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Abstract 
The real-time prediction of the remaining useful life (RUL) of lithium-ion batteries provides an effective mean of prevent- 
ing accidents. An improved adaptive noise-reduction deep learning method is applied to achieve adaptive noise-reduction 
decomposition of lithium-ion battery capacity using complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN), and then the resulting intrinsic mode function (IMF) components are continued to be reconstructed, followed 
by input to a deep autoregressive recurrent neural network (DeepAR) to accurately predict the remaining useful life of 
lithium-ion batteries. To begin with, the lithium-ion battery data are screened and the correlation with capacity is analyzed 
by Pearson and Spearman to derive the indirect health factors. Then, the capacity data are decomposed by CEEMDAN to 
derive a relatively smooth IMF with the trend component for reconstruction, which is the output of the DeepAR model to 
predict the RUL of lithium-ion batteries with the indirect health factor as the output. The experimental results obtained after 
validation of the data set validate that the improved adaptive noise reduction DeepAR prediction model has superior predic- 
tion accuracy and greater stability, with all remaining life errors less than 5 times and all root mean square errors (RMSE) 
less than 2.5%. 

Keywords Lithium-ion batteries, Remaining useful life, Health factor, Complete ensemble empirical mode 
decomposition with adaptive noise, Deep autoregressive recurrent neural network  

Introduction 

With the worldwide economy and the quick progress of new energy sources, as the optimal batteries for present energy storage, 
lithium-ion batteries have been the center of attention for a long time [1]. The lightweight, superior energy density, long cycle 
lifespan, broad operating temperature scope, and low cost are all merits of lithium-ion batteries [2, 3]. Lithium-ion batteries 
play a vital role as a core energy storage component in electric vehicles [4], aerospace systems [5], and other applications. 
Across various countries, renewable energy has drawn attention as an alternative to traditional fossil fuels [6]. Lithium-ion 
batteries are broadly applied and promoted in the field of renewable energy with the merits of high energy density, good output 
capacity [7], and cost effectiveness [8]. The development of this technology has provided new approaches to the development 
of high-performance electric vehicles and also to the development of electric vehicles [9]. However, the risk of battery 
combustion and fire still exists [10].  

It is overt that the safety management system of the battery [11] should not be ignored. The remaining useful life (RUL) of 
lithium-ion batteries serves as a vital parameter [12] for users to grasp the aging status of the batteries at all times [13]. In 
the light of the current research progress, the prediction approaches of RUL can be broadly classified into two types, which 
are model-based and data-driven approaches [14, 15]. Liu et al. [16] presented a particle filtering framework based on an 
electrochemical model for capacity decline estimation of lithium-ion batteries. Zhang et al. [17] applied a double exponential 
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empirical model to the state model by using an extended Kalman particle filter algorithm to predict the RUL of lithium 
batteries. Huang et al. [18] chose an unscented Kalman filter algorithm that can efficiently resolve nonlinear issues for good 
prediction the RUL. The accuracy of the prediction of the remaining useful life of lithium-ion batteries is not optimal due to 
its own exceptionally complex internal chemistry, which can be evaluated by building models, while data-driven approaches can 
attain high-precision prediction [19, 20]. The current data-driven approach is more prevalent when it comes to neural network 
algorithms for prognosis [21, 22]. Lianbing et al. [23] employed differential voltage-Elman neural network for lithium-ion 
batteries. Other data-driven approaches have achieved superior and desirable results for the remaining useful life of lithium-ion 
batteries. Qiu et al. [24] proposed a new approach for remaining life estimation, which exploits the aging factor during charging 
and combines it with a multicore correlation vector machine. Chen et al. [25] suggested a novel approach based on empirical 
models and improved least squares support vector machines (LS-SVM) to successfully construct a RUL prediction framework. 
Chen et al. [26] presented an approach to estimate the RUL of lithium-ion batteries based on a combined model of two-phase 
Wiener and an extreme learning machine (ELM). A fundamental prerequisite for precise prediction of the lifetime of lithium 
batteries is the extraction of their highly correlated health characteristics [27].  

