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ABSTRACT 

Climate change is thought to influence the composition of atmospheric air, but little is known 

about the direct relationship between these variables, especially in a hot tropical climate like that 

of Malaysia. This work summarizes and analyzes the climate state and air quality of Peninsular 

Malaysia based on selected ground-based observations of the temperature, precipitation, relative 

humidity, wind speed, wind direction and concentrations of PM10, O3, CO, NO2, and SO2 over 

the last 20 years (2000–2019). The relationship between the climate state and air quality is 

analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods is 

employed to predict the degree of change in the future air quality under different warming 

scenarios. It is found that the Peninsular Malaysia mainly experienced strong precipitation in the 

central and mountainous regions, while air pollutants are primarily concentrated in densely 

populated areas. Throughout the period of study (interannual, monthly, and diurnal time series 

analyses), Peninsular Malaysia became warmer and drier, with a significant increase in 

temperature (+4.2%), decrease in the relative humidity (-4.5%), and greater fluctuation in 

precipitation amount. The pollution conditions have worsened; there has been an increase in the 

PM10 (+16.4%), O3 (+39.5%), and NO2 (+2.1%) concentration over the last 20 years. However, 

the amount of SO2 (-53.6%) and CO (-20.6%) decreased significantly. The analysis of the 

monthly variation shows a strong bimodality of the PM10 and O3 concentrations that corresponds 

to the monsoon transition. Intensive diurnal fluctuations and correlations are observed for all the 

variables in this study. According to the CCA, the air quality factors are strongly correlated with 

meteorological factors; in particular, the CO, O3, and PM10 concentrations interact strongly with 



the air temperature. These findings show that the future air quality in Peninsular Malaysia has 

high possibility to deteriorate under warming condition. 

Keywords: Global warming, temperature, ozone, canonical correlation analysis 

1 INTRODUCTION 

World Health Organization (WHO) reports indicate that outdoor air pollution was estimated to 

have caused 4.2 million premature deaths worldwide in 2016, and 91% of these early deaths 

happened in low- and middle-income countries, with the majority occurring in Southeast Asia 

and the Western Pacific (WHO, 2021). Climate change is projected to further lower the air 

quality in polluted areas because of negative changes in air pollution meteorological processes 

(IPCC, 2014). The Intergovernmental Panel on Climate Change (IPCC) has reported that global 

average temperatures have increased by about 1.1°C since pre-industrial times and that most of 

the warming observed over the past 50 years can be attributed to human activities (IPCC, 2021). 

A rise in temperature can change the dynamics of the air composition in several ways. One key 

mechanism is the increase in the chemical reactions in the atmosphere that occur at higher 

temperatures, which can lead to increased levels of air pollutants, including ozone and particulate 

matter (Seinfeld and Pandis, 2016). Another important mechanism is the release of greenhouse 

gases from various sources, including permafrost, wetlands, and the ocean (IPCC, 2021; Schuur 

et al., 2015).   



Under the background of obvious global climate change, there is a growing interest in studying 

how climate change and its consequences for air quality play out locally, particularly in Malaysia, 

which experiences a tropical wet climate (Tang, 2019). Malaysia is a Southeast Asian country 

divided into two sections by the South China Sea: Peninsular Malaysia and Borneo's East 

Malaysia. Peninsular Malaysia, which accounts for 40% of Malaysia's total land area, is where 

the major cities are concentrated. The climates of Peninsular and East Malaysia diverge because 

the climate of Peninsular Malaysia is directly impacted by the wind from continental Asia, while 

the climate in East Malaysia is much more affected by marine circulation. There are two 

monsoonal seasons due to the seasonal variation of the Intertropical Convergence Zone (ITCZ) 

and the related trade wind fields in the area (Sentian et al., 2019). The southwest and northeast 

monsoons have a strong influence on the yearly climatic variability. The southwest monsoon 

lasts from April to September, whereas the northeast monsoon lasts from October to March. In 

comparison to the northeast monsoon, which provides greater precipitation, the southwest 

monsoon has drier climate and less rainfall (Kwan et al., 2013). Two prominent interannual 

signals—the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)—and an 

intra-seasonal signal—the Madden-Julian Oscillation (MJO)—can cause significant variations in 

Malaysia's climate and impact the air quality in the region, leading to droughts, floods, and other 

climate-related hazards, with increased air pollution levels during active ENSO, IOD, and MJO 

phases (Islam et al., 2018; Jud et al., 2020; Kuwata et al., 2021; Tangang et al., 2017; Xiao et al., 

2022). The impact of climate on air pollution complicates air quality management efforts, 

especially for a developing country like Malaysia. Accurately understanding, mastering, and 

forecasting the patterns and characteristics of climate and air quality conditions are of great 



significance for disaster prevention, mitigation, adaptation, and the scientific planning of 

production.  

From 2000 to 2019, according to Malaysia's Fourth Biennial Update Report (BUR 4), 

greenhouse gas (GHG) emissions have increased substantially for about 7 times. Excluding 

Land-use Change and Forestry (LULUCF), the energy sector was the leading source of 

emissions, accounting for an average of 80% of annual emissions from 2000 to 2019. Numerous 

studies have shown that the emission of GHG warms the atmosphere and has a significant 

positive correlation with temperature (Andrée et al., 2019; Mikhaylov et al., 2020; Neagu & 

Teodoru, 2019). According to studies conducted in Peninsular Malaysia, a significant warming 

trend has been observed in recent decades (Ling, 2009; Suhaila and Yusop, 2018; Tangang et al., 

2006; Wong, 2018). This rise in temperature has led to an increase in the frequency and intensity 

of precipitation events and more frequent floods (Mayowa et al., 2015; Ng et al., 2022). Many 

scientists have also studied and analyzed the air quality in Malaysia. Morrissey et al. (2021) 

found that, while the air quality in the Greater Kuala Lumpur region is improving, no level of air 

pollution can be considered acceptable. Long-term (1997–2015) PM10 pollution in Malaysia is 

decreasing at a slow but considerable rate (Sentian et al., 2019). Significant increases in ozone 

concentrations were reported in Malaysia (Ahamad et al., 2020; Ismail et al., 2011). Malaysia 

has witnessed significant warming, rainfall anomalies, and a significant upward trend for ozone 

over the last two decades, attracting considerable interest in the study of climate trends and their 

consequences, especially for air quality (Dominick et al., 2012; Halim et al., 2018; Malaysia, 

2009; Suhaila and Yusop, 2018; Tang, 2019). Empirical orthogonal function (EOF) analysis has 

been used in several studies to investigate the spatiotemporal patterns and variability of 



meteorological and air quality variables in the region (Juneng et al., 2009; Khoir et al., 2022). 

Quantitative knowledge of how air pollution reacts to both global warming and variability at the 

regional scale could inform air quality planning in the future. 

This study aims to assess the relationship between long-term climate change and air quality 

conditions in Peninsular Malaysia and predict the future air quality under different temperature-

rise scenarios. The first part of the study analyzes the climate and air quality in Peninsular 

Malaysia (henceforth referred to as the Peninsula) from 2000 to 2019. With this information, this 

study identifies the long-term relationships between climate factors and the variation of air 

quality variables through Pearson correlation analysis and canonical correlation analysis (CCA). 

Finally, this study predicts the future air quality under different temperature-rise scenarios using 

the machine learning-based CCA algorithm. By analyzing historical data and projecting future 

trends, this study seeks to provide insights into the potential impacts of climate change on the air 

quality in the region and inform policy decisions aimed at mitigating these impacts.  

2 DATA AND METHODOLOGY 

2.1 Site and data description 

The observational data are obtained from observatories in the Peninsular Malaysia, and they 

include the hourly temperature, relative humidity, wind speed, wind direction, the concentrations 

of particulate matter (PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and 

sulfur dioxide (SO2), and daily mean rainfall, resulting in a total of 10 variables, ranging from 



01/01/2000 to 12/31/2019. The study for year 2020 is excluded due to the inconsistencies of air 

quality and weather pattern due to short-term interference from the COVID-19 condition (see 

Supplementary document: S6). The rainfall data are provided by 25 weather stations from the 

Malaysian Meteorological Department (MMD). The wind data are provided by 10 general 

weather stations of MET Malaysia from the Global Hourly - Integrated Surface Database (ISD). 

