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A B S T R A C T   

This article presents a novel Artificial Intelligence (AI) workflow to enhance drilling performance by mitigating 
the adverse impact of drill-string vibrations on drilling efficiency. The study employs three supervised machine 
learning (ML) algorithms, namely the Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), and 
Regression Decision Tree (DTR), to train models for bit rotation (Bit RPM), rate of penetration (ROP), and torque. 
These models combine to form a digital twin for a drilling system and are validated through extensive cross- 
validation procedures against actual drilling parameters using field data. 

The combined SVR - Bit RPM model is then used to categorize torsional vibrations and constrain optimized 
parameter selection using the Particle Swarm Optimization block (PSO). The SVR-ROP model is integrated with a 
PSO under two constraints: Stick Slip Index (SSI<0.05) and Depth of Cut (DOC<5 mm) to further improve 
torsional stability. Simulations predict a 43% increase in ROP and torsional stability on average when the 
optimized parameters WOB and RPM are applied. This would avoid the need to trip in/out to change the bit, and 
the drilling time can be reduced from 66 to 31 h. 

The findings of this study illustrate the system’s competency in determining optimal drilling parameters and 
boosting drilling efficiency. Integrating AI techniques offers valuable insights and practical solutions for drilling 
optimization, particularly in terms of saving drilling time and improving the ROP, which increases potential 
savings.   

1. Introduction 

Optimizing the efficiency of drilling operations (which accounts for 
half of the budget of any exploration and development project) is 
essential in reducing overall costs and time, maximizing equipment 
reliability, and minimizing the adverse impact of hazardous situations. 
Certainly, the improvement of drilling efficiency and operational safety 
has become vital for improving efficiency and reducing the carbon 
footprint of the oil and gas industry. 

Unwanted drill-string vibrations are the main cause of performance 
failures (Bavadiya et al., 2017). They are detrimental as they take away 
the mechanical energy aimed at drilling, lead to borehole instability, 
and cause premature wear of downhole equipment (Pllácido et al., 
2002). These vibrations are of great concern critical due to the ease with 

which they creep in and their persistent nature. The main causes of these 
vibrations are nonlinear bit-rock interactions, mass imbalance, poor 
management of drilling parameters, and improper selection of the 
downhole equipment (Yigit and Christoforou, 2006). These drill-string 
vibrations can be classified into three modes: torsional, axial, and 
lateral (Spanos et all, 2003). 

It can be observed that the occurrence of one type of vibration mode 
during drilling operations often leads to the induction of other types due 
to dynamic coupling (Boukredera et al., 2021). For instance, the 
occurrence of axial vibration can induce lateral shocks, and torsional 
vibrations can trigger both bit bounce and whirl. Despite this 
cross-coupling, torsional vibrations are widely regarded as the most 
severe type of vibration due to their gravity and frequency character-
istics (al Dushaishi et al., 2018). The main problem is associated with the 
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high-speed peaks during the slip phase, which lead to extreme acceler-
ations and forces in both the axial and lateral directions, causing bit 
bounce and whirl (Fig. 1-b). During the Stick phase, there will be 
excessive friction on the cutters, which causes the stuck bit situation. In 
this case, the Top Drive continues to apply a constant torque to the 
drill-string, which has a certain degree of elasticity, causing the 
drill-string to buckle and the drill pipe to twist (Fig. 1-a). Therefore, the 
drilling optimization process must consider the mitigation of drill-string 
vibrations to improve the drilling efficiency and decrease 
non-productive time (NPT). 

Traditional physical-based models have limitations due to unreliable 
assumptions resulting from variations in downhole equipment, well 
angle, and geological passage. To overcome these restrictions, scholars 
have turned to data-driven models trained with enormous amounts of 
data. In particular, the use of AI algorithms has shown promising results 
in predicting drilling outcomes. The intelligent drilling systems, which 
employ innovative workflow and tools, are based on AI algorithms and 
smart equipment. The nonlinear modelling and optimization workflow 
offer necessary instructions and support for smart equipment, which 
provides the data to model and validate the AI systems. The optimization 
algorithms used to enhance ROP, while easing the drill-string vibration 
are presented. 

Although the application of AI has made significant progress, most 
models address different challenges. For instance, a real-time DL-based 
high-performance damage detection model and VHD detection frame-
works have been presented by (Roy and Bhaduri, 2023; Jamil and Roy, 
2023) to address the shortcoming of the current models in complex and 
noisy environments. The novel deep learning (DL)-based 
high-performance outperformed current state-of-the-art models by 
providing at least 89.51% accuracy in more superficial network struc-
tures. Multiple Graph Learning Neural Networks (Jiang et al., 2022) 
have been recently presented and experimented on several datasets to 
demonstrate that MGLNN outperforms other related methods on 
semi-supervised classification tasks and the results are fairly stable in 
some parameter range even when the hyperparameters are changed. 

Iterative learning control (ILC) algorithms have been used by (C. 
Zhou et al., 2022; Zhuang et al., 2022) to introduce a robust and optimal 
ILC for constrained systems. Their work extends the existing framework 
of ILC, utilizing the design degree of freedom to optimize performance 
beyond tracking accuracy. These algorithms showcase the potential for 
enhanced control in constrained conditions and improve the algorithm’s 
constraint handling capability compared to conventional counterparts. 