It is clear from recent research results that many researchers have combined empirical mode decomposition (EMD) with 
data-driven methods to predict the RUL of lithium-ion batteries [28]. Liu et al. [29] decomposed the capacity data of lithium 
batteries using EMD and applied a combined long short-term memory (LSTM) and gaussian process regression (GPR) model 
to predict the battery RUL. Qinfeng et al. [30] decomposed the battery health factor and capacity data by EMD, and presented 
an empirical modal decomposition based on gravity search algorithm (GSA) fused with an ELM method for remaining life 
prediction of lithium batteries. The drawbacks of EMD algorithm include the standard demarcation of mode aliasing and 
stopping iteration in intrinsic modal function (IMF) decomposition [31]. Mao et al. [32] performed ensemble empirical mode 
decomposition (EEMD) of lithium battery data to obtain low-frequency and high-frequency data. The Gaussian or sine function 
Levenberg-Marquardt algorithm (GS-LM) was used to predict the low-frequency data, and the long short-term memory- 
sliding time window (LSTM-STW) algorithm was used to predict the high-frequency data. Yang et al. [33] inte- grated 
EEMD with gray wolf optimization-support vector regression (GWO-SVR) to establish a novel method that can be used to 
forecast the remaining life of Li-ion batteries. While the EEMD algorithm addresses the issue of modal confusion, the white 
noise generated by the decomposition process [34] and the reliance on empirical selection of IMFs still affect the precision of 
the decomposition [35]. EEMD is to add white noise to the primordial signal to alter the extreme point distribution of the signal 
[36], and CEEMD is to add a set of noise signals to the primordial signal to alter the extreme point distribution of the signal 
[37]. CEEMD gains calculation time by guaranteeing small residual noise interference [38]. Sun et al. [39] presented a new 
trace-free particle filtering algorithm developed using an optimal multiple kernel relevance vector machine (OMKRVM), and 
a CEEMD reconstruction algorithm is applied for noise reduction and estimation of the health status and remaining lifetime of 
Li-ion batteries. In Lyu et al. [40], the battery aging characteristics are decomposed into high-frequency and low-frequency 
components by CEEMD; then, LSTM neural network modeling and prediction are used for SOH estimation, and the GWO-
based multi kernel relevance vector machine (MKRVM) is applied to RUL prediction. The components are decomposed by 
CEEMDAN to form the first-order intrinsic mode components, and immediately after ensemble averaging [41], which avoids 
the issue that the inconsistency of the IMF decomposition results of each group in CEEMD makes it hard to align the final set 
on average [42], it also avoids the subsequent decomposition when the decomposition of one of the orders of IMF is not good 
[43]. Qu et al. [44] suggested the IMF is proposed to be denoised using the complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) technique based on wavelet transform, and the IMF is trained, predicted, and reconstructed 
by least square-RVM using it as the input component. For the moment, a large amount of researchers adopt stochastic process 
to fit the battery degradation process [45]. A number of researchers employed health factors in this aspect to estimate the 
remaining useful life of lithium-ion batteries [46, 47].  

The achievements of the above researchers largely cover adaptive noise reduction of battery data and using data- 
driven algorithms for prediction, while the data-driven approach has high requirements on the quality of the original 
data, and the trend of battery capacity degradation has a slight noise component which affects the precision of 
battery prediction. DeepAR is based on LSTM-RNN, but the architecture of this method is computationally more 
complex than other similar time series forecasting algorithms, and can make more accurate predictions of 
undulating and complex data outputs such as datasets of lithium-ion battery capacity. The proposed adaptive noise 
reduction approach decomposes the battery capacity by CEEMDAN, and the decomposed IMF components are 
reconstructed again, which will be used as the input data of DeepAR neural network to predict the RUL of lithium-
ion batteries.  



Theoretical analysis 

CEEMDAN‑DeepAR model 

The flow chart of the proposed method to forecast the RUL of lithium-ion batteries is shown in Fig. 1. The major steps are 
described below: 

(1) Capacity voltage and current data are extracted from the NASA dataset and health features are extracted from them, and
then correlation analysis is performed.