Other data are provided by the continuous air quality monitoring system (CAQMS) installed by 

the Department of the Environment (DOE). The data (except for the rainfall and wind data) from 

2000 to 2016 are supplied by the Alam Sekitar Malaysia Sdn Bhd (ASMA) contractor. The data 

from 2017–2019 are provided by the Pakar Scieno TW Sdn Bhd (PSTW) supplier (the new 

contractor of the DOE). The selection of the 25 weather stations and 10 general stations was 

made according to the availability of long-term rainfall/wind data and to obtain a geographically 

even distribution across the Peninsula. Based on the principle of maximizing the use of data, 30 

DOE stations (for temperature, relative humidity, and PM10) and 25 other stations (for O3, CO, 

NO2, and SO2) were chosen because they had 20 years of continuous air quality data and 

maintain positional consistency before and after 2017. Due to the characteristics of the data 

studied, which had a wide time range and multiple sites, in order to ensure the validity and 

representativeness of the data, only sites for which missing values make up less than 20% of the 

data are selected. The spatial distribution of these stations is given in Figure 1, and information 

on the data availability is presented in Table 1. By analyzing these variables, the past 

characteristics of climate change and past air quality conditions in the Peninsula can be fully 

revealed. 



Fig. 1 Locations of the data used in this research, including continuous air quality monitoring system (CAQMS) stations from PSTW (yellow 

stars) and ASMA (orange circles), general stations for wind data from the ISD (purple triangles), and Malaysian meteorological department 

weather stations (blue squares). Note that stations in red circles lack air quality data concerning the concentrations of O3, CO, NO2, and SO2.  

Table 1 

Data availability details for the climate and air quality variables. 

Variable Temperature Relative 

humidity 

PM10 O3 CO NO2 SO2 Wind 

speed 

Wind 

direction 

Rainfall 

Supplier ASMA/PSTW ISD MMD 

Station markers 

(Caption of 
Figure 1) 

Orange circles / Yellow stars 

(Stations in red circles lack air quality data concerning the concentrations of O3, 

CO, NO2, and SO2) 

Purple triangles Blue squares 

Period 2000–2016/2017–2019 
2000–2019 

Note: The full names and abbreviations of the air quality variables in the table are particulate matter (PM10), ozone (O3), carbon monoxide (CO), 

nitrogen dioxide (NO2), and sulfur dioxide (SO2). 

2000–2019 



2.2 Meteorological and air quality datasets 

During the monitoring periods, all air quality monitoring stations were outfitted with continuous 

automated monitoring technology designed to collect and measure data continually. The 

schedules for calibration and upkeep included daily automatic calibration for all contaminants 

and monthly repairs. The data provided by the DOE for use here have undergone calibration and 

maintenance regimens devised in accordance with US Environmental Protection Agency 

standards (Ahamad, 2020). During the process of data provider conversion, although the 

measurement data went through a quality assurance and quality control process to ensure the 

accuracy and quality of the data, alterations in instrumentation and workflows may have resulted 

in discontinuities in the data before and after 2017. In the supplementary information (S1), the 

original data are displayed on a timing plot, and it can be clearly seen from this figure that there 

were cliff-like changes in the original data in 2017. To make up for the inconsistency of the data, 

this study combines and compares the data from ASMA and PSTW to CAMS global reanalysis 

(EAC4) data from 2017 (Inness et al., 2019), and the PSTW data are calibrated from 2017 to 

2019. The EAC4 dataset was chosen because this dataset contains all the parameters required for 

this study and has surface concentration data that can be directly compared with ground-based 

observations. The detailed calibration and adjustment process is presented in the supplementary 

information (S1). The calibrated data have better continuity with the ASMA data. The following 

research is based on the data after calibration. 

2.3 Methodology 



The air pollutant concentrations and variations of the meteorological variables were analyzed on 

annual, monthly, and diurnal scales. For precipitation, the daily observations were added together 

to provide monthly and yearly precipitation datasets. For other factors, hourly data were used for 

the computation of the diurnal variations, while monthly and yearly averaged data from hourly 

readings were used for the monthly and annual variations. The Pearson correlation was 

calculated across each variable to identify the level of correlation on yearly, monthly, and hourly 

scales. This allows a more detailed understanding of the correlation of one or more attributes 

with other attributes at different time scales, and it lays the foundation for subsequent research. 

Subsequently, the CCA procedure was used in the present study to reveal the degree of 

association between climate change factors and air quality factors. By increasing the Pearson 

correlation between linear combinations of two sets of variables, CCA provides a generic 

multivariate approach for studying correlations when both sets of variables are quantitative 

(             Dattalo, 2014; Langworthy et al., 2021). Unlike other methods, it has the ability to 

linearly connect two distinct variables regardless of their units (Zhang et al., 2020). These linear 

projections may be thought of as reflecting elements of the data's structure and may thus be 

beneficial for downstream prediction tasks. Although it is an extensively used statistical 

technique in many fields like social science, medical research, psychological research, and 

marketing analytics (Wang et al., 2020; Yang et al., 2019; Zhuang et al., 2020), it is seldom 

employed in atmospheric science which is a good attempt in the paper (Bowo et al., 2020; Rana 

et al., 2018; Zhang et al., 2020). Since the dimensionality of the dataset is relatively low, it is 

feasible to use CCA directly to identify the relationships between the climate data and air quality 



data, without the need for dimensionality reduction using EOF analysis. The model theory and 

calculation method of CCA are as follows. 

Two sets of variables X and Y are considered, where X is a set of meteorological variables that 

includes temperature, relative humidity, wind speed, wind direction, and rainfall data, while Y is 

a set of air quality variables that includes the concentrations of PM10, O3, CO, NO2, and SO2:  

With these sets of variables, two sets of linear relations U and V are defined, where U contains 

the linear combinations of X, and V contains the linear combinations of Y: 

In order to find the linear combination that maximizes the correlation in each pair of Ui and Vj, 

the variance of Ui and Vj are defined as follows: 

(1) X =
⎜
⎜
⎜
⎝

⎛X1

X2

⋮

Xp

⎞

⎟
⎟
⎟
⎠
, Y =

⎜
⎜
⎜
⎝

⎛Y1

Y2

⋮

Yq

⎞

⎟
⎟
⎟
⎠
, p ≤ q.

U1 = a11X1 + a12X2 + ⋯ + a1pXp,

U2 = a21X1 + a22X2 + ⋯ + a2pXp,

⋮

Up = ap1X1 + ap2X2 + ⋯ + appXp,

(2)  

V1 = b11Y1 + b12Y2 + ⋯ + b1qYq,

V2 = b21Y1 + b22Y2 + ⋯ + b2qYq,

⋮

Vp = bp1Y1 + bp2Y2 + ⋯ + bpqYq.

(3) 

var(Ui) =

p∑ p∑

k=1 l=1
aikailcov(Xk,Xl), (4)  

var
(
Vj
)
=

p∑ q∑

k=1 l=1
bjkbjlcov(Yk, Yl) (5) 

The covariance of Ui and Vj is then calculated as follows: 

cov
(
Ui,Vj

)
=

p∑ q∑

k=1 l=1
aikbjlcov(Xk,Yl) (6) 



The following method is used to evaluate the obtained CCA correlation of Ui and Vj: 

Hence, to maximize the correlation (  
 ), a linear combination of X and Y that maximizes the 

abovementioned relationship is determined: 

There are generally two methods that can be used for this function optimization. The first is 

singular value decomposition (SVD), and the second is eigendecomposition. The results obtained 

by both methods are the same for the dataset, so the output of either of the methods can be used. 

With the CCA, the first mode of linear correlation is used to determine the variation in the future 

air quality due to abrupt changes in temperature following future global warming scenarios. 