In addition to its prominent roles in classification and prediction 

with iterative learning, AI is also extensively employed in optimization. 
Many-Objective Teaching-Learning-Based Optimizer (MaOTLBO) has 
been introduced as a potential solution for addressing the complexities 
of the Optimal Power Flow (MaO-OPF) challenges (Jangir et al., 2023). 
The algorithm evaluation encompasses both the DTLZ test suite, 
encompassing 5, 7, and 10 objectives, and the IEEE-30 test systems 
highlight its performance and adeptness with various operational con-
straints. Another Many-Objective Weighted Optimization Algorithm 
(MOWOA) subjected to a 17 comprehensive evaluation and tests, 
comprising 8 unconstrained problems, 5 constrained problems, and 4 
multi-objective engineering design challenges (Pandya et al., 2022). By 
doing so, the algorithm’s capabilities are substantiated, with both 
quantitative and qualitative evidence highlighting its adeptness. This 
substantiation encompasses numerical performance metrics, as well as 
its convergence and coverage of the Pareto optimal front. 

Significant research has been aimed at addressing the challenge of 
predicting ROP and mitigating the effect of drilling vibrations using 
innovative AI solutions such as the risk assessment method based on 
neural network backpropagation (Chen et al., 2018), the average accu-
racy of prediction for BPNN based on the wellhead torque signals is more 
than 90%. A workflow that combines ROP optimization with ML based 
vibration models (Hegde et al., 2019), the approach offered an 
improvement of ROP by 14.1% on average across all formations. 
Real-time workflows that detect and characterize drill-string shock and 
vibration using historical data and ML methods (Millan et al., 2019), The 
trained model performed on classification of the testing data had an 
accuracy of 93% to distinguish periods with and without lateral shocks. 
The efficacy of these approaches depends on the presence of downhole 
measurement tools (MWD) within the drill-string, to detect excessive 
vibrations. These MWD tools are included only for deviation objectives. 

The optimization scheme should be constrained by factors that 
mitigate drilling vibrations, such as mechanical specific energy (Rashidi 
et al., 2010) or stick slip index (Hegde et al., 2019). Simply using the 
maximum WOB and RPM can induce drilling vibrations, which prevents 
achieving the optimal ROP (Bataee and Mohseni, 2011). To achieve this 
(Abbas et al., 2019), propose AI based scheme using the ANNs model 
and genetic algorithm (GA) to obtain operating parameters WOB and 
RPM that lead to an ROP minimum of 15,8 m/h with the bit selection. In 
addition, AI based workflow has assisted the bit selection and ROP 
optimization (Batruny et al., 2021; Tortrakul et al., 2021), The appli-
cation of trained ROP models in conjunction with various drilling bits 
yields noteworthy outcomes, including a remarkable 50% increase in 
ROP when compared to the original field data. This approach also 

Fig. 1. Stick and slip situations, (a) The elasticities of the drill-string cause the buckling during the stick phase. (b) Extreme accelerations and forces in both the axial 
and lateral directions causing bit bounce and whirl during slip phase. 
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enables the selection of the most suitable bit while effectively avoiding 
detrimental vibrations. The cost of these practical experiments is very 
high, and several bits and runs are required for the training and decision 
making, which will be impossible in daily or footage contract type 
scenarios. 

In contrast (Koulidis and Ahmed, 2023), have combined AI with 
in-cutter sensing data to improve drilling efficiency and mitigate axial 
vibrations. Although this research is currently limited to a small dataset 
of 100 points and laboratory experiments, it offers a promising direction 
for future research. Other review papers highlight the potential of AI to 
address the industry challenges such as stuck pipes and hydrate for-
mation (D’Almeida et al., 2022). 

Among them, the model related to vibrations has primarily focused 
on characterizing and detecting drill-string vibrations rather than miti-
gating them. Additionally, these models often do not consider important 
parameters such as depth-of-cut and the severity of torsional vibrations, 
which are critical in maintaining the dynamic stability of the bottomhole 
assembly and the drill-string (Y. Zhou et al., 2017). However, recent 
research has shown that managing these parameters by adjusting DOC 
can significantly improve drilling efficiency and reduce non-productive 
time and bit failures (Alkhazal et al., 2022). Therefore, there is a need for 
more advanced AI models that incorporate these factors to optimize 
drilling parameters and mitigate vibrations. 

The current state-of-the-art in drilling optimization involves finding 
controllable drilling parameters, such as the WOB and RPM, to achieve a 
maximum ROP while minimizing drill string vibrations. However, 
traditional drill-off testing methods for different drilling bits can be 
costly and time consuming; this approach involves manually changing 
the DOC by applying several WOB/RPM. The present paper proposes a 
novel solution in the drilling optimization field to improve the drilling 
bit aggressiveness with virtual tests. Compared to the existing studies, 
which include measurement equipment and require massive data sets, 
the proposed solution is based on an updating system that can build real 
time sub-models at every 9 m drilled interval, to maintain the general-
ization capability of the ML models. The existing studies and solutions 

are applicable only to specific regions and formations. 
This research presents a novel AI-based workflow that improves 

drilling efficiency and minimizes vibrations. It presents the first work-
flow that considers the depth-of-cut during the application of ML models 
for ROP optimization with bit tests and the selection of the optimal 
drilling parameters. The proposed method provides an effective solution 
to reduce time, cost, and effort, compared to the current state-of the-art 
models and workflows. Additionally, the proposed workflow offers a 
cost-effective and safer alternative to traditional field-testing methods 
by allowing for the testing of different depths-of-cut as a constraint in a 
virtual optimization system built on field data, without requiring the use 
of new bits in the field. Simulations predict an average 43% increase in 
ROP and torsional stability when the optimized parameters WOB and 
RPM provided are applied. This would avoid the need to trip in/out to 
change the bit, and the drilling time can be reduced from the initial 66 to 
31 h. 