(2) The strongly correlated indirect health factors are screened out as the input to the model.
(3) Adaptive noise reduction decomposition is performed on the capacity data of lithium-ion batteries using CEEMDAN

to obtain IMF components.
(4) The obtained IMFs are reconstructed and then input into the incoming DeepAR model for training and pre- diction.
(5) Finally, the predicted results are evaluated in various aspects to test the precision of the presented algorithm.

Fig. 1 The CEEMDAN-DeepAR model structure
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CEEMDAN algorithm 

A superior noise reduction algorithm is derived from the EMD and EEMD algorithms through continuous enhancement of  
CEEMDAN. No pre-processing and analysis are applied in this algorithm for signal decomposition. However, there are multiple 
eigenmode functions (IMFs) and multiple residuals (R) in the time series, and these eigenvalues can be decomposed adaptively. 
The approaches have been broadly used in predictive models of nonlinear and non-smooth signals and time series. CEEMDAN 
overcomes the frequent modal mixing issue of the EMD algorithm [48] and resolves the problem that the EEMD algorithm cannot 
remove the added white noise, resulting in incomplete decomposition and wide reconstruction errors [49]. The decomposition 
process was refined and the CEEMDAN method was proposed by Torres et al. [50]. It controls the noise level by introducing a 
white noise signal- to-noise ratio (SNR) attached to every decomposition process. 

The Gaussian white noise is inserted into the signal to be decomposed to gain a new signal: 

The individual components in Eq. (1) are presented as follows: g(t) represents the signal to be decomposed, ε rep- resents 
the variance of the noise, and vj represents the Gaussian white noise with zero unit variance. 

The total average of the derived N modal components yields the IMF1 of the CEEMDAN decomposition: 

The individual components in Eq. (2) are presented as follows: Ii(t) represents the ith eigenmode component obtained by 
CEEMDAN decomposition. The residual signal at this point becomes: 

Add positive and negative paired Gaussian white noise to R1(t) and decompose it to derive the first-order modal 
component D1, which yields the new signal. This provides the second eigenmodal component of the CEEMDAN 
decomposition: 

The 2nd residual signal is expressed as: 

Repeat the above steps until the decomposition condition of EMD cannot be satisfied by the remaining residual signal. 
Eventually, the original signal is decomposed as follows: 
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DeepAR algorithm 

A probabilistic forecast approach based on auto-regressive recurrent neural networks called DeepAR [51]. The approach 
addresses the prediction issue through deep neural network learning, combined with appropriate likelihoods, using nonlinear 
data transformation techniques [52]. Traditionally, time series forecasting faces challenges related to data, such as the failure 
to obtain complete data on all influencing factors and the uncertainty of influencing factors in the future [53]. 

DeepAR relieves the data requirements to a certain extent. As a supervised learning algorithm, DeepAR adds default 
values directly inside the model [54]. In the process of importing data, there is no requirement to artificially scan the data for 
default values; DeepAR models address this issue internally [55]. By using DeepAR, time series can be correlated with 
multiple groupings; non-linear issues and scale issues that are hard to handle statistically can be handled. In the application 
of lithium-ion battery aging prediction, when strong correlations of historical data affecting lithium-ion battery aging are 
input, the future aging trend of the battery can be predicted, and the remaining useful life of the lithium-ion battery can be 
readily known when the battery is used. 

The time series of DeepAR model is defined as di, t, and t0  is considered the interval time node between the training process 
and the prediction process. By modeling the time series data with the training process range [1, t0 − 1] and the covariate ci, t and 
training them using the likelihood form of Eq. (7): 

In Eq. (7) where ei, t = e(ei, t − 1, di, t − 1, ci, t, θ) is the output of the autoregressive recurrent network. e(·) represents 
an RNN, inputs the hidden layer ei, t − 1 of the last moment and the data di, t − 1, and the known information ci, t of the 
current moment to derive the hidden layer ei, t of that moment (i.e., the output), and then transform ei, t − 1 into the 
parameters of the given distribution through the neural network θ(·). After the distribution is determined, the 
likelihood can be calculated ℓ(di, t|θ(ei, t, θ)). 