ρ =
cov

(
Ui,Vj

)

̅√̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅)̅.
var(Ui)var

(
Vj

(7) 

ρi
* = √

cov(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ui,Vi)
̅̅̅̅̅̅̅̅

var(Ui)var(Vi)
̅. (8) 

In this study, the Pearson correlation and CCA (p < 0.001) computing process is carried out 

using the Scientific Platform Serving for Statistics Professional (SPSSPRO version 1.0.11) 

platform, which is a free online application (https://www.spsspro.com). The CCA prediction 

model is applied in Python with the scikit-learn library, a free and open-source Python machine 

learning package. It is a simple and effective tool for analyzing predictive data (Pedregosa et al., 

2011). 

3 RESULTS AND DISCUSSION 

3.1 Interannual variation of climate and air quality 

     



Figure 2 shows the interannual variation of the annual average temperature, precipitation, 

relative humidity, wind speed, PM10, O3, CO, NO2, and SO2 from 2000 to 2019 in the Peninsula. 

The overall yearly mean temperature showed a steady upward trend, from 26.96°C in 2000 to 

28.10°C in 2019, which is consistent with the trend of global warming. Strong fluctuation 

is observed in the amount of precipitation, and it can be clearly seen that the amplitude of 

the fluctuation is increasing over time. Although the rainfall amount seems to decrease, 

the fluctuation amplitude increases, indicating the intensification of extreme precipitation. 

The humidity decreases in the early 2000s, becomes stable, and then continues to decrease 

rapidly. The wind speed has a small interannual variation fluctuation of 2–4 years, and the 

overall change is small, with no significant trend. Long-term changes in climate factors such as 

the increase in temperature, the increase in the frequency of abnormally warm climate, and the 

slight decrease in precipitation have been recorded in previous studies (Hanif et al., 2022; Yatim 

et al., 2019).     

CO and NO2 have similar variation patterns; they increase in the early 2000s, hold relatively 

constant during the middle 10 years of the considered time period, and then decrease sharply. 

The concentration of PM10 rose until it peaked in 2006 (50.24 μg/m
3
), fell to a second small peak 

around 2015, and then rose rapidly. O3 seems to have an increasing trend like that of the 

temperature over the whole observation period, from its minimum value (15.25 ppb) in 2000 to 

its maximum value (21.28 ppb) in 2019; this is also consistent with the findings of Ahamad et al. 

(2020). Surprisingly, SO2 is one of the few air pollutants that has decreased dramatically over the 

past 20 years (-2.94 ppb). This is possibly an unanticipated result of clean air measures, 

including the replacement of polluting coal-fired power plants with clean energy, as well as 

decreases in the sulfur content in gasoline and diesel, as other comparable studies have 

demonstrated (Cowern, 2018; Mohtar et al., 2018). The interannual variation of the air quality 



 factors is somewhat consistent with other studies in the Peninsula, although other studies have 

focused more on local, short-term data (Halim et al., 2018; Suris et al., 2022). 

Fig. 2 Interannual variability of yearly climate (mean temperature, relative humidity, precipitation, and wind speed; solid lines) and air quality 

(PM10, O3, CO, NO2, and SO2; dotted lines) over the observation period. 

Table 2 

Change in annual mean climate and air quality parameters between 2000 and 2019 over the entire Peninsula. 

Period 

(2000–2019) 

Temperature 

(ºC) 

Relative 

humidity 

(%) 

Rainfall 

(mm) 

PM10 

(µg/m
3
) 

Wind 

speed 

(m/s) 

O3 

(ppb) 

CO 

(ppb) 

NO2 

(ppb) 

SO2 

(ppb) 

Mean 

(standard 
deviation) 

27 

(0.3) 

78 

(0.8) 

2464 

(217) 

48 

(1.7) 

1.8 

(0.1) 

17 

(1.5) 

602 

(39) 

10 

(0.4) 

4 

(0.9) 

Difference 1.1 -3.6 -454 7.2 -0.03 6 -125.6 0.2 -2.9

Percentage change 
from 2000

+4% -5% -18% +16% -2% +40% -20% 2% -54%



Table 2 summarizes the overall changes in all variables between 2000 and 2019 to present a 

general trend. Macroscopically, temperature, PM10, O3, and NO2 levels all increased, with the 

largest increase in O3 (+39.49%), followed by PM10 (+16.4%), compared to the 2000 values. The 

relative humidity, precipitation, CO content, and SO2 content showed a decline, and SO2 fell the 

most; it dropped by 53.57% compared with the value from 2000, followed by CO, which fell by 

20.6%. Among all the parameters, the wind speed changes the least, with a change of only -

1.46%. From the perspective of the standard deviation, the degree of dispersion of precipitation 

(216.78) is the largest, followed by CO (38.96), PM10 (1.72), and O3 (1.5). Among the air 

pollutants studied here, the sharp drop in the SO2 concentration should be noted. In the Peninsula, 

the main sources of SO2 emissions are power stations, ships, etc. (Mohtar et al., 2018). The 

reason for the decline in SO2 is mainly the government's energy emission control and clean air 

policy requirements, so it is reasonable to believe that the decline in SO2 is mainly due to human 

intervention rather than climate change itself. Although PM10 had a slowly declining curve in the 

early 21st century, it has shown a clear upward trend in volatility in recent years. NO2 rose 

sharply after 2000, and gradually slowed down in 2006, showing a flat period. Although it has 

declined slightly recently, the overall trend is upward. Ozone has been on an upward trend for 20 

years; recent studies usually predict a negative impact of climate change on the ozone air quality 

(Fu and Tian, 2019). It is therefore worth mentioning that the emission control policy has been 

effective for SO2 but not for PM10, NO2, and O3 over the past 20 years.  

3.2 Heat map analysis of climate and air quality in the Peninsula 

To indicate the overall features of the variables in the Peninsula, Figure 3 shows the spatial 

distributions of the yearly mean temperature, precipitation, relative humidity, and concentrations 

of PM10, O3, CO, NO2, and SO2 over the observation period. Heatmaps are drawn from north 



(top) to south (bottom) based on site locations. For specific station names and the corresponding 

locations, please refer to Figure S4.

From Figure 3, it is obvious that the areas with large populations are prone to higher average 

temperatures, especially in the central-south regions. The mean temperature on the western side 

of the Peninsula is slightly higher than that on the eastern side. As time passes, we can clearly 

see a significant increase in the average temperature for most of the stations. The relative 

humidity has a different pattern. It can be seen from the figure that the places with high humidity 

are mainly concentrated in the central Peninsula and near the mountainous areas. The humidity is 

generally maintained at a high level; it is above 70% at most of the stations. The fluctuation of 

rainfall and the precipitation frequency can be seen throughout the whole Peninsula, and the 

average annual precipitation amount in mountainous areas is relatively large. Heavy rainfall 

occurs mainly around Taiping. The number of days with precipitation has a significant positive 

correlation with the amount of precipitation. This pattern can also be explained by the 

interactions between the topography and wind directions, land-sea interactions, and atmospheric 

circulation (Marzuki et al., 2021; Svensson et al., 2002). Overall, the data indicate a humid 

tropical rainforest climate in Peninsular Malaysia. 

Figures 4 and 5 present the overall 20-year wind speed and direction in Peninsular Malaysia. From 

the wind speed heat map, it can be concluded that the average wind speed of the entire peninsula is 

very low, and the fluctuation range is between 1 m/s and 2.7 m/s. The average wind speed in the 

north is larger than that in the south, and the change in the wind speed with time is not obvious. 



This is consistent with previous findings that indicate that Malaysia is in a low-wind zone 

(Hanoon et al., 2022). From the wind rose diagram, the northeasterly wind generally 

controls the entire peninsula, the intensity of the northeast monsoon is greater than that of the 

southwest monsoon, and the wind speed in large cities tends to be lower. 