The aims of this study are as follows:  

- The development of the system model and the open loop dynamics to 
digitally replicate the behaviour of the drilling system virtually 

Fig. 2. The operational framework used in creating the Digital twin using ML and field data. The field data collected from actual behavior are employed to create a 
predictive behavior. 

Table 1 
The inputs data for each feedback and the model development techniques.  

Model Inputs Output (Predictive 
Models) 

Technique 

Bit 
RPM 

WOB, RPM, Depth, Torque Bit RPM SVR MLP, SVR, 
DTR Bit RPM MLP 

Bit RPM DTR 

ROP WOB, RPM, Torque, Depth, 
flowrate 

ROP SVR 

ROP MLP 

ROP DTR 

Torque WOB, RPM, depth, flowrate Torque SVR 

Torque MLP 

Torque DTR  
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(Digital Twin). The ML methods and the data used are detailed in 
Section 2.  

- The breakdown of the optimization workflow with the objective 
function (ROP) utilizing the PSO method with DOC/SSI constraints. 
This is also covered in Section 2.  

- The accuracy of the prediction models is evaluated numerically by 
means of the statistical measures NRMSE and R2, and qualitatively 
using cross-validation scatter plots (Section 3, part 1).  

- The implementation of the proposed strategy to demonstrate its 
effectiveness in improving drilling efficiency and reducing drill- 
string vibrations. The success of the optimization workflow is 
demonstrated when applied in the digital twin, and the results are 
provided in Section 3, part 2.  

- The Field deployment is suggested in Section 3, part 3 to boost safety 
and minimize operational costs. 

2. Methodology 

The digital twin of a drill-string is a computational model that 
mimics the physical behaviour of an actual drilling system. The system 

uses real-time data collected from sensors such as WOB, RPM and flow 
rate for a virtual representation of the drilling process. The input pa-
rameters have an immediate feedback signal, such as torque, bit RPM, 
and standpipe pressure (SPP). The system’s overall output is measured 
by the ROP, a metric that reflects the drilling performance. In addition to 
the WOB, RPM, and flow rate inputs, it should be noted that the system 
also employs depth as a parameter. The role of depth, along with the 
updating system, will be detailed on in the following section. 

The operational framework which relies on the inputs and outputs 
parameters collected from the rig are represented in Fig. 2. These data 
are processed and analysed using machine learning algorithms to enable 
the digital twin to simulate and forecast the behaviour of the drilling 
system. 

Therefore, for the best replica of the system, the digital twin should 
have essential models for immediate and global feedback, including Bit 
RPM, torque, and ROP. These models will be used to optimize the dril-
ling system’s performance. The hydraulic model for SPP is not included 
in this digital twin. 

2.1. Data acquisition and processing 

To develop accurate predictive models for drilling parameters, it is 
crucial to have a reliable and comprehensive database. In this study, 
field data collected through surface sensors with varying frequencies 
were utilized, comprising a total of 10998 data points. The drilling data 
were sampled continuously at different rates from 1 to 50 Hz, corre-
sponding to the sensor types employed in the drilling rigs. The data was 
subsequently processed to obtain an average value every 1 s. Typically, 
drilling rigs are equipped with Electronic Data Recorder (EDR) systems 
that capture measurements from the rig’s sensors. These systems typi-
cally record surface data at frequencies ranging from low to medium 
(0.1–10 Hz), it is presented in Fig. 2 as a Data bank. 

These data points were utilized in the learning and validation process 
to develop the Down RPM models along with the ROP and drilling tor-
que models. The input data included various drilling parameters, such as 
depth, bit position, hook position, flow rate, ROP, WOB, RPM, SPP, and 
Surface Drilling Torque. Data pre-processing was performed by 

Table 2 
The Initial configurations and hyperparameters for the machine learning 
techniques.  

Machine learning Algorithms Initial Configuration/Hyperparameters 

Multi-layers Perceptron (MLP) Number of hidden Layers: 1 
Number of neurons: 7 
Learning rate: 0.001 
Activation function: Sigmoid 
Optimization Algorithm: Levenberg 
Marquart 

Support Victor Regression 
(SVR) 

kernel function: Sigmoid 
Kernel parameter λ: 0.1 
C parameter: 1 

Decision Tree Regression (DTR) Max depth: 8 
Min samples split: 10 
Min samples leaf: 5 
Max leaf nodes: 100  

Fig. 3. Drilling optimization workflow utilizing PSO and the digital twin. The objective function in the optimization block is the ROP model, subject to two con-
straints measured with the Down RPM model (a). The PSO algorithm creates sets of candidates and tests them in the ROP model to determine the optimal WOB/RPM 
(b). The optimal parameters are then introduced in the torque model (c), which serves as an input in (d) where all parameters are implemented to assess the ROP 
enhancement. The system collects inputs during drilling every 9m and updates the prediction of the models utilized (e). 
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removing tripping Out/In data, reaming data, and unrealistic data. 
Wrong measurements and noise due to sensor malfunctions, wellbore 
friction, buoyancy, lift induced by flow, and nozzle jetting can pollute 
the drilling data. These data points containing unrealistic values, such as 
null and negative values, were discarded. The box plot diagram, which is 
a powerful graphical technique for outliers detection, was then used to 
detect and eliminate the abnormal values that can drastically affect the 
training process and bias the fit predictions. 

The data were then normalized between 1 and -1 to. The field data 
were then divided into two subsets using the learn/validate the split 
approach. This approach involved randomly dividing the data into a 
training set (80% of the data) and a test set (20% of the data). These 
latter evaluate the generalization ability of the system. 