Fig. 2 depicts the overall process of DeepAR algorithm. For the training process, where all data are known, the prediction 
range data are directly input, and then the likelihood function is calculated for the next moment, and the model 
parameters are trained by maximizing the likelihood function. For the prediction process, the data of the prediction range is 
unknown, and only an estimated value can be derived by sampling, and input the estimated value into the RNN at the next 
time, in order to achieve the prediction results by iterating continuously. 
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Fig. 2  Flowchart of DeepAR algorithm



Indirect health factor extraction 

Construction of indirect health factors 

Based primarily on the aging trend of lithium-ion batteries, the remaining useful life of the battery is predicted by health 
factors. There are direct and indirect health factors; the distinction between them is that direct health factors such as discharge 
capacity are directly relevant to the remaining useful life of the battery; nevertheless, indirect health factors are health factors 
that are highly correlated with the discharge capacity of Li-ion batteries, for example, the currently known equal voltage drop 
discharge time. 

A relevant mathematical model has been developed to predict the remaining service life of Li-ion batteries using available 
capacity information and the number of cycles belongs to direct prediction, whereas indirect prediction which refers to the 
correlation model between non-direct health factors is established to carry out the study of the remaining service life of 
lithium-ion batteries, and the practical decay capacities. In comparison with the direct forecasting method, the indirect 
forecasting method is versatile and adaptable. 

Indirect health factors 

Fig. 3 reveals how the indirect health factors were extracted and screened in the following steps. 

(1) Health factor extraction. Firstly, the voltage, time, and temperature of various stages of charging and discharging are extracted 
from the charging and discharging data of lithium-ion batteries from NASA dataset.

(2) Construction of indirect health factors. The extracted measured data are produced to generate truncated indirect health
factors.

(3) Correlation analysis. For the correlation analysis between the various indirect health factors and the practical discharge
capacity, the correlation coefficient is derived.

(4) Extraction of highly correlated indirect health factors. By comparing the correlation of each indirect health factor, the highly 
correlated indirect health factors are selected to serve as a strong basis for subsequent prediction.

Correlation analysis 

In the Pearson coefficient, which reveals the ratio of the quotient of the covariance of the two components to their 
standard deviation, it is denoted by p. 
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Fig. 3  Indirect health factors extraction framework



In Eq. (8), cov(X, Y) denotes the covariance of variables X and Y σX, σY denote the standard deviation of variables X, Y; and 
E(X) denotes the mathematical expectation of X, and E(Y) denotes the mathematical expectation of Y. 

Spearman is looking at X and Y as two sequences, and the focus is on whether the monotonicity of the two sequences is 
consistent. 

In Eq. (9), di denotes the difference of two variable levels. The more infinite the absolute value of the correlation 
coefficient, the greater the degree of correlation between the two variables. 

Experimental analysis 

Experimental data presentation 

In this paper, NASA PCoe’s published lithium-ion battery test data was adopted, which applied to a 18650 lithium-ion battery 
with 2 Ah capacity. In this study, three main steps are included: charging, discharging, and AC current impedance determination. 
In this research, B0005, B0006, B0007, and B0018 were used as the research objects. Battery pack testing completed at ambient 
temperature, in which the battery was charged at a steady current (CC) mode of 1.5A until the battery voltage reached 4.2V, 
followed by a steady voltage (CV) mode until the charging current was reduced to 20 mA. When the battery reached the 
disconnect voltage and ceased discharging, each charge and discharge was followed by a constant current (CC) of 2A discharge. 
The battery remains in a continuous accelerated aging cycle until the end of its useful life, when the maximum charge drops 
by 30%. The test conditions and recorded data for each cycle are indicated in Table 1 and Table 2. 
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6
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i=1
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2

n
�
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�

Table 1  Dataset battery pack experimental conditions

Battery Temperature Charging current Dis-
charging 
current

Cut-off voltage

B0005 24 °C 1.5A 2A 2.7V
B0006 24 °C 1.5A 2A 2.5
B0007 24 °C 1.5A 2A 2.2
B0018 24 °C 1.5A 2A 2.5

Table 2  Dataset experimental data

Charging process Discharge process Impedance measurement

Battery voltage Battery voltage
Battery current Battery current
Load voltage Load voltage
Load current Load current
Time Time

Induction current
Battery current
Battery impedance
Calibration impedance
Ohmic resistance

– Discharge power Charge transfer impedance



Results and analysis 
In this paper, CEEMDAN-DeepAR-based RUL estimation prediction is implemented using lithium-ion battery data. The 

proposed RUL model is input by applying indirect health factors with adaptive noise reduction integration of the actual battery 
capacity, as well as modeling and coaching on MATLAB2018a. 