Long-term air pollution in Malaysia is characterized mostly by local emissions and transboundary 

pollution, particularly in metropolitan areas (Sentian et al., 2019). Along the western side of the 

Peninsula, the average concentration of PM10 is slightly larger than in the eastern part. The 

concentration of PM10 fluctuates severely, mainly from 30–75 μg/m
3. Large PM10 concentrations 

occur over the western sections where the big cities are located. This is consistent with the 

connection between larger populations and pollution. From 2002–2006 and during 2015, PM10 

increased significantly. The high observed value in 2015 is mainly due to the fact that 2015 was 

an extreme ENSO year, and it was highly correlated with intensive biomass burning episodes in 

Southeast Asia (Islam et al., 2018; Samsuddin et al., 2018). We can see a highly temporal 

correspondence between the mean temperature and the PM10 concentration.  

From Figure 3, the distribution of the air quality parameters is relatively location-dependent. The 

yearly mean concentrations of CO, NO2, and SO2 have similar regional distribution 

characteristics. In the middle region of the Peninsula, the concentrations of CO, NO2, and SO2 

are relatively low and constant throughout the 20-year period. They also show a certain 

association with the locations of the cities and the population. Especially in the regions of Kuala 

Lumpur and Bukit Mertajam, the concentrations are high compared to those of the other regions. 

A small decrease in the CO and NO2 concentrations is revealed over time. In contrast, the decline 

in the SO2 concentration over time is very pronounced, and especially in the early 2000s, the 

reduction was steep. 



(a)  (b)  (c) 

(d)  (e)  (f)  (g) 

(h)

Fig. 3 (a) Yearly mean temperature, (b) PM10, (c) relative humidity, (d) CO, (e) NO2, (f) SO2, (g) O3, and (h) precipitation amount and days with 

precipitation from north (top) to south (bottom) over the observation period. 



Fig. 4 Yearly mean wind speed from north (top) to south (bottom) over the observation period. 



Fig. 5 Wind rose map of the surface hourly wind speed and wind direction from 10 general weather stations over the observation period. 

The average concentration of O3 fluctuates all over the Peninsula. Compared with the other air 

pollutants studied in this paper, the temporal and spatial variation characteristics of ozone are 

weaker, but a certain degree of urban agglomeration can still be seen. The ozone concentration 

generally increased, specifically after 2014, at most of the stations. This leads to the conclusion 

that the high amount of pollution in the Peninsula varies regionally and temporally. Peninsular 

Malaysia's central area has the greatest pollution concentration (Sentian et al., 2019). 

 



The geographical distribution of air pollution concentrations obviously highlights urban 

agglomeration, which also indicates the degree of urbanization. Climate change raises numerous 

significant air-chemistry problems, and human urban activity is contributing significantly to the 

current rate of climate change (Mika et al., 2018). Other findings also revealed that economic 

expansion has a large positive influence on carbon emissions and air pollution (Ali et al., 2017; 

Dash et al., 2020). Therefore, regional climate change and air quality research is urgent, and 

paying attention to the balance between the process of urbanization and air quality governance is 

one of the key points that policymakers need to focus on. 

3.3 Monthly variation of climate and air quality

This subsection aims to investigate the broad patterns of monthly variability in climate and air 

quality conditions across the Peninsular region. Figure 6 shows the monthly variation of 

variables. Malaysia's climate is divided into four episodes: the inter-monsoon periods in April 

and October, the southwest monsoon from May to September, and the northeast monsoon from 

November to March. The action of the monsoon has a great influence on the changes in the 

monthly patterns. The average monthly temperature reaches the highest value of the year in May 

(28.2 °C) and then decreases to the lowest value (26.8 °C) within the northeast monsoon period. 

SO2 has an analogous trend, forming a mountain-like shape; the peak is located around June and 

July. The precipitation shows an opposite monthly variation compared to O3 and at the same time 

presents a similar variation compared to the relative humidity. The largest amount of precipitation 

(332.2 mm) and humidity (66.9%) coincide with the early northeast monsoon season, which is 

around November. Meanwhile, the lowest amount of precipitation (108.6 mm) and humidity 

(59.4%) occur in February, when the rainy season ends. 



NO2 and CO both have a tri-peak form. They both peak in April, June/July, and September. The 

concentration of CO has two peaks that coincide with the two transition periods of the monsoon 

seasons at very close values, and so does the concentration of NO2, but with different magnitudes. 

The high peak is in April (11.3 ppb) and the low peak is in September (10.9 ppb). PM10 and O3 

present strong bimodal distributions. Both have their first peak around February and March. The 

difference is that during the southwest monsoon, the PM10 peak reached the maximum PM10 value 

(54.82 μg/m
3
), and O3 experienced a smaller peak (18 ppb) compared to its first peak (20 ppb). 

Fig. 6 Monthly variability of mean monthly climate (mean temperature, relative humidity, precipitation, and wind speed; solid lines) and air 

quality (PM10, O3, CO, NO2, and SO2; dotted lines) over the observation period.

The monthly variation of the wind speed is in good agreement with the monsoon variation. When 

the northeast monsoon prevails, the wind speed is high, and the monthly average wind speed can 

reach up to 2.02 m/s. During the southwest monsoon period, the wind speed is relatively low. 

Winds are often mild and changeable throughout the two inter-monsoon months (Figure 7). 

Because Malaysia is mostly a maritime country, the impact of land and sea breezes on the overall 

wind flow pattern is significant, especially on clear days (Hanoon et al., 2022).  



Fig. 7 Seasonality of the monthly wind speed and wind direction over the observation period. 



3.4 Diurnal variation of climate and air quality 

The diurnal variation of the variables is revealed in Figure 8. Most of the variables show a 

conspicuous diurnal mode. The hourly average temperature increases at 08:00 local time (LT), 

peaks around late noon (31.84°C), and then decreases smoothly. The relative humidity has a 

similar pattern compared with PM10, CO, and NO2, but without the first trough, creating a 

horseshoe shape. The wind speed, unlike the other parameters, has a mountain-like pattern, with 

a peak at 08:00–09:00 LT. Wind speeds are low and steady at night. 

PM10, CO, and NO2 have bimodal modes, with two peaks at around 08:00–10:00 LT and 22:00–

23:00 LT and troughs at around 05:00–06:00 LT and 14:00–15:00 LT. The trend of SO2 is 

obviously different from those of the other factors. SO2 reaches its minimum value (2.1 ppb) at 

around 06:00 LT, and then sharply jumps to the maximum value (3.3 ppb) at 10:00 LT; this is 

followed by a slight decrease and then an increase in the afternoon and at night. By comparison, 

the regularity of the daily changes is much higher than that of the monthly and interannual 

changes. 

Fig. 8 Diurnal variability of mean hourly climate (mean temperature, relative humidity, precipitation, and wind speed; solid lines) and air quality 

(PM10, O3, CO, NO2, and SO2; dotted lines) over the observation period. 



3.5 Correlation of climate and air quality

In this study, Pearson correlation coefficients were calculated between each climate variable and 

each air quality variable, respectively, on year-to-year, month-to-month, and day-to-day 

time scales (Figure 9). The Shapiro-Wilk test for normality was applied to all data 

(refer to Supplementary S3 for details), and the Pearson correlation coefficients are presented in 

Figure 9. For interannual variation, the temperature is significantly positively correlated with O3 

(0.99) and strongly negatively correlated with CO (-0.79) and SO2 (-0.77). On the other hand, 

SO2 and CO both have strong negative correlations with O3. The humidity has strong 

positive (negative) correlations with CO (O3). The factors' relationships for monthly changes 

are more prominent than those for annual changes. On a monthly scale, the temperature is 

negatively correlated with precipitation. O3 has a strong negative correlation with the 

relative humidity (-0.91) and precipitation (-0.86). NO2 is highly correlated with CO (SO2), 

with a coefficient of 0.92 (0.91). In terms of diurnal variation, prominent correlations among the 

factors are abundant. The temperature and humidity are negatively correlated. Additionally, the 

temperature has a strong connection with O3 (0.98), as it does on an annual scale. PM10 is 

highly correlated with CO (0.91) and NO2 (0.83). O3 is negatively correlated with the relative 

humidity (-0.98). NO2 and CO also have a high positive correlation. The numbers of significant 

correlations ( 0.7 or -0.7) for each time scale are 8 (annual), 11 (monthly), and 8 (daily), 

respectively. It can be observed that when different time scales are focused on, the correlations 

undergo significant changes. 



