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Abstract 
Battery state of charge (SOC) is crucial in power battery management systems for improving the efficiency of battery 
use and its safety performance. In this paper, we propose a forgotten factor recursive least squares (FFRLS) method 
based on the beluga whale optimization (BWO) and an improved particle filtering (PF) algorithm for estimating the 
SOC of lithium batteries with ternary lithium batteries as the research object. Firstly, to address the accuracy 
deficiencies of the FFRLS method, the optimal parameter initial value and the forgetting factor value are optimized 
by using the BWO algorithm. Secondly, the adaptive simulated annealing algorithm (ASA) is introduced into the 
particle swarm optimization (PSO) to solve the sub-poor problem of traditional particle filtering. Experimental validation 
is performed by constructing complex working conditions, and the results show that the maximum error of parameter 
identification using the BWO-FFFRLS algorithm is stable within 2%. The MAE and RMSE are limited to within 2% 
when the ASAPSO-PF algorithm is applied to estimate the SOC estimation under Beijing Bus Dynamic Stress Test 
(BBDST), Dynamic Stress Test (DST), and Hybrid Pulse Power Characterization Test (HPPC) working conditions, 
indicating that the proposed algorithm has strong tracking capability and robustness for lithium battery SOC. 

Keywords Lithium-ion battery ; Second-order RC-PNGV model ; BWO-FFRLS algorithm ; ASAPSO-PF algorithm ; State 
of charge 

Introduction 

The recent energy crisis and the effects of environmental pollution have sped up the development of electric vehicle research 
and application [1–3]. One of the crucial technologies for managing EV batteries and one of the essential factors of BMS is 
battery SOC estimation, which is crucial for thermal management, life prediction, and battery protection [4–6]. Since lithium-
ion batteries have a high energy-to-weight ratio, a long life span, and a low white discharge rate, they are frequently utilized 
in electric cars [7–9]. The precise assessment of the SOC value is therefore crucial for both theoretical study and actual battery 
application [10–12]. 

The PF technique has received a lot of interest recently, both domestically and internationally [13, 14]. This 
method is frequently used in various disciplines, including visual tracking, robot localization, aircraft navigation, and 
defect detection, as it is simple to use, suitable for non-linear and non-Gaussian noise environments, and so on [15, 
16]. PF has been used successfully by many academics to estimate the SOC of batteries [17, 18]. In non-linear systems, 
PF provides a good filtering effect; however, there is the issue of particle degradation [19, 20]. In this study, the sampling 
process is continuously improved using the PSO method by incorporating the most recent measurements into the sampling 
distribution and utilizing GPSO (Gaussian Particle Swarm Optimization), a technique for updating the particle’s velocity 
based on a Gaussian distribution [21, 22]. This causes the sampling distribution to move toward the area with a higher 
posterior probability, thereby reducing the particle degradation phenomenon and enhancing accuracy [23, 24]. However, 
as more particles move toward that ideal particle, the velocity corresponding to each particle will become smaller 
and smaller [25–27]. Eventually, there is a greater likelihood that each particle is moving at the same velocity, which 
will inevitably bring about an approach to the local value. For this reason, we propose the algorithm of adaptive simulated 
annealing particle swarm optimization particle filtering [28, 29]. 
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The ternary lithium battery is used as the research object in this paper, and the second-order RC-PNGV equivalent 
circuit model is chosen as the equivalent model of the lithium battery [30–32]. The RLS algorithm based on BWO and 
the forgetting factor is used as the model parameter identification algorithm. The problems of the FFRLS algorithm, 
multi-parameter identification of the battery model, slow convergence, and poor convergence accuracy of traditional 
identification algorithms were optimized. This algorithm has some benefits in terms of reliability and robustness, is 
straightforward to implement, and has higher accuracy. The ASAPSO-PF algorithm’s guiding principles and stages for 
implementation are derived, and experiments are used to confirm the algorithm’s accuracy. Under three complicated 
conditions: HPPC, BBDST, and DST, the PSO-PF, SAPSO-PF, and ASAPSO-PF algorithms show higher accuracy 
for SOC prediction compared to PF. To confirm the convergence, tracking effectiveness, and estimation accuracy of the 
algorithm under actual working conditions, MAE and RMSE evaluations are performed. 