Indirect health factor extraction 

For the purpose of accurate estimation of RUL of lithium-ion batteries, firstly, the indirect health factors of lithium-ion batteries 
are extracted, and the specific data are shown in Table 3.  

Since each health factor has distinct tendencies, a direct evaluation of the relationship between them and capacity is not 
available. In this study, the relationship between health factors and actual capacity was quantitatively evaluated using Pearson 
and Spearman correlation coefficients. 

In this paper, two indirect health factors with Pearson’s coefficient and Spearman’s coefficient larger than 0.75 are adopted as input 
parameters to guarantee that the extracted indirect health factors can cater for various circumstances. From Fig. 4 and Table 4, 
evidently, there is a close relationship between I1 and I4 and the true capacity; thus, it is a practical approach to use the voltage drop 
time and charge/discharge cycle with the charge/discharge cycle from the first charge to the first charge, and the charge/discharge 
cycle, respectively, as the health factors that indirectly affect the remaining battery life. 

Table 3  Lithium-ion battery health factor description

Factor Factor description

I1

I2
I3
I4

The time it takes for the discharge voltage 
to go from 3.8 to 3.5V

The constant current time during charging
The time to peak temperature
The voltage rise from measurement point 

1 to measurement point 2

Table 4  The correlation coefficients of HFs

Battery Correlation 
analysis

I1 I2 I3 I4

B0005 Pearson
Spearman

0.9972
0.9983

0.8777
0.8825

B0006 Pearson
Spearman

0.9969
0.9995

0.9394
0.9477

B0007 Pearson
Spearman

0.9788
0.9872

0.7849
0.7902

B0018 Pearson
Spearman

0.9713
0.9826

−0.8354
−0.8233
−0.9061
−0.9129
−0.0977
−0.0935
−0.2067
−0.2116

−0.8185
−0.8343
−0.9113
−0.9043
−0.7381
−0.7175
−0.4286
−0.4325

0.7790
0.7960



(c)B0007 (d)B0018

Fig. 4 Correlation analysis chart for health factors by using Pearson 

(a)B0005 (b)B0006

The analysis of RUL prediction results 

The data adopted in this study were firstly decomposed by adaptive noise reduction to derive the noise reduction data, and 
then the acquired indirect health factors and the noise reduction capacity data were trained with the DeepAR model followed by 
the RUL prediction of the battery. In order to visualize the prediction accuracy of the algorithm more intuitively, the mean 
absolute error (MAE) and root mean square error (RMSE) are used to evaluate the behavior of the method. 
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3.1.1.1 Results of CEEMDAN decomposition 

The amount of noise added is 50 and the signal-to-noise ratio (SNR) is 0.0005. The capacity decomposition results 
for B0005,  B0006, B0007, and B0018 are plotted in Fig. 5 where it can be noticed that noise signals due to capacity 
regeneration can be seen in each curve. These interferences can lead to changes in the capacity curves, which can adversely 
affect the subsequent capacity prediction. IMF1 can indicate the primary trend degradation, the capacity recovery path of IMF2, and 
unknown interference and noise trends for IMF3, 4, 5 and IMF6. This serves as a guide for CEEMDAN in reducing the 
sophistication of the model. 

B0006)((B0005)

B0018)((B0007)

0.0

0

0.0

4

-0.04 
0.01

0.00

-0.01 
0.02

0.00

-0.02 
0.02

0.00

-0.0

2 
0.0

1 
0.0

0

1.

2

1.

6

-0.01 
0.16

0.12

0.

0

8 
2

.0

0 05 001 15

0

1.

2

1.

6

2.