The results concerning the linear relationship between climate change factors and air pollutant 

factors vary widely among previous studies, depending on the size of the region studied, the 

frequency of the observations, and the time horizon (Ismail et al., 2011; Lim et al., 2022; 

Miyama et al., 2020; Turalioglu et al., 2005; Suris et al., 2022). A previous study found that for 

some specific Malaysian stations, the temperature had a positive connection with the PM10 

concentration but a negative correlation with the relative humidity (Dominick et al., 2012). SO2 

and NOx levels were negatively correlated with temperature throughout the summer and 

monsoon seasons but positively correlated with temperature during the pre- and post-monsoon 

seasons (Jayamurugan et al., 2013). However, in general, there is a positive correlation between 

the air temperature and ozone content on large time scales. At elevated temperatures, ozone 

production accelerates and emissions of its natural components increase. The combination of 

high temperatures and feeble winds causes the atmosphere to stagnate. So, the air simply heats 

up  nd  ozone   levels   c n   ccumul te  which is   lso  nown    s one   of the ―clim te   pen lty‖     

phenomenon (Chen et al., 2019; Fu & Tian, 2019; Porter & Heald, 2019). The remaining factors 

need to be compared under the corresponding regional and temporal conditions. The variables in 

this subsection exhibit a one-to-one correlation with each other, without any interaction or 

intervention from other parameters. The interactive correlation among the variables will be taken 

into account using CCA in the next subsection.



*: The true value is -0.999, which is shown as -1 in the image because it has been rounded to two digits. 

Fig. 9 Pearson correlation coefficients of the mean temperature, precipitation, relative humidity, wind speed, PM10, O3, CO, NO2, and SO2 over 

the observation period. (Correlation values are shown only for those pairs of variables that passed the significance test at the 99% confidence 

level.) 

3.6 CCA of meteorological variables and air pollution variables 

Based on the Pearson correlation analysis results for the wind speed performance (as depicted in 

Figure 9), it can be inferred that the impact of the wind speed on the long-term annual average 

changes in air quality factors is negligible. Consequently, the influence of the wind speed has 

been excluded from consideration. Additionally, since the impact of precipitation was also found 

to be weak (refer to Supplementary S4 for details), the variables have been re-analyzed using 

CCA after the removal of the precipitation factor. The results of this analysis are presented in 

Tables 3–5 and Figure 10. 

The relationships between the annual mean meteorological variables (Set X) and annual air 

quality variables (Set Y) (Table 3) were tested using CCA. The results (Table 4) showed a strong 

correlation between the two datasets (CCA: r = 0.994, p < 0.001), with 71.18% of the variance 

represented in the model (eigen = 0.988, df = 10).   



Table 3 

Datasets of climate variables and air quality variables. 

Set X (Meteorological) Temperature Humidity 

Set Y (Air Quality) CO O3 SO2 NO2 PM10 

Table 4 

Canonical correlation analysis results. 

Canonical 

variables 

Canonical 

correlation 

Proportion 

of 

variance 

explained 

Eigen 

values 

Wilks 

Degree of 

freedom 

F P 

Pair 1 0.994 71.18 0.988 0.007 10 28.692 <0.001 

Table 5 

Canonical loadings of set Y and set X, respectively. 

X1 

Temperature (T2) -0.998

Humidity (RH) 0.915

Y1 

O3 

CO 

SO2 

-0.995

0.799

0.753

PM10 

NO2 

-0.489

0.029

Table 6 

Proportion of variance explained by the first pair of canonical variables. 

Set X Set Y 

X1 91.676 48.694 

Y1 48.134 90.621 



From Table 4, it is observed that the first pair of canonical variables was found to be significant 

after passing the significance test. The correlation coefficient of the first pair of canonical 

variables is 0.994. The subsequent analysis will be based on the first pair of canonical variables 

(X1, Y1), which are presented in Table 5, using the equations given below: 

The proportions of variance explained by X1 and Y1 are given in Table 6. The canonical variable 

X1 explains 48.694% of the information of the indicators in set Y, and it explains 91.676% of the 

information of the indicators in set X. The canonical variable Y1 explains 90.621% of the 

information of the indicators in set Y and 48.134% of the information of the indicators in set X. 

X1 = − 0.998 T2+ 0.915 RH, (9)(9

Y1 = −  0.489 PM10–0.995 O3 + 0.799 CO + 0.029 NO2 + 0.753 SO2. (10) 

Figure 10 summarizes the CCA, with meteorological variables accounting for 71.182% of the 

information of the air quality factors. The value here is notably smaller than those in Table 4 and 

Table 6 because all the pairs of canonical variables are considered in the calculation to obtain an 

overall linear relationship value between the climate change factor group and the air quality 

factor group. Compared with the results from the CCA with precipitation (Supplementary S4), 

the interpretation ratio of meteorological factors to air quality factors improved by about 10%. 

This result shows that for the long-term interannual variability of these factors, changes in 

temperature and humidity can better predict the degree of future changes in air quality variables. 



Fig. 10 CCA map of the yearly mean temperature, relative humidity, and PM10, O3, CO, NO2, and SO2 concentrations over the observation period. 

3.7 CCA of regional meteorological variables and air quality variables 

From the heatmap in subsection 3.1, it is clear that the air quality distribution is relatively 

location-dependent, with certain regions having a much higher pollution level. Hence, the CCA 

is conducted on a regional level to determine the level of correlation between the climate and air 

quality. Taking states as the main basis for distinction, the states of the Peninsula are restructured 

into eight regions, as shown in Figure 11. The detailed region categorization is shown in Table 

S5. 

An independent CCA study was conducted for each region using the station data within the 

region. Similar to the previous subsection, only the CCA results without precipitation data are 

shown here. The results with precipitation data can be found in supplementary information S5. 

The detailed calculation results are given in Table 7. 



Region 

Canonical 

variables 

Canonical 

correlation 

Proportion 

of variance 

explained 

Eigenvalue Wilks 

Degree of 

freedom 

F P 

Terengganu Pair 1 0.937 52.45% 0.878 0.025 10 11.741 <0.001 

Johor Pair 1 0.995 51.27% 0.991 0.001 10 93.416 <0.001 

Kedah Pair 1 0.97 58.67% 0.941 0.02 10 13.416 <0.001 

Kelantan Pair 1 0.97 56.48% 0.941 0.016 10 13.643 <0.001 

Pahang Pair 1 0.931 51.58% 0.867 0.025 10 10.718 <0.001 

Perak Pair 1 0.985 55.78% 0.97 0.007 10 28.736 <0.001 

Selangor Pair 1 0.99 57.24% 0.98 0.005 10 32.581 <0.001 

Negeri Pair 1 0.979 72.82% 0.959 0.026 10 13.42 <0.001 

Table 7  

Regional canonical correlation analysis results, excluding precipitation data. 

Region 

Canonical 

variables 

Canonical 

correlation 

Proportion 

of variance 

explained 

Eigenvalue Wilks 

Degree of 

freedom 

F P 

Sembilan According to Table 7 (Figure 11) and Table S12 (Figure S6), the proportion of variance 

explained between the climate sets and air quality sets improves by an average of 17.2% after the 

precipitation data are excluded, especially in the Melaka and Negeri Sembilan regions. Since the 

urbanization process of the west coast of Malaysia is stronger than that of the east coast, the 

degree of climate change and air quality pollution are more obvious in densely populated areas 

(Figure 3). Due to its special geographical location, the west coast area has often been affected 

by biomass burning from the Indonesian Sumatra and Kalimantan regions, and the temperature, 

humidity, and air quality are also closely related to the burning situation (Islam et al., 2018; 

Samsuddin et al., 2018). Thus, based on the graphical comparison, the changes in the air quality 



on the west coast are more sensitive and more closely related to climate change than those in the 

east coast areas, and the predictability is also better. However, the regional canonical correlations 

of the two cases are not very different.  