Mathematical analysis 

Second‑order RC‑PNGV modeling 

In this paper, the lithium battery is modeled with a modified PNGV model that substitutes a twin RC circuit for the original 
single RC circuit. In contrast to other models, which use a parallel circuit consisting of R1 and C1 with a smaller time constant 
to simulate the battery’s rapid voltage change during a sudden change in current, and a parallel circuit consisting of R1 and 
C1 with a larger time constant to simulate the battery’s rapid voltage change during the sudden change in current, these two 
RC links correspond to the two poles in the impedance spectrum of the lithium battery, which can more accurately describe 
the polarization [19, 33]. The enhanced PNGV circuit model can more accurately simulate the static circuit as well as 
characterize the battery’s polarization characteristics. Given this, the parameter identification in this research uses the second-
order RC-PNGV model, as illustrated in Fig. 1. 

In Fig. 1, E is an ideal voltage source, representing the open-circuit voltage of the power supply, which has a certain relationship 
with the SOC. The capacitance Cb describes the variation of the open-circuit voltage produced by the accumulation of current. 
E and Cb together represent the variation of the open-circuit voltage Uoc. R0 is the ohmic internal resistance, and R1 and R2 
represent the battery polarization resistance. C1 and C2 represent the battery polarization capacitance. I is the current flowing 
through the circuit, and UL is the terminal voltage of the battery. Under the given constant temperature experiment, neglecting 
the effect of current, the constituent parameters of the model are functions of the battery SOC, and analyzing the constructed 
second-order RC- PNGV equivalent circuit model, the voltage and current expressions of the equivalent circuit can be obtained 
as shown in Eq. (1). 

UL = UOC − ROI − IR1R1 − IR2R2 (1)

For the selected second-order equivalent model, [SOC U1 U2]T is selected as the state variable, and the state space equation 
can be listed as shown in Eq. (2) by combining Eq. (1) and the definition of SOC after discretization. 
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Fig. 1  Second-order RC-PNGV equivalent circuit model
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where ∆t is the sampling interval, τ1 and τ2 are two parallel RC time constants, τ1 = R1CR1, τ2 = R2CR2, and QN is the battery 
capacity. 

Online parameters identification based on improved FFRLS 
FFRLS algorithm 

RLS is characterized as one of the most commonly used methods in parameter identification, with good real-time 
performance, unique optimal solutions, and good analytical performance. However, the RLS method still has its 
drawbacks, such as being greatly perturbed by outliers and having an insufficient ability to filter Gaussian noise [34, 35]. In 
this regard, the RLS method with the forgetting factor introduces the forgetting factor λ based o n RLS, which can solve 
the problem of data saturation in the RLS algorithm. The discrete equation of the model to be identified and the 
corresponding difference equation are obtained by the Laplace transform, as shown in E q. (3): 

Therefore, it is widely used for battery model parameter identification. The improved algorithm formulation of 
FFRLS is shown in Eq. (4): 

Among t hem, hk =[yk −1, yk −2, −uk, −uk −1, −uk −2]T. 

However, for the FFRLS algorithm, the value of the forgetting factor λ has a great influence on the algorithm. If the 
value of λ is close to 1, the algorithm will not change with the change of model parameters; if the value of λ is close to 0, the 
algorithm will rely too much on the current data for recognition. Therefore, this paper uses an intelligent algorithm, 
the beluga whale optimization algorithm, to select the optimal values of the initial values of the optimal parameters and 
the forgetting factor values in the FFRLS method to improve its accuracy. The flow chart of the FFRLS algorithm is 
shown in Fig. 2. 
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Fig. 2  Flow chart of FFRLS steps



T 
t where C1 = 2 • r4• (1 − ) represents the random jump degree, which is used to measure the intensity of Levy flight, and r3 

and r4 are random numbers between (0,1). LF is a random number consistent with the Levy distribution, calculated by 
Eqs. (8), (9), and (10). 

where μ  and v are random numbers subject to a n ormal distribution, (μ, v)~N(0, 1 ), a nd β is a constant, set to 1.5. 

To keep the population size constant, the current position of the beluga whale and its falling step length are used to establish 
the position updating Eqs. (11) and (12). 