0

IM
F
2

 
IM

F
1

IM
F
4

 
IM

F
3

IM
F
6

 
IM

F
5

R
e

s

C
(A

h

)

Cycle 

times

0.0

0

0.0

4

-0.0

4 
0.0

1

0.00

-0.0

1 
0.0

2 
0.0

00.0

0

-0.0

2 
0.0

4

-0.0
4 
0.0
2

0.00

1.5

-0.0

2 2.0

050 001 15

0

1.2

1.6

2.0

IM
F

1

IM
F

2

IM
F

3

IM
F

4

IM
F

5

Cycle 

times

R
e

s

C
(A

h

)

0.0

0

0.0

4

-0.0
4 
0.0
1

0.00
-0.0

1 
0.0
2

0.00
-0.0
2 
0.0
2

0.00-0.0

2 
0.0

1 
0.0

0

050 001 15

0

-0.0
1 2.0

1.8

1.6

1.4

1.92 
1.76 
1.60 
1.44

IM
F

1

Cycle 

times

IM
F

2

IM
F

3

IM
F

4

IM
F

5

R
e

s

C
(A

h

)

0.0

0

0.0

4

-0.0

4 
0.0
1

0.00
-0.0

1 
0.0

2 
0.0

0

-0.0

2 

0.0

2 

0.0

0

-0.0

2 
0.0

3

0.00

1.2

1.6

-0.0

3 2.0

050 001

1.4

1.6

1.8

IM
F

1

IM
F

2

IM
F

3

IM
F

4

IM
F

5

Cycle 

times

R
e

s

C
(A

h

)

Fig. 5  Capacity decomposition results



3.1.1.2 Results of RUL estimation 

The objective of this paper aims to verify that the capacity data after adaptive noise reduction can more closely match the 
degradation trend of lithium-ion batteries themselves to attain the goal of precise RUL prediction. For B0005 and B0007, the 
former 69 data are categorized as the training set and the rest as the test set, and for B0006and B0018, the former 49 data are 
categorized as the training set and the remaining backup as the test set. After the prediction of battery RUL by DeepAR model, 
the results and error diagram are shown below. It is apparent that the prediction results without adaptive noise reduction have 
a large error fluctuation, while the prediction results of the method proposed in this paper can conform to the actual capacity 
degradation trend well. 

As in Table 5, RULp stands for the RUL prediction of the battery; RULt stands for the practical RUL value; the above 
mentioned indexes are in units of: times; RULe represents the absolute value of the RUL estimation error, which is defined in 
Eq. (12); RULr represents the relative value of the RUL estimation error, showed in Eq. (13): 

From Fig. 6 and Table 5, compared with using just the DeepAR algorithm, the life prediction performance of the four groups 
of lithium-ion batteries after noise reduction by the CEEMDAN algorithm and then input into the DeepAR model is superior, 
and the prediction curve is similar to the practical capacity decay curve; the prediction error of the CEEMDANN-DeepAR 
model is minimum at 1 cycle. Since it can better reflect the performance change law of lithium-ion battery, the model can better 
reflect the performance change law of lithium-ion battery. To better display the prediction accuracy of this study, the RMSE 
and MAE will be used to evaluate the results (Table 6). 

(12)RULe
||=
|
RULp − RULt

||
|

(13)RULr =

|||
RULp − RULt

|||
RULt

× 100%

Table 5  Comparison of the RUL prediction performance

Algorithm RULp RULt RULe RULr

B0005 DeepAR 67 63 4 6.35%
CEEMDAN-DeepAR 64 1 1.59%

B0006 DeepAR 102 108 6 5.56%
CEEMDAN-DeepAR 107 1 0.93%

B0007 DeepAR 44 51 7 13.73%
CEEMDAN-DeepAR 46 5 9.80%

B0018 DeepAR 50 57 7 12.28%
CEEMDAN-DeepAR 53 4 7.02%

Table 6  RUL estimation error results

Battery Algorithm MAE RMSE

B0005 0.0101 0.0142
0.0063 0.0097

B0006 0.0359 0.0432
0.0193 0.0258

B0007 0.0161 0.0231
0.0103 0.0125

B0018 0.0400 0.0522

DeepAR
CEEMDAN-DeepAR
DeepAR
CEEMDAN-DeepAR
DeepAR
CEEMDAN-DeepAR
DeepAR
CEEMDAN-DeepAR 0.0169 0.0226



Fig. 6 Results of RUL estimation (start point=50/70) 
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It can be further observed from the prediction errors of RUL for the four batteries at decreasing prediction starting 
points presented in Table 7. It is readily apparent that the remaining life errors for all four batteries are within 10 times and 
decrease with increasing prediction starting point values when compared with Table 5. From this, it is apparent that the 
forecast error for the remaining useful life remains largely unchanged when the proposed model changes the prediction start 
point. 