Fig. 11 Proportion of variance explained by regional CCA and regional canonical correlation map of eight regions in the Peninsula over the 

observation period. 

3.7 CCA projection of air quality variables for temperature-rise scenarios 

The average worldwide temperature in 2019 was 1.1°C higher than the 1850–1900 average, 

which is assumed to reflect pre-industrial circumstances (Kappelle, 2020). To better predict the 

air quality change caused by the temperature change, we used the climate factors without the 

precipitation data as the dependent variables and carried out the prediction and simulation of the 

air quality factors using a machine learning-based algorithm from the scikit-learn library in 



Python. The temperature is increased by 0.4ºC and 0.9ºC, respectively, as a trigger, and the 

humidity remains unchanged; 2019 is set as the base year, and the predicted values of the air 

quality factors are obtained. The results are given in Table 8. 

Table 8 

Projection results of air quality variables with different increases in temperature. 

Temperature increase PM10

(µg/m
3
) 

O3 

(ppb) 

CO 

(ppb) 

NO2 

(ppb) 

SO2

(ppb) 

Value in 2019 51.2 21.3 484 9.6 2.5 

Value in 2000 44 15.3 609.6 9.4 5.5 

+1.5 ºC 52.2 24.3 452.2 10.4 0.4 

+1.8% +14.3% -6.6% +8% -86.2%

+18.5% +59.4% -25.8% +10.3% -93.6%

Percentage reference 

based on 2019 (%) 

Percentage reference 

based on 2000 (%) 

Standard deviation 0.4 1.9 2.2 50.1 0.4 

+2 ºC 53.7 27.1 393.3 10.4 -0.9

+4.9% +27.6% -18.8% +7.8% -135.3%

+22.1% +77.9% -35.5% +10% -116.4%

Percentage reference 

based on 2019 (%) 

Percentage reference 

based on 2000 (%) 

Standard deviation 0.5 2.1 2.6 59.3 0.4 

With a temperature increase of 0.4 ºC (based on 2019 data, the relative humidity remains the 

same), the concentrations of PM10, O3, and NO2 all present upward trends. Compared with the 

2019 value, ozone increased the most (+14.3%), and CO and SO2 decreased. When the 

temperature increased by 0.9 ºC, the values of the above air variables changed more strongly; the 

increase in the ozone concentration nearly doubled (+27.6%) compared with the previous 



scenario, and the reduction in the carbon monoxide concentration more than tripled (-18.8%). 

Although it is against common sense for the SO2 concentration to drop to a negative number in 

the predicted results, we can draw the conclusion that SO2 will decrease rapidly in the future. 

The coefficient of determination (R
2 

score) of the CCA model for these datasets is 0.47, which 

indicates that the model is expected to predict future samples with moderate effectiveness. 

However, we can still get a glimpse of the future from the simulation results; this CCA 

algorithm's simulation outcomes are also roughly consistent with the findings of earlier studies. 

The concentration of nitrogen dioxide increases under different carbon emission pathways (Lim 

et al., 2022), and in the Representative Concentration Pathway RCP4.5 scenario, the 

concentrations of ozone and PM10 also increase (Mika et al., 2018). A slight change in 

temperature will have a dramatic impact on the concentrations of the air quality factors. In the 

event of further temperature increases in the future, we should pay more attention to the 

concentrations of ozone, PM10, and nitrogen dioxide, as these air pollutants are more sensitive to 

temperature. 

In terms of chemistry processes, the positive surface ozone-temperature association is primarily 

driven by the fact that an increase in temperature boosts natural emissions and increases ozone 

chemical synthesis at high NOx levels (Gu et al., 2020; Lu et al., 2019). The drop in SO2 is 

mostly attributable to the government's energy emission control and clean air policy regulations 

rather than climate change (Cowern et al., 2018; Ukhov et al., 2020). According to National 

Center for Atmospheric Research (NCAR) research reports, during a heat wave, the intense heat 

and stagnant air increase the amount of ozone pollution and particle pollution. Drought 



conditions may also exacerbate forest fires and hence contribute to particulate pollution in the 

atmosphere. NO2 mostly enters the atmosphere due to fuel combustion and human emissions. 

NO2 and other NOx may react with other airborne molecules to produce both particulate matter 

and ozone. The long-term growth in CO levels seems to have ceased and reversed over the last 

several years. This might have occurred for a variety of reasons, such as increased CO removal 

from the environment and enhanced combustion efficiency in industry. The increased use of 

natural gas in recent years and regional decreases in human-caused CO emissions have reduced 

atmospheric CO levels (Campbell et al., 2018; Gratz et al., 2015; WHO, 2021). The NO2 and CO 

content in the air directly responds to temperature changes, although the chemical process is very 

weak; changes in the NO2 and CO content are mainly related to the control of emissions and the 

intervention of human factors. 

 

Since CCA is based on pure linear analysis, it can only reflect the association between variable 

groups to a certain extent; this has limitations, especially due to the non-linearity of chemical 

processes. Therefore, to better analyze the correlation between the two sets of variables, and to 

predict the degree of change in the air quality factors based on changes in the climate factors, 

numerical model simulation is an indispensable method that must be applied. In subsequent 

research, it is necessary to carry out regional climate and air quality research using a numerical 

chemical climate prediction model to resolve the physical and chemical responses of air 

pollutants to changes in climate conditions. 



4 CONCLUSIONS 

In this study, temperature, relative humidity, precipitation, wind speed, wind direction, CO, NO2, 

O3, SO2, and PM10 ground-based observational data have been used to assess the temporal 

and spatial climate and air quality characteristics in the period from 2000–2019 in 

Peninsular Malaysia. Using Pearson correlation analysis and canonical correlation analysis 

(CCA), this study identifies the long-term relationships between climate factors and the 

variability of air quality variables. Using the CCA algorithm based on machine learning, this 

study forecasts the future air quality under various scenarios of temperature rise. The following 

summarizes the main findings of this article in bullet form.

• The study reveals a clear warming trend in the climate, with an upward trend in the 

temperature (+1.14°C) and a slight decrease in the relative humidity, while 

the precipitation showed significant fluctuations that increased in amplitude.

• The annual average ozone concentration showed a steady increase year by year (+39.5%), 

while the SO2 concentration showed a steady decline (-53.6%).

• The high correlation between climate variables and air quality variables provides an 

important basis for predicting future changes in the air quality due to climate change, 

which makes CCA projection a feasible way to forecast future air quality.

• According to the CCA results, there is a strong correlation between climate and air 

quality; in the state of Selangor, the sensitivity of the air quality factors to meteorological 

factors is particularly strong.

• A 2°C increase in temperature caused an increase in PM10 (+22.1%), O3 (+77.9%), and 

NO2 (+10%), while CO (-35.5%) and SO2 (-116.4%) decreased.



• Slight changes in temperature have a significant impact on air quality, and further 

temperature increases in the future require greater attention to be paid to the 

concentrations of O3, PM10 and NO2.

• The long-term data analysis and characterization of climate and air quality will assist 

policymakers and the relevant authorities in adapting measures and policies to future 

conditions.
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Supplementary Information: 

S1: Calibration process 
 
The calculation formulas for correction are shown in equation 1-3. In the formula, 𝑀𝑀𝑀𝑀, 𝑂𝑂𝑂𝑂 represent 
simulated value of record i, observed value of record i. 
Mean bias (MB) = 1

𝑁𝑁
 ∑ (𝑂𝑂𝑂𝑂 − 𝑀𝑀𝑀𝑀)𝑁𝑁

𝑖𝑖=1                                                                         Equation 1 
Mean bias between 2 data sets = MB(ASMA data) – MB(PSTW data)                    Equation 2 
Calibration PSTW data = PSTW original data + Mean bias between 2 data sets      Equation 3 
 
Most of the chemical species in CAMS Global data are archived as mass mixing ratios (MMR, kg 
of gas / kg of air). To compare the data with observational data, unit conversion is necessary. The 
equations that used to convert MMR to volume mixing ratio (VMR, units ppmv or ppbv) for 
different chemical species were shown in equation 4-7. 
 