2.2. Model development 

The feedback from the drilling system (Bit RPM, Torque and ROP) 
are modelled in this section using the MLP, SVR, and DTR. These ma-
chine learning algorithms are a type of artificial neural network and 
require a large amount of data to train effectively. The MLP, which 
consists of multiple layers of nodes, can handle complex nonlinear re-
lationships between inputs and outputs (Youcefi et al., 2020). The SVR, 
which deals effectively with high-dimensional data, can be used for 
regression tasks to find the hyperplane that best fits the data. The 
objective of SVR is to minimize the distance between the predicted 
values and the actual values while also minimizing the complexity of the 
model. The DTR works effectively for categorical variables and handles 
both linear and nonlinear relationships between inputs and outputs by 
partitioning the input space into a hierarchy of binary splits until a 
stopping criterion is met. 

In this research, the models use the control parameters WOB and 
RPM and the drilling torque and depth, as input data, as depicted in 
Table (1): 

An initial effective configuration had been set for each machine 
learning technique and used in the first interval. The hyperparameters 
presented in Table 2 will be updated at fixed intervals as more data is 
available. The ML performance was evaluated by the normalized root 
mean square error (NRMSE). 

The Levenberg Marquart Algorithm was employed to optimize the 
weight and bias for the MLP within a range of learning rate between 
0.001 and 0.01. The Sigmoid function was selected after a series of runs 
testing all the functions and the performance was evaluated by the 
normalized root mean square error (NRMSE). The initial MLP topology 
consisted of a single hidden layer with seven neurons, and this config-
uration will be updated at fixed intervals as more data is acquired from 
the sensors. 

Training SVR models involves solving an optimization problem. The 
approach aims to minimize the distance between the points from the 
hyperplane and the closest point in the data. The sigmoid kernel 

function had been selected to improve the SVR model’s performance 
based on its accuracy and capability to be tailored to specific charac-
teristics. The choice of the regularization parameter C and Kernel 
parameter λ impact the model’s precision by avoiding misclassifying 
each training example and to minimize the distance between the hy-
perplane and the data points. 

In addition, training a DTR model is done by building the tree by 
recursively portioning the data into subsets. The RMSE criterion 
hyperparameter was used to measure the quality of a split in the DTR. 
The hyperparameters shown in Table 2 aim to avoid overfitting and to 
ensure that nodes are only split when enough data is available to make 
reliable predictions. The maximum depth limits the tree depth to avoid 
overfitting and is set to allow for a relatively complex model. The 
minimum sample splits sets to ensure that nodes are split when enough 
data is available. The leaf is set to 5 to prevent overfitting by ensuring 
that each leaf node has enough samples to make reliable predictions. 
The maximum leaf nodes sets the maximum number of leaf nodes to 
avoid overfitting by limiting the complexity of the tree. 

After the second interval of data collecting, a empirical evaluation of 
several parameter choices was used to find the ideal configuration for 
each parameter separately. This method allowed the dynamics and 
fluctuations of each parameter to be captured. 

After the model’s validation, the most accurate Bit RPM model was 
employed to measure the DOC and SSI using equations (1) and (2) for 
the prediction and classification of torsional vibrations. 

DOC=
ROP

Bit RPM
16.67

(
mm/Rev

)
(1)  

and 

SSI=
Max Bit RPM − Min Bit RPM

AVG Bit RPM
(2) 

The severity of the torsional vibration is then classified using DOC 
and SSI into three groups: low [SSI<0, 05], medium [0,05<SSI<0,35], 
and high [0,35<SSI< 1]. The DOC for low torsional vibration severity is 
recorded for optimization reasons and will be used as a constraint in the 
optimization block via PSO methods. The PSO block outputs will be used 
as inputs in the drilling digital twin system to verify its correctness. 

It is essential to apply optimal control parameters during the opti-
mization process to ensure the enhancement of the drilling efficiency. To 
achieve this, the digital twin (physical system) should have ROP and 
torque as outputs. The ML techniques were utilized to build ROP and 
drilling torque models using the inputs shown in Table 1. After applying 
the parameters, the best model with the minimum error was selected to 
evaluate the optimization system. 

2.3. Model validation 

Cross-validation is a validation approach used in machine learning 
model verification in which the scatter plots (cloud diagrams) between 
the recorded and predicted values of the test and validation datasets are 
compared with the unit line (x = y). Furthermore, statistical parameters 
such as NRMSE and coefficient of determination (R2) are used to 
numerically validate the ANN models and assess the prediction 
accuracy. 

Equations (3)–(5) define the formulae used to determine NRMSE and 
R2. As a result, NRMSE and R2 values near 0 and 1, respectively, indi-
cating a successful prediction model. 

NRMSE =
RMSE

(Max Yreal − Min Yreal)
(3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
Yreal,i − Ypredicted,i

)2

√
√
√
√ (4)  

Table 3 
Drilling process optimization formulation.   

Parameters/Functions Objective formulation/constraints 

Objective function ROP (WOB,RPM) Maximize ROP 
Constraint SSI <0.05 

DOC <5 mm  

Table 4 
PSO Initial Configuration and parameters.  