BWO algorithm 

BWO algorithm is a swarm intelligence algorithm compared with genetic algorithm (GA), simpler, less calculation formula, 
and very easy to implement; according to the equilibrium factor Bf to achieve the transition of the population from exploration 
to exploitation, the equilibrium factor is calculated as shown in Eq. (5): 

where t is the number of current iterations and T is the total number of iterations. The parameter B0 is a random value in the 
range of (0, 1) that changes with each iteration. When the balance factor Bf > 0.5, it is the exploration phase; when the balance 
factor Bf < 0.5, it is the development phase. As the number of iteration t increases, the fluctuation range of Bf decreases 
from (0, 1) to (0, 0.5), indicating that the probabilities of the exploitation stage and exploration stage change significantly, and 
the probability of the exploitation stage is gradually larger with the increase in the number of iterations. Belugas can perform 
social behaviors in different poses, such as two belugas swimming closely together in a synchronized or mirror-image 
manner. Therefore, the position update of belugas is shown in Eq. (6): 
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the random dimension P under the current iteration which are random numbers between r1, r2 ∈ (0, 1). 
The development phase of the BWO algorithm was inspired by the feeding behavior of beluga whales. Belugas can move 

and forage based on the location of nearby belugas. Belugas hunt by sharing each other’s position information, so the influence 
of the best individual and other individuals on position updates is considered. Levy flight strategy is introduced in the 
development phase of the BWO algorithm to enhance convergence. It is assumed that belugas can capture prey using the Levy 
flight strategy, whose mathematical model is expressed as Eq. (7): 
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where r5 , r6 , and r7  are random numbers of (0,1) and Ub and Lb are the lower and upper bounds of the optimization problem, 
respectively. xr t is the position of individual r randomly selected from the current population and xstepis the falling step 
length of the whale. C2 is a step factor, which is related to the probability of whale landing and population size: C2 = Wf 
× N. In this model, the probability Wf of a whale falling is designed as a linear function: 

The chance of whale fall dropped from 0.1 in the first iteration to 0.05 in the final iteration, demonstrating that the  closer the 
beluga whale is to the food source, the lower the risk of the beluga whale in the optimization process. Figure 3 depicts the 
flow chart of the BWO method. 
Fig. 3 Step flow chart of BWO algorithm 

BWO‑FFRLS algorithm 

The issue of “data saturation” in a time-varying system of an equivalent model can be significantly improved by FFRLS. To 
acquire correct results, however, the fundamental question of the algorithm is how to select the best initial parameter value 
and forgetting factor. This is a challenge that we are currently facing. In this study, the BWO technique is used to discuss 
this issue. In contrast to other swarm intelligence algorithms like the GA method, which requires a lot of processing and data, 
the BWO approach is straightforward to use. It features high-efficiency traits and a good optimization effect at the same time. 
Overall, the BWO algorithm is capable of producing the desired outcomes. As a result, we decided to employ the BWO 
method in this study as an optimization approach to improve the FFRLS algorithm. The terminal voltage error probability was 
specified, the BWO algorithm was used, and the best starting parameter values and forgetting factor values were chosen in 
real time. 

Figure 4 depicts the process flow chart for applying the BWO algorithm to enhance the FFRLS algorithm. Although the 
BWO-FFRLS algorithm is sophisticated, it still offers certain advantages over other algorithms in terms of the accuracy and 
stability of evaluation findings. 
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Fig. 4 Procedure flow of BWO- FFRLS 
algorithm 

Fig. 5 The overall process 
framework of this paper 

Improved particle filter algorithm 

Figure 5 depicts this article’s overall workflow. The weight of the majority of particles is very modest or even inconsequential 
during the process of particle weight correction, as a small number of particles gradually occupy the great majority of the 
particle weight. The accuracy of the PF algorithm is limited because a lot of computation work is applied to particles that are 
essentially unrelated to the predicted outcomes, which is the degradation problem of the particle filtering algorithm. To solve 
this issue, several academics suggested using the particle swarm optimization particle filtering technique (PSO-PF). The PSO 
algorithm increases the usage efficiency of particles by directing all particles to travel toward the area with a high probable 
probability to prevent particle degradation. This causes the particle swarm to move toward the ideal particle. By accepting a 
value that is worse than the current value with a given probability, we can update the particle based on the Gaussian 
distribution and broaden the scope of the global search. PSO and PF algorithms share a lot of commonalities. Although 
merging the two techniques results in a PF method that is more successful, the disadvantage of PSO being a local optimization 
problem has not yet been solved. To enhance the PSO-PF technique, the ASA algorithm is presented. The simulated 
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annealing operation is used to prevent the PSO algorithm from slipping into the local optimal. The population is steered to 
accept the different solutions with a specific probability following the Metropolis criterion and temperature, which are 
determined following the population’s initial condition. The linear change strategy is used to control the social learning factors 
and the self-learning factors, and the hyperbolic tangent function is used to control the inertia weight coefficient to carry 
out non-linear adaptive changes, to achieve the goal of changing the optimization focus at various stages. 