To convert data from MMR to VMR you only need molar masses of dry air and molar mass of the 
atmospheric species: 
VMR(O3) = 28.9644 / 47.9982 * 1e6 * MMR(O3)                                    Equation 4 
VMR(CO) = 28.9644 / 28.0101 * 1e6 * MMR(CO)                                  Equation 5 
VMR(NO2)= 28.9644 / 46.0055 * 1e6 * MMR(NO2)                                Equation 6 
VMR(SO2) = 28.9644 / 64.0638 * 1e6 * MMR(SO2)                                Equation 7 
The 1e9 in the formulae gives parts per million (ppmv).  
 
Since the CAMS global reanalysis (EAC4) data are only available after 2003, so the data analysis 
in the following are all based on the time series of 2003-2019. The tables below, show mean bias 
of yearly mean concentration and calculated calibration results of different air quality factors 
respectively. In the following figures, two calibration methods were compared. The first one is to 
calculate the mean bias between ASMA 2003-2017 data and the mean bias between PSTW 2017-
2019 data, then calculate the difference between the two.  The second method is to compute the 
difference of mean bias between ASMA 2017 data and PSTW 2017 data. The data before and after 
those two alteration methods are presented in PM10, O3 and SO2 air quality variables as 
representatives in this research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1. Mean bias of yearly mean SO2 concentration and calibration results. 
SO2 ASMA 

2003 
ASMA 
2004 

ASMA 
2005 

ASMA 
2006 

ASMA 
2007 

ASMA 
2008 

ASMA 
2009 

ASMA 
2010 

ASMA 
2011 

MB 0.002758 0.002258 0.001649 0.001166 0.000876 0.000913 0.000721 0.000706 0.000871 

SO2 ASMA 
2012 

ASMA 
2013 

ASMA 
2014 

ASMA 
2015 

ASMA 
2016 

ASMA 
2017 

PSTW 
2017 

PSTW 
2018 

PSTW 
2019 

MB 0.000653 0.000509 0.000747 0.000605 0.000861 0.001312 -0.000142 -0.000151 -0.000163 
 MB(ASMA 2003-2017 mean)-MB(PSTW 2017-2019 mean) MB(ASMA 2017)-MB(PSTW 2017) 

Calibration 0.0012588785095 0.0014537407292 
 
 

 
 
Fig. S1. a) Time series graph of SO2 concentration data before calibration in 2003-2019. b) Time series graph of SO2 
concentration data after calibration for the first method. c) Time series graph of SO2 concentration data after calibration 
for the second method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S2. Mean bias of yearly mean O3 concentration and calibration results. 



O3 ASMA 
2003 

ASMA 
2004 

ASMA 
2005 

ASMA 
2006 

ASMA 
2007 

ASMA 
2008 

ASMA 
2009 

ASMA 
2010 

ASMA 
2011 

MB -0.011430 -0.009926 -0.009527 -0.009845 -0.007938 -0.007467 -0.009193 -0.007343 -0.008435 

O3 ASMA 
2012 

ASMA 
2013 

ASMA 
2014 

ASMA 
2015 

ASMA 
2016 

ASMA 
2017 

PSTW 
2017 

PSTW 
2018 

PSTW 
2019 

MB -0.007763 -0.007183 -0.006251 -0.007649 -0.006021 -0.007395 -0.009341 -0.008232 -0.007345 
 MB(ASMA 2003-2017 mean)-MB(PSTW 2017-2019 mean) MB(ASMA 2017)-MB(PSTW 2017) 

Calibration 0.0000814421770 0.0019459952646 
 
 
 
 

 
 
Fig. S2. a) Time series graph of O3 concentration data before calibration in 2003-2019. b) Time series graph of O3 
concentration data after calibration for the first method. c) Time series graph of O3 concentration data after calibration 
for the second method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S3. Mean bias of yearly mean PM10 concentration and calibration results. 



PM10 ASMA 
2003 

ASMA 
2004 

ASMA 
2005 

ASMA 
2006 

ASMA 
2007 

ASMA 
2008 

ASMA 
2009 

ASMA 
2010 

ASMA 
2011 

MB 10.965302 11.063567 10.988152 9.665828 8.203222 8.381892 7.748867 6.384681 8.895474 

PM10 ASMA 
2012 

ASMA 
2013 

ASMA 
2014 

ASMA 
2015 

ASMA 
2016 

ASMA 
2017 

PSTW 
2017 

PSTW 
2018 

PSTW 
2019 

MB 7.967413 6.876545 3.492488 11.726614 9.697137 14.128409 -6.254511 -4.599490 -1.331696 
 MB(ASMA 2003-2017 mean)-MB(PSTW 2017-2019 mean) MB(ASMA 2017)-MB(PSTW 2017) 

Calibration 13.1409384870107 20.3829202947486 
 

 
 
Fig. S3. a) Time series graph of PM10 concentration data before calibration in 2003-2019. b) Time series graph of 
PM10 concentration data after calibration in 2017-2019 for the first method. c) Time series graph of PM10 concentration 
data after calibration in 2017-2019 for the second method. 
 
From the figures and tables above, the difference between the two calibration methods can be 
clearly compared through the presentation of the time series plots. We can see that from the data 
consistency difference after adjustment, after the second calibration method, the data has less 
discrepancy with ASMA data, which is more in line with our data needs. Therefore, in this paper, 
the second calibration method is used to adjust the data, and all subsequent studies are based on 
the data after calibration using this method. 
 
 
 
 
 
 
 
 
 
 
 
S2: Names of the measurement station 



 

 
Fig.S4 Map of ASMA/PSTW stations with names (left) and map of MMD/ISD stations with names (right). 
 
Table.S4 Categorization of the regions in PEM for regional CCA analysis 
No. Agglomerations States 
1 Terengganu  Terengganu  
2 Johor  Johor 
3 Kedah  Kedah, Perlis, Pulau Pinang 
4 Kelantan  Kelantan 
5 Pahang  Pahang 
6 Perak Perak 
7 Selangor (SA) Selangor, Kuala Lumpur, Putrajaya 
8 Negeri Sembilan (NSA) Negeri Sembilan, Melaka 

 

S3: Shapiro-Wilk test of normality of all variables 

In order to use Pearson correlation analysis, first perform a normality test on all the data, the test 
steps are as follows: 
 



Step 1: Perform Shapiro-Wilk test on the data to check its significance.  
Step 2: If it does not show significance (P>0.05), it means that it conforms to the normal 
distribution, otherwise it means that it does not conform to the normal distribution.  
Step 3: Usually, it is difficult to meet the test in real research situations, if the absolute value of 
the sample kurtosis is less than 10 and the absolute value of the skewness is less than 3, combined 
with the normal distribution histogram, PP diagram or QQ plot, it can be described as basically 
conforming to the normal distribution. 
 