Hyperparameters Initial Value 

Swarm size 50 
learning rates C1 2.05 
learning rates C2 2.05 
Inertia weight (ω) 0.729 
Random numbers rt

1 and rt
2 [0; 1]  
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R2 = 1 −

∑N

i

(
Yreal,i − Ypredicted,i

)

∑N

i

(
Ypredicted,i − Y

)
(5)  

2.4. Optimization workflow 

The developed ROP model represents a function of controllable 
drilling parameters such as WOB, RPM, depth, flow, and torque, and is 
considered the objective function (Fig. 3, Step (a)). PSO algorithms are 

used to provide ideal control of the drilling process by determining the 
correct values for the controllable drilling parameters WOB and RPM, 
which can be modified at the rig surface to maximize ROP. The estab-
lished SSI formula and DOC formula measured from the Bit RPM model 
is used to define the constraints of the optimization process. The opti-
mization process shown in Fig. 3, Step (b) is designed to maximize ROP 
while keeping SSI at the desired interval, keeping the DOC within an 
acceptable range during drilling, this range is provided from the clas-
sification of vibrations severity and represents the low severity torsional 
vibrations which ensures that the optimized WOB and RPM do not 

Table 5 
Statistical parameters.   

SVR MLP DTR 

Bit RPM ROP Torque Bit RPM ROP Torque Bit RPM ROP Torque 

R2 0.987342 0.99886 0.970054 0.970368 0.811692 0.969302 0.981762 0.698786 0.970404 
NRMSE 0.017 0.070 0.066 0.020 0.196 0.070 0.029 0,.335 0.064  

Fig. 4. Cross-Validation illustrating the ability of the models to predict the ROP, Torque and Bit RPM using new data points that were not used during the training 
phase. The scatter plot is compared to the unit line (y = x). The outcomes of the predictive ROP models are depicted in (a), and the Torque cloud diagrams using SVR, 
MLP and DTR model is illustrated in (b). The results of the ML models are shown in (c) for the Bit RPM. all three scatter plots drawn together is a good practice to 
facilitate a decision on which model to work with in the digital twin. 

Fig. 5. Variation of Controllable Parameters for the field Case and for the PSO Outcomes. (a) depicts the WOB fluctuation in a drilling scenario. The highlighted area 
in (a) is zoomed in (c) exhibits cases of axial vibration and steady values for the optimization outcomes. (b) illustrates the RPM fluctuation in the real case, showing 
torsional vibration. The highlighted area in (b) zoomed in (d) shows severe stick slip with steadiness of optimized RPM values. 
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introduce drilling vibration. Table 3 summarizes the formulation of this 
optimization problem. 

The PSO effectiveness on many hard problems is no longer to be 
proven (Flori et al., 2022). The PSO optimization block (Kennedy and 
Eberhart, 1995) has several key parameters including the swarm size, 
learning rates (C1 and C2), and the inertia weight (ω) introduced by (Shi 
and Eberhart, 1998), each of which plays a crucial role in the PSO al-
gorithm’s ability to find optimal solutions based on the following 
equation: 

Vt+1
i =ωVt

i +C1rt
1

(
pbestt − Xt

i

)
+ C2rt

2

(
gbestt − Xt

i

)
(6) 

Three key terms in Equation (6) are used to define the particle tra-
jectory in the search area. The inertial component ωVt

i is the memory of 
the previous direction of motion, designed to prevent the particle from 
drastically changing its path. The cognitive component C1rt

1(pbestt − Xt
i)

pulls the particle back to its sweet spot. The Social term C2rt
2(gbestt − Xt

i)

transfer each particle to the best region where the swarm has found so 
far in the domain space (Chiou et al., 2012). PSO algorithm is proposed 

and successfully applied to design an efficient Maximum Power Point 
Tracking (MPPT) controller (Dziri et al., 2022) and emotion recognition 
(Kouka et al., 2023). The PSO parameters are listed in Table 4. 

After the first interval was fully drilled (which we can consider be-
tween 9m or 27m) and the Bit RPM, ROP, and drilling torque models 
were developed; the optimization phase began. The ROP model was 
input into the optimization block to define the optimal control param-
eters (WOB/RPM) to maximize the ROP using the PSO algorithm while 
limiting the SSI and DOC as seen in Table 3. Once the optimal WOB and 
RPM are determined, they can be recommended to the Driller for 
implementation (Step (c)). The Fig. 3, Step (e) represents the update of 
the models with the new training data collected while drilling 9 m and to 
be introduced again in the PSO to find ideal RPM and WOB values for the 
next part (the second optimization stage). This procedure is repeated 
until the entire formation is drilled. Fig. 3 shows the full workflow of the 
proposed drilling optimization strategy. 

Field data were employed to test the accuracy of the predictive 
models and the optimization workflow. These offline data were 

Fig. 6. Variation of SSI and DOC before and after the optimization. (a) depicts high severity of the preoptimization SSI and exhibits low severity for the post 
optimization SSI, the highlighted area is zoomed in (c) to show that the maximum value of SSI after the optimization is limited to 5%. (b) illustrates high severity of 
the real DOC measured by Bit RPM model and exhibits new DOC with steady values after implementation of new parameters. The highlighted area in (b) is zoomed in 
(d) to show the efficacity of the system to keep the DOC at acceptable range. 

Fig. 7. The variation of torque and ROP before and after optimization. (a) exhibits managed new torque, the highlighted area is zoomed in (c) to show torsional 
stability. (b) illustrates the recorded ROP versus optimized ROP after implementation of new parameters. The highlighted area is zoomed in (d) to show that fixed 
WOB/RPM provide both torsional stability and high ROP in this case. 
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segregated, filtrated, and provided to the system in real time synchro-
nization where the collected data of the first interval were employed to 
build the models. In the field, the models will be trained and developed 
during the connection time which take generally 7 min. This technique 
shall overcome the impact of the changing variable sauch as formation 
and drilling programs by updating the models’ parameters each 
connection. 