This paper’s main premise is that when the PF method is optimized using PSO, the particle is chosen as the global ideal 
value when a new particle appears with a higher adaption value. The probability of simulated annealing is determined when 
the new particle fitness value does not satisfy this requirement. It is not acknowledged unless it exceeds the threshold, in 
which case it is the random number in the range (0, 1) and the particle is received. 

Flow of the ASAPSO‑PF algorithm 

The ASAPSO-PF algorithm updates the particle position through the state model and then updates the particle weight. When 
the particles are not distributed at the true value, the weight of each particle is too low. At this time, the particle position is 
updated again by seeking the individual optimal value and the global optimal value, so that the particle keeps getting closer to 
the real value. The specific algorithm flow is as follows: 

• Step 1 Initialize parameters

Set the SOC initial value, k = 0, weight wm initialization, variance R and Q, and then randomly generate N initial random
particles with a Gaussian distribution, expressed as xi , i = 1, 2, 3…N, the total number of particle swarm M, evolutionary 
algebra, and set the maximum and minimum of self-learning factor C1 and social learning factor C2. 

• Step 2 Status update

The N particle states optimized at the last moment are substituted into the state equation and measurement equation of the 
lithium battery to estimate the N particle states of the battery at the next moment and the voltage at both ends of the battery. 
In this step, each predicted value is assigned to the particle swarm as the basic particle of the particle swarm. 

•  Step 3 Update measurement data

Calculation error:

Errori = Yk − Ŷk (15) 

Fitness function: 

(16) 

Type: Ŷkfor the k moment, the ith particle calculated by the state equation and measurement equation, the estimated value; Yk 
for the moment, the measured voltage value, the PSO algorithm, by calculating the fitness value of all the particles, moves 
to the optimal particle. 

• Step 4 Carry out non-linear adaptive changes

The negative hyperbolic tangent curve between [−4, 4] is selected to control the change in the inertia weight 
coefficient. The hyperbolic tangent curve is a non-linear control strategy, and its decline rate is slow at the 
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beginning of the search, which gives sufficient time for the particles to conduct a large range of global searches and reduces 
the situation of falling into local optimal. In the medium term, approximate linear decline gradually strengthens the ability 
of local search. In the later period, the rate of change decreases again, and a detailed local search is emphasized 
to accurately determine the initial state value of the global optimal solution.    

Inertia weight function: 

(17) 

Self-learning factor: 

(18) 

Social learning factor: 

(19) 

Take C1max = 2.50, C2max = 1.25, C1min = 1.25, and C2min = 2.5. With the increase in the number of iterations k, C1 
decreases linearly from 2.50 to 1.25, while C2 increases linearly from 1.25 to 2.50. In this way, the ergodic requirement of 
particles in space is satisfied, and the global search ability is enhanced. When the number of iterations is more than half, C1 < 
C2, and the gap is larger and larger, the local search ability is also enhanced. 

• Step 5 Update particle status

According to the individual optimal value and global optimal value, Eq. (20) is used to update the state of each particle, 
including velocity and position, so that the particle approaches the real value. For each particle, its current adaptation value is 
compared with the best adaptation value experienced. If the current adaptive value is better than the best adaptive value, 
the current adaptive value is taken as the individual optimal value of the particle, and its position is the individual optimal 
position. The individual’s optimal value is compared with the best adaptive value experienced within the group. If the 
individual optimal value is better that the best adaptive value within the group, it is regarded as the global optimal value. 

(20) 

 Type, |rand n| and |Rand n| is a Gaussian random number, can use abs[N(0, 1)]; Pbest is the individual optimal value; and Pgbest 
is the global optimal value. 

• Step 6 Simulated annealing operation is carried out on the optimal position

The Metropolis criterion in the simulated annealing algorithm is introduced into each iteration. The initial temperature is
set according to the initial particle optimal value and attenuates with a certain cooling coefficient μ after each iteration. 
Specific operations are shown in Eq. (21) below. 