Table S5. Shapiro-Wilk test on the yearly data 

variable name sample size median average value standard deviation Skewness kurtosis SW test KS test 

temp mean 20 27.3 27.352 0.269 1.421 2.556 0.847(0.005***) 0.242 (0.164) 

pmmean 20 47.928 48.117 1.717 -0.662 1.347 0.915(0.079*) 0.223(0.235) 
O3mean 20 0.017 0.017 0.002 1.736 2.825 0.772(0.000***) 0.296(0.047**) 

CO mean 20 0.609 0.602 0.039 -2.423 5.602 0.646(0.000***) 0.35(0.011**) 
NO2mean 20 0.011 0.01 0 -1.338 0.508 0.768(0.000***) 0.293(0.051*) 
SO2mean 20 0.003 0.004 0.001 0.866 -0.311 0.899(0.039**) 0.162 (0.617) 

Humidity means 20 77.935 77.766 0.769 -1.639 3.948 0.826(0.002***) 0.26(0.112) 
rain mean 20 2464.348 2463.973 216.776 -0.053 -0.991 0.96(0.540) 0.109(0.949) 

wind 20 1.791 1.801 0.073 1.305 2.812 0.897(0.036**) 0.111 (0.942) 

Note: ***, **, * represent the significance levels of 1%, 5%, and 10% respectively 
 
Table S6. Shapiro-Wilk test on the monthly data 
variable name sample size median average value standard deviation Skewness kurtosis SW test KS test 
Temperature 12 27.559 27.506 0.479 -0.129 -1.359 0.939(0.480) 0.132 (0.967) 

PM10 12 48.401 48.351 5.009 -0.309 -0.878 0.942(0.527) 0.157(0.883) 
O3 12 0.018 0.018 0.002 -0.323 0.133 0.972 (0.931) 0.155(0.895) 
CO 12 0.604 0.597 0.021 -0.61 -1.177 0.887(0.107) 0.229 (0.486) 
NO2 12 0.011 0.011 0.001 -0.554 -1.071 0.906(0.189) 0.166(0.841) 
SO2 12 0.003 0.003 0 -0.087 -1.618 0.918 (0.268) 0.15 (0.914) 

Humidity 12 64.603 63.966 2.191 -0.878 0.452 0.928(0.360) 0.173(0.809) 
Precipitation 12 186.879 205.331 66.298 0.833 0.07 0.909(0.204) 0.23(0.480) 
Wind speed 12 1.687 1.785 0.22 1.106 -0.141 0.82(0.016**) 0.283(0.242) 

Note: ***, **, * represent the significance levels of 1%, 5%, and 10% respectively 
 
Table S7. Shapiro-Wilk test on the daily data 

variable name sample size median average value standard deviation Skewness kurtosis SW test KS test 

Temperature twenty four 26.645 27.508 2.734 0.417 -1.431 0.88(0.008***) 0.159(0.524) 



PM10 twenty four 47.997 48.14 3.503 0.052 -1.363 0.928(0.088*) 0.12 (0.841) 
O3 twenty four 0.012 0.018 0.012 0.622 -1.325 0.829(0.001***) 0.217 (0.181) 
CO twenty four 0.571 0.597 0.17 0.454 -0.983 0.924(0.070*) 0.124(0.814) 

NO2 twenty four 0.01 0.011 0.003 0.551 -1.019 0.898(0.020**) 0.17(0.440) 
SO2 twenty four 0.003 0.003 0 -0.61 -0.954 0.89(0.014**) 0.187(0.328) 

Humidity twenty four 80.983 77.584 10.425 -0.433 -1.471 0.865(0.004***) 0.175(0.405) 
Wind speed twenty four 1.441 1.781 0.807 0.617 -1.284 0.828(0.001***) 0.197(0.271) 

Note: ***, **, * represent the significance levels of 1%, 5%, and 10% respectively 
 
Table S5-S7 provide the output results from Shapiro-Wilk test on yearly, monthly and daily data 
sets respectively. Combined with normality test histograms and the fitting of the cumulative 
probability (P) of calculation observations and the normal cumulative probability (P) plots, all the 
normality charts are basically bell-shaped (high in the middle and low at both ends), and the degree 
of fitting in PP plots are acceptable. Although the data are not absolutely normal, they are basically 
acceptable as a normal distribution. 

S4: canonical correlation analysis with precipitation data 
 
The canonical correlation analysis results with precipitation data are presented in Table S8-S11 as 
follows. 
 
Table S8. Data sets of climate variables and air quality variables. 

Set X Temperature Precipitation Humidity   
Set Y CO O3 SO2 NO2 PM10 

 
Table S9. Canonical correlation analysis results. 

Canonical 
variates 

Canonical 
correlation Eigen values Wilks Degree of 

freedom F P 

Pair 1 0.995 0.99 0.004 15 13.762 <0.001 
 
Table S10. The Canonical loadings of set Y and set X respectively. 

 Y1 
PM10 -0.473 

O3 -0.995 
CO 0.796 
NO2 0.020 
SO2 0.763 

 X1 
Temperature -0.998 

Humidity 0.908 
Precipitation 0.033 

 
It can be seen from the above tables that only the first pairs of canonical variables have passed the 
significance test, which means the correlation between the first pairs of canonical variables is 
considered to be significant. The correlation coefficient of the first pair of canonical variables is 



0.995. This shows that there is a very close relationship between the set X and the set Y. The 
subsequent analysis focuses on the first pair of canonical variables and the corresponding canonical 
loadings. From table S10, the canonical loading is the simple correlation coefficient between the 
variable and all the variables in the same group. The larger the absolute value of the canonical 
loadings, the stronger the correlation between the items and the canonical variables. 
 
Table S11. Proportion of variance explained by the first pair of canonical variables. 

 Set X Set Y 
X1 60.743 48.589 
Y1 48.09 60.119 

 
Table S11 shows the proportion of explanations of canonical variables, including the proportion 
of intra-group explanations and cross explanations, to quantitatively judge the amount of original 
information contained in canonical variables. The canonical variable X1 explained 48.589% of the 
information of the indicators in the set Y, and explained 60.743% of the information of the 
indicators in the set X. The canonical variable Y1 explains 60.119% of the information for the 
indicators in set Y and 48.09% of the information for indicators in set X. The whole picture of this 
pair of canonical variables is illustrated in figure S4. Canonical variable X1 and Y1 can capture the 
information of 60.743% of meteorological variables and 60.119% of air quality variables 
respectively. Climate variables can represent 61.224% information of air quality variables, which 
highly indicate correlations between climate and air quality factors. Interestingly, the canonical 
loading of precipitation is 0.03, which shows that from the perspective of interannual variation, 
the impact of precipitation on the air quality factor is not obvious, and the phenomenon of 
significant and irregular annual variation of precipitation can also confirm this result. The specific 
impact of precipitation factors on air quality needs to be further analyzed and studied in the future. 
 

 
Fig. S5. CCA map of yearly mean temperature, precipitation, relative humidity, and PM10, O3, CO, NO2, SO2 over the observation period. 

 



S5: Regional canonical correlation analysis with precipitation data 
 
Table S12. Regional canonical correlation analysis results including precipitation data. 

Regions Canonical 
variates 

Canonical 
correlation 

Proportion 
of variance 
explained 

Eigen 
values Wilks Degree of 

freedom F P 

Terengganu Pair 1 0.947 44.90% 0.897 0.015 15 6.779 <0.001 

Johor Pair 1 0.995 50.10% 0.991 0 15 28.281 <0.001 

Kedah Pair 1 0.97 48.83% 0.941 0.009 15 8.35 <0.001 

Kelantan Pair 1 0.97 48.11% 0.941 0.009 15 7.492 <0.001 

Pehang Pair 1 0.936 39.26% 0.876 0.01 15 7.129 <0.001 

Perak Pair 1 0.985 46.43% 0.97 0.003 15 15.204 <0.001 

Selangor Pair 1 0.99 54.90% 0.98 0.005 15 13.032 <0.001 
Negeri 

Sembilan Pair 1 0.98 58.35% 0.961 0.013 15 8.484 <0.001 

 

 
Fig. S6. Proportion of variance explained by regional CCA and regional canonical correlation map of 8 regions in PEM over the observation 
period. 

S6: Reasonings for including year 2020 data  
 
Since 2020 is a very special year, the situation of the Covid-19 runs through the whole year, and 
both the climate and air quality data have undergone significant turning points as is shown in the 
figure below. This article wants to focus mainly on the natural variability and the correlation 
between climate change and air quality rather than the impact of human factors. Therefore, the 
analysis and discussion of the situation in 2020 is included in the supplementary information 
rather than in the main article. 



 
 
From the figure, we can clearly see that due to the impact of the Covid-19, human activities are 
restricted, and the temperature and pollutants have dropped significantly in 2020, reflecting the 
huge impact of human activities on climate and air quality. This sudden change affects studies on 
natural variability, so the analysis of the 2020 data is omitted in the main article. 
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