The execution time depends on the computing resources. It took 
almost a minute to complete this process (modelling and optimization) 
on a laptop with 8 GB RAM and an 11th Gen Intel i5-11400U 2.70 GHz 
CPU. With this computing power, the ROP model can be optimized to 
select the best operating parameters every minute, but changing drilling 
parameters is often impractical in practice. For this, the frequency of 
model updates is set to the time required for drilling 9m. However, the 
ROP model can be retrained at any time, even before drilling through the 
entire interval. If the drill sees too much vibration or a sharp increase in 
torque, these parameters will be changed. 

3. Results, analyses and discussion 

In this section, a detailed discussion and analysis of the results are 
presented. These will clearly demonstrate the efficacy of the proposed 
algorithm and lead to meaningful conclusions. 

3.1. Predictive models evaluation 

The evaluation of digital twin models is presented in this section. 
Specifically, ML algorithms (SVR, MLP, and DTR) have been developed 
for Bit RPM, ROP, and torque, and their accuracy is showcased through 
the statistical parameters NRMSE and R2 in Table 5. 

Cross validation was used in addition to statistical characteristics to 
evaluate the prediction model’s ability. Fig. 4 displays the cloud dia-
grams (Scatter plots) between the field data and predicted values for 
each of the developed models. These data points are picked at random 
from the 20% of data set aside for testing and validation. This is appli-
cable to real-world scenario and is advantageous for generalising these 
predictive models. 

Based on the cross plots presented in Fig. 4, it can be observed that 
the MLP and DTR models exhibit a poor level of precision in predicting 
ROP (Fig. 4-a). This is evident from the disorderly distribution of ROP 
values in the testing charts for the MLP and DTR models. This suggests 
that the model may not be effective in predicting ROP values for new 
data points. On the other hand, the SVR algorithm appears to be the best 

predictive model for ROP, as demonstrated by the matching between the 
unit line and the tendency line. This indicates a high level of accuracy in 
predicting ROP values for the test/validation subsets. Moreover, the 
statistical parameters of the SVR model confirm its precision in pre-
dicting ROP values. With an R2 value of 0.99886 and an NRMSE of 
0.070, the SVR model outperforms the other models considered in this 
study. Fig. 4-a clearly indicates that the SVR model outperforms the DTR 
and MLP models, as it is closer fit to the unit line. This comparison with 
the unit line is critical, as all the results must be close to it for accurate 
predictions. Therefore, the SVR model has great potential for practical 
applications in the optimization strategy of drilling operations. 

Surface torque is often challenging to model accurately. However, 
minor differences in the models can be observed in the cross plots pre-
sented in Fig. 4-b. In this case, the DTR model appears to be the best 
model for surface torque, as it shows a relatively tight clustering of data 
points around the unit line. While the lack of small torque values due to 
filtration processes may have led to some imperfections in the tendency 
line, the DTR model still demonstrates a good level of precision. 

The Scatter plots for the torque show that both the SVR and MLP 
models exhibit a distribution of data points around the unit line indi-
cating a lack of precision in their predictions. In addition, the DTR 
torque model shows a comparable level of precision to the other 
developed models, with an R2 value of 0.970404 and a NRMSE of 0.064. 
These statistical parameters fall within an acceptable range, particularly 
when compared to the SVR and MLP models. Where the SVR model have 
R2 value of 0.970054 and a NRMSE 0.066 and the MLP have an R2 value 
of 0.969320404 and a NRMSE 0.070 as presented in Table 5. The pre-
sentation of all cloud diagrams together is a good practice to facilitate a 
decision on which model to work with in the digital twin; The DTR 
model is closer fit to the unit line. This DTR model appears to offer a 
promising solution for predicting torque values in real-world drilling 
scenarios. 

According to the outcomes, the Bit RPM model developed using SVR 
displays the best results compared to the MLP and DTR models. The SVR 
model exhibits a perfect fit between the unit line and tendency line, as 
shown in Fig. 4-c. While the MLP model shows a small deviation in the 
cross plot, it can be overlooked as the tendency line for test remain 
stable. In contrast, the DTR model displays the lowest accuracy with a 
greater deviation from the unit line in the scatter plot illustrated in 
Fig. 8-c. Furthermore, the SVR model for Bit RPM exhibits the lowest 
error in statistical parameters (NRMSE = 0.017 and R2 = 0.987342), 
which are within an acceptable range (as highlighted in Table 5). These 
results indicate that the developed SVR model performs well in 

Fig. 8. Multi-interval approach for continuous learning. Data is collected in the first interval and used in the learning process and the optimized model is used in the 
second interval, and new data is collected to develop a new model for the following optimization cycle. The image emphasises the continuous learning technique’s 
iterative nature and its capacity to adapt to changing data patterns over time. 
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predicting Bit RPM based on new data not seen during training. Hence, 
the SVR model will be employed further in the optimization process to 
estimate the SSI and DOC. 

3.2. Drilling process optimization 

Optimization PSO algorithm was employed to determine the optimal 
values of WOB and RPM that improve torsional stability by minimizing 
torque fluctuation while maximizing aggressiveness. The Fig. 5 repre-
sents the block outcomes for both RPM and WOB compared to real 
scenario in drilling operation. 

The population of candidate solutions is iteratively updated during 
the PSO optimization process by modifying the values of WOB and RPM 
based on the best solutions found thus far. The method employs a swarm 
approach, in which each solution is represented as a particle that moves 
around the search space in pursuit of the best reaction. Through a pro-
cess of evaluation and adjustment, the PSO algorithm identifies the best 
values of WOB and RPM that satisfy the constraints of DOC and SSI while 
maximizing the ROP. The process continues until the desired level of 
optimization is achieved or a stopping criterion is met. 