In Table 8, compared with the unoptimized DeepAR algorithm, the approach in this paper has a narrower forecasting 
precision, with a minimum MAE of 0.0063 and a minimum RMSE of 0.0097 for the CEEMDAN-DeepAR algorithm, which 
can attain the demand for prediction of the remaining life of lithium-ion batteries. 

The validation of the proposed model was carried out by designing different prediction starting points (the starting points 
were set to 70 for B0005, B0007 and 40 for B0006, B0018). Figure 7 illustrates that for the four lithium-ion batteries, the 
prediction curves keep similar degradation trends to the real data curve and fluctuate up and down around the real data under 
different prediction starting points as above. It is evident that no matter what prediction starting point is decided, there is no 
significant difference from the actual situation. 

Table 8  RUL estimation error results

Battery Algorithm MAE RMSE

B0005 0.0102 0.0148
0.0046 0.0081

B0006 0.0414 0.0487
0.0183 0.0230

B0007 0.0117 0.0176
0.0085 0.0115

B0018 0.0285 0.0357

DeepAR
CEEMDAN-DeepAR
DeepAR
CEEMDAN-DeepAR
DeepAR
CEEMDAN-DeepAR
DeepAR
CEEMDAN-DeepAR 0.0086 0.0122

Table 7  Comparison of the RUL prediction performance

Algorithm RULp RULt RULe RULr

B0005 DeepAR 68 63 5 7.94%
CEEMDAN-DeepAR 66 3 4.76%

B0006 DeepAR 111 108 3 2.78%
CEEMDAN-DeepAR 107 1 0.93%

B0007 DeepAR 43 51 8 15.69%
CEEMDAN-DeepAR 45 6 11.76%

B0018 DeepAR 52 57 5 8.77%
CEEMDAN-DeepAR 58 1 1.75%



Fig. 7 Results of RUL estimation (start point=40/60) 
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The prediction errors of RUL for the four batteries at decreasing prediction starting points are presented in Table 7. 
It is readily apparent that the remaining life errors for all four batteries are within 10 times and decrease with increasing 
prediction starting point values when compared with Table 5. From this, it is apparent that the forecast error for the remaining 
useful life remains largely unchanged when the proposed model changes the prediction start point.

As can be further observed from Table 8, the decrease in the prediction starting point corresponds to a larger prediction 
error instead, and the proposed method has a narrower prediction accuracy compared with the unoptimized DeepAR 
algorithm, with a minimum MAE of 0.0046 and a minimum RMSE of 0.0081 for the CEEMDAN-DeepAR algorithm, 
which meets the requirements for predicting the remaining life of lithium batteries. It is clear that the RUL estimation 
algorithm has a high accuracy, and the reconstruction of the lithium battery capacity data after noise elimination by extracting 
the strong correlation of indirect health factors makes this greatly increase the estimation accuracy of the text and has more 
practical value. 

Conclusion 

In view of this, this paper intends to develop a novel method for predicting the remaining life of Li-ion batteries based on 
deep neural networks. Multiple variable information, such as voltage, temperature, and time, are extracted from the 
discharge/charge process. By using correlation coefficients, indirect health factors are filtered out and used as inputs to the 
CEEMDAN-DeepAR model, and the capacity data after CEEMDAN de-noising is used as the output. The model was validated 
using NASA lithium battery data, and tests indicated that the RUL estimation precision of the method was extremely high: the high 
accuracy of the proposed model RUL prediction is further demonstrated by different prediction starting points, and the maximum 
RMSE of the prediction is 0.0230. To further improve the safety and correctness of Li- ion batteries, this article has three areas for 
improvement: (1) the selection of more health indices to reflect the performance of Li-ion batteries; (2) the development of an 
electrochemical model of the battery; and (3) the implementation of a better algorithm for the parameter problem in this model. 
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