, and 3.84% to 3.49%, 0.59%, 

0.76%, and 0.98%, respectively, demonstrating that the introduction of kernel function and EGSS 

algorithm are significantly effective in improving the performance of ML-ELM in SOH prediction. 

Under the input of low-dimensional fusion features, these indicators of EGSS-ML-ELM are 2.02%, 

0.51%, 0.66%, and 0.80%, respectively, demonstrating that the fusion features not only maintain the 

strong tracking ability of the model, but also enhance the robustness and generality of it. 

4.4 Comparative performance evaluation of the proposed EGSS-ML-KELM with other existing models 

The proposed EGSS-ML-KELM model is compared with other existing SOH estimation methods 

using the overall best metric values to evaluate their performance. The comparison models include 

electrochemical impedance spectroscopy-gaussian process regression (EIS-GPR), sequential extended 

Kalman filter (SEKF), nonlinear auto-regressive model with exogenous inputs (NARX), active states 

tracking-long-short-term memory (AST-LSTM) neural network, broad learning system-long short-term 

memory (BLS-LSTM) neural network. The results are shown in Tab. 7. 

Tab. 7 Comparison of performance between EGSS-ML-KELM model and other existing models 

Models Battery Best metric values 

EIS-GPR [46] NCA 2.75Ah MAE=0.725%; RMSE=0.907% 

SEKF [12] NCM 3.0Ah ME<4% 

NARX [16] NMC 20.0Ah MAE=0.43%; RMSE=0.46% 

AST-LSTM [29] NCA 2.0Ah RMSE=0.38% 

BLS-LSTM [41] NCA 2.0Ah; LCO 1.35Ah MAE=0.25%; RMSE=0.35% 
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EGSS-ML-KELM 

(Proposed in this paper) 

NCA 2.0Ah; LCO 1.1Ah ME=0.90%; MAE=0.21% 

RMSE=0.29%; MAPE=0.32% 

In Tab. 7, using the same or similar battery aging data to evaluate the optimal performance of the 

model, it can be observed that the proposed EGSS-ML model has significant advantages in accuracy 

compared to other existing SOH estimation models. 

5. Conclusions 

This paper combines the kernel version ML-ELM network with the EGSS algorithm to propose a 

high-precision SOH estimation method. To solve the problems of instability and accuracy decay caused 

by random mapping of network parameters and the accumulation of model reconstruction errors layer 

by layer, a kernel learning mechanism is introduced to replace each hidden layer network with a kernel 

function matrix to solve the parameter setting difficulties. Compared with ML-ELM, the maximum ME, 

MAE, RMSE and MAPE of SOH obtained by ML-KELM individual are reduced by 4.62%, 0.93%, 

0.87% and 1.46%, respectively, which strongly demonstrates the effectiveness of kernel version of ML-

ELM modeling. Aiming to further improve the prediction accuracy of SOH and increase the parameter 

optimization range, the SS algorithm is optimized by introducing the global optimal solution of the 

previous generation and the individual mean value with high fitness value to complete the optimization 

of the kernel function parameters and realize the high accuracy and stable prediction of SOH by the 

system under fixed parameters. The cycle data from seven LIB units with different specification 

parameters are divided for model training and testing, and the health features are fused to reduce the data 

dimensionality. The results show that in the case of high-dimensional health features, the ME, MAE, 

RMSE, and MAPE of EGSS-ML-ELM are 3.49%, 0.59%, 0.76%, and 0.98%, respectively. However, in 

the case of fusion features, these indicators of EGSS-ML-ELM are 2.02%, 0.51%, 0.66%, and 0.80%, 

respectively. For independent ML-ELM and ML-KELM, these indicators are reduced by more than 50%. 
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Obviously, regardless of the version of ML-ELM, when using fusion features as input, the values of all 

four metrics will significantly decrease. This means that fusion features can effectively improve the 

model performance degradation caused by high-dimensional health features as input, while preserving 

the effective information of the raw features. Therefore, the EGSS-ML-KELM model proposed in this 

paper has strong robustness and adaptability to working conditions for real-time BMS applications in 

electric vehicles. 
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