Fig. 5-b reveals that sharp fluctuations in surface RPM are a conse-
quence of severe torsional vibrations. Under these circumstances, the SSI 
ranges superior to 15%, causing the top drive to be unable to overcome 
the reactive torque with programmed RPM due to the drilling limit 
torque constraint (20000 N.m.). As a result, the RPM decreases each 
time (i.e.: Fig. 5-d) with frequent applied torque (Fig. 7-a) until either 
the bit is liberated, or a total stuck situation is assumed. Severe fluctu-
ations in the WOB occur due to bit bounce, as demonstrated in Fig. 5-a. 
The Fig. 5-c shows the presence of these vibrations in the highlighted 
area from Fig. 5-a and the successful mitigation achieved through the 
implementation of new parameters. 

After the classification process of vibrations and the localization of 
the optimal DOC with continual training after each 9 m drilled, two 
constraints are introduced to the system. The Bit RPM model is effec-
tively used to calculate the severity of stick slip index, which classifies 
the severity of vibrations into three ranges: low, medium, and high 
(Fig. 6). Most SSI values are less than 5%, representing high reactive 
torque that the top drive can easily overcome by increasing the motor 
torque. In this range, RPM fluctuation is acceptable (i.e., from 160 to 
148 rpm), and the vibrations are less harmful (Both Fig. 5-a and 6-a). 

The ANN model determines the optimal drilling parameters for 
avoiding harmful drilling vibrations. The Fig. 5a-b show the optimal 
RPM and WOB under the constraints of DOC and SSI. The system pro-
vides stable parameters every 9 m drilled, and the optimized WOB/RPM 
differs from the real WOB/RPM selected in the drilling program Fig. 5c- 
d. These optimized parameters are used to measure new post- 
optimization parameters, such as optimized SSI, new DOC, optimized 
torque, and optimized ROP, presented in Figs. 6 and 7, respectively. PDC 
cutters’ principal mission is to remove formation to boost the ROP. 
When the cutters penetrate deeply into the formation, the blades can rub 
against the formation, resulting in a severe stick-slip situation. Stick-slip 
is the unpredictable movement of the drill-string that can damage the bit 
and reduce drilling efficiency. 

In the Fig. 6-b, it seems that when the DOC exceeds 6 mm, the 
torsional stability of the drill-string decreases, and the SSI surpasses 15% 
like the example presented in Fig. 6-d. This indicates a strong relation-
ship between the DOC and torsional stability. Therefore, to optimize 
drilling efficiency and reduce bit wear, a maximum DOC of 5 mm is fixed 
as a constraint in the optimization block with low SSI (SSI<5%) to avoid 
undesirable friction with the formation. 

The system output provides steady DOC with high torsional stability, 
as observed in Fig. 6-c the post optimization SSI is low, and the 
maximum is 5%. The torsional stability is noticed in Fig. 7-a, where the 
torque fluctuations have been managed without stick slip situation, the 
maximal torque reach the drilling limit torque in few cases where both 
optimized RPM and WOB reach the maximum values. This is due to the 

training process, where these parameters show high ROP without any 
dysfunctions. This is the only situation where the optimized WOB and 
RPM are too high. All the parameters are not either maximized or 
minimized, they are optimized depend on the data used in the machine 
learning and collected each 9m drilled, new parameters will be given 
from the system and new Torque is calculated continuously. 

The recorded WOB and RPM during drilling operations (real sce-
nario) often show various vibrations, such as stick slip and bit bounce. 
However, these inefficiencies and vibration issues were eliminated in 
the digital twin outcomes through the use of new optimized parameters, 
as depicted in Figs. 6 and 7. The optimized parameters were able to 
mitigate these issues by taking into account the relationship between the 
DOC and reactive torque. 

By using the minimum DOC necessary to pierce the bottom hole, the 
bit cutters were able to penetrate the borehole without inducing axial 
vibrations, such as bit bounce. This, in turn, helped control and mitigate 
lateral vibrations, such as whirl and shocks, since all types of vibrations 
can induce each other. Additionally, since the cutters were not deeply 
penetrating the formation, the reactive torque did not reach the drilling 
limit torque (Fig. 7-a), resulting in a constant RPM and avoiding 
torsional vibrations. Therefore, by maintaining the DOC within an 
acceptable range, torque fluctuation was minimized, leading to greater 
torsional stability as shown in the highlighted area presented in Fig. 7-c. 

It’s important to note that the optimized ROP is higher than the 
actual ROP at several points (Fig. 7- b and d), indicating that the opti-
mization workflow has the potential to significantly decrease drilling 
time. If the open-loop results are implemented in a real drilling scenario, 
the optimized WOB and RPM values predicted by the PSO are expected 
to result in a significant improvement in ROP as resulted in the drilling 
digital twin. For example, in a 16″ phase (1560 m) that was drilled using 
three bits (3 runs), the average ROP was 23.5 m/h. However, if the 
optimization workflow is implemented, the average ROP is expected to 
increase to 41 m/h, as shown in Fig. 7-b. Assuming that the entire sec-
tion can be drilled with a single bit rather than three, the incorporation 
of all parameters could reduce drilling time from the initial 66 h to just 
31 h. This would also provide the added benefit of avoiding the need to 
trip in/out to change the bit. Hence, this optimization workflow could 
enhance ROP by 43%. 

3.3. Discussion 

The appropriate choice of machine learning algorithms was based on 
their suitability for nonlinear modelling tasks. SVR and DTR demon-
strated their handling capability of complex high-dimensional data and 
effective learning processes, making them a reasonable choice for pre-
dicting the drilling parameters in real time based on unseen data. 
However, the MLP model performed poorly compared to other proposed 
SVR and DTR models in this study. Even if the MLP is widely used for 
pattern recognition, it did not fit the research purpose due to the 
extensive variation in the data, overfitting issue, and unsuitability with 
iterative learning in a short period during the connection time after the 
drilled formation. 

For the modelling task, the SVR exhibited the best performance even 
on predicting the drilling parameters based on the unseen data. These 
results reveal the generalization capacity of the established models and 
the importance of the steps that were followed in this paper for building 
ML models. The box plot was employed as a tool for detecting the outlier 
data, thus eliminating this abnormal data that could negatively affect 
the training process and model fit. In addition, the hyperparameters 
tunning process via empirical evaluation of several parameter choices 
approach and cross validation was a crucial step for building robust 
models. 

For the optimization workflow, the PSO demonstrates its power and 
speed for exploring the search space and finding the optimal drilling 
parameters, resulting in an average 43% increase in net ROP from 23.5 
m/h to 41 m/h. The integration of PSO as a metaheuristic optimization 
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and its ability to iteratively explore the data allowed the workflow to 
find the optimal parameters effectively, together with the digital twin 
creation that provides a suitable testing environment. In addition, 
incorporating DOC as a constraint was a key differentiator compared to 
the current state of the arts models. Considering the DOC control 
strategy based on ML models, the process efficiency was improved with 
an additional bit selection option. 

Although updating the ML models make the workflow more efficient 
regardless of the geological conditions and the data quality that restricts 
the model’s performance, it can be challenging when implemented in 
real time. Delays in real time data collection may hinder the system’s 
ability to optimize the WOB/RPM. The sub-models development is 
conducted during the connection time; therefore, any complexities or 
dysfunctions during the stand drilling (stuck pipe, fluid loss) can limit 
the workflow performance. Finally, the system requires a new genera-
tion of drilling equipment to be integrated, such as Top drive, draw 
works, and mud pumps. 

3.4. Field implementation 

The continuous learning technique utilized in this work is notably 
beneficial for drilling operations since various variables might affect the 
drilling process. The models can adjust to changes in drilling conditions, 
such as modifications in geology, rheology qualities, or BHA design, by 
being continuously updated in real-time. The data collected within the 
first interval of Fig. 8, across the depth range of 1879–1888 m, were 
utilized for training the first models. These models were subsequently 
employed to forecast critical drilling parameters, including the ROP, 
RPM, and torque, within the second interval (1888–1897 m). Concur-
rently, the system collected pertinent data from the second interval to 
facilitate the training of a subsequent model, intended to enable the 
accurate prediction of the aforementioned parameters within the third 
interval of the drilling. 

The implementation of the bit RPM predictive model to monitor the 
SSI and DOC enables the detection of severe malfunction and the pre-
vention of operational challenges such as bit wear and tear, which need 
tripping out operation and cause NPT. The system highlights how dril-
ling operations can be improved for optimal efficiency, particularly cost 
reduction and enhanced drilling productivity (ROP). 

Several advanced drilling software use AI based workflow and 
physical based model are available in the market. These solutions advice 
the user on the best drilling parameters, give recomandation and pro-
vide early warning when predicting dysfunctions. Drilling Advisory 
System (DAS) (Payette et al., 2015) and Optidrill (Hbaieb et al., 2018) 
are examples of these software. Nonetheless, the updating system pro-
posed in this research can improve all of these software programmes that 
require top-formation detection algorithms to pass from model to model 
for each drilled section. 

The ability of the PSO-based AI system to automatically customise 
and adapt to different drilling operations and changing drilling condi-
tions constitutes one of its most significant features. This means that, 
depending on input from sensors and other sources, the AI system may 
adjust drilling parameters in real time, resulting in a more efficient and 
effective drilling operation. Furthermore, the presented AI system can be 
embedded with PLCs for both Drawworks and Top drive, allowing pre-
cise control over motor torque/speed as well as axial displacement 
(WOB). This level of precision and efficiency allows for even more 
precise and efficient drilling operations, which can improve drilling 
performance, reduce drilling time, and boost safety. 

4. Conclusion 

In this work, Artificial Neural Network models were developed to 
predict various drilling parameters and to digitally replicate the drilling 
system’s behavior virtually (Digital Twin). SVR was found to be the most 
accurate model for predicting Bit RPM and ROP, while Decision Tree 

Regression was the best model for predicting surface torque. The 
resulting models demonstrated high accuracy, with R2 values of 0.9 or 
higher and NRMSE values of 0.07 or lower. 

The success of the optimization workflow is demonstrated when 
applied in the digital twin. The PSO algorithms demonstrate their power 
and speed in identifying the optimal drilling parameters (WOB and 
RPM) under DOC/SSI constraints. With the objective function was set to 
maximize the ROP, increase torsional stability, minimize torque fluc-
tuation, and improve bit aggressiveness; simulations predict an average 
43% increase in net ROP from 23.5 m/h to 41 m/h. This would avoid the 
need to trip in/out to change the bit and save the drilling time from 66 to 
31 h for the drilled section (1560 m). The proposed digital twin can 
automatically adapt to different drilling operations and most PLC 
equipment, ensuring high precision, effective optimization and smooth 
operation to increase ROP, reduce downhole vibrations, and save dril-
ling costs. Future research will aim at applying AI algorithms to early 
warning of potential problems and recommending corrective actions. 
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