(21) 

where T is the initial temperature. After each iteration, the difference between the internal energy (fitness) of the updated 
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updated position and the optimal internal energy of the population is calculated. The probability calculated according to Eq. 
(22) is compared with rand() to determine whether to accept the poor solution. Take the cooling coefficient μ = 0.95. The 
proposed ASAPSO algorithm adaptively changes three important parameters of the PSO algorithm and adds a simulated 
annealing operation, which increases the precision and speed of optimization.



(22) 

• Step 7 Calculate the simulated annealing probability P 

The equilibrium state distribution of finite conversions at a temperature Ti is as follows: the simulated annealing
probability p is calculated. When P is greater than threshold r , the particle is received and the probability is recalculated by 
going to Eq. (23); otherwise, the optimal position is selected for the simulated annealing operation by going back to Eq. 
(20). 

(23) 

(24) 

Smin is a search space of optimal values. When the temperature drops to 0, the distribution of Pi is shown in Eq. (24). When the 
temperature drops, accompanied by a large number of state transitions, the probability of finding the global optimal is 1 when 
the state of thermal equilibrium is reached. 

• Step 8 Calculate particle importance weight:

The PSO is re-assigned to the observed value, and the weight of each particle is calculated 

(25) 

(26) 

• Step 10 Resampling
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• Step 12 State prediction

Predict the unknown state parameter 𝑥𝑥𝑘𝑘+1𝑖𝑖   from Eq. (29) of the state

(29) 

Analysis of experimental results 

Experimental platform construction 

The experimental platform architecture is shown in Fig. 6. In this paper, the rated capacity of lithium ions produced 
by Delipu Battery Technology Co., Ltd. is selected, and the actual capacity is 39.9667 Ah of ternary lithium 
batteries. The battery test system for Shenzhen Yakoyuan Technology Co., Ltd., provides BTS200-100-104 as 
lithium-ion battery charging and discharging test equipment. An incubator (TT-5166-7) at room temperature (25,852 
°C) was used to provide room temperature for the experimental battery. In this paper, the experimental data of HPPC, BBDST, 
and DST under three conditions are obtained by using the lithium-ion battery test platform. 

Fig. 6 Lithium battery experimental platform architecture 
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Fig. 7 Voltage curves and errors 
under different models 

(a) Voltage under different models (b) Voltage error under different models 



Circuit model comparison experiment 

This work compares the second-order RC equivalent circuit model with the second-order RC-PNGV equivalent circuit 
model experimentally, as shown in Fig. 7, to ascertain if the effect of circuit model selection is appropriate. The voltage 
output curve and error under identical conditions for the two distinct models are shown in Fig. 7(a) and (b), 
respectively. The second-order RC- PNGV equivalent circuit model offers more accuracy, a better identification effect, 
and may produce more accurate data returns when compared to the second-order RC circuit model. 

Parameter identification result 

This paper verifies the parameter results under HPPC conditions to obtain the changes in internal lithium-ion parameters at 
various times and uses the resulting data as the simulation voltage in the model. This allows us to compare and analyze the 
simulation voltage and the actual measured voltage and, ultimately, confirm the accuracy of the parameter identification. The 
findings of the real voltage and current data under HPPC working conditions are shown in Fig. 8(a) and (a), respectively; Fig. 
9(a) and (b) present, respectively, the outcomes of parameter identification and data errors under HPPC working conditions for three 
algorithms. 

Fig. 8 Voltage and current results under HPPC condition 

(a) Voltage under HPPC condition (b) Current under HPPC condition

Fig. 9 Parameter identification under HPPC condition 

(a) Voltage under different algorithms (b) Voltage error under different algorithms 

To verify the high-precision selection of the pro- posed algorithm, parameter identification results under different algorithms were 
analyzed, as shown in Table 1 below: 

Table 1 Comparison of error data of parameter identification results under different algorithms 

Algorithm Maximum error MAE RMSE 

FFRLS 0.05792 0.0115 0.0164 
GA-FFRLS 0.0923 0.0074 0.0089 
BWO-FFRLS 0.01542 0.0042 0.0068 



As can be seen from the result comparison chart and the error data table comparison chart, the FFRLS optimized 
by BWO has the best effect. Although the GA algorithm also has certain optimality in terms of its complexity, 
under the premise of the same intelligent algorithm, the GA algorithm requires a large amount of data support and 
a large amount of computation, while the BWO algorithm has simple computation and good effects. In terms of 
comprehensive effect, choosing the BWO algorithm to optimize the FFRLS algorithm is more suitable to achieve the 
results we want, and the experimental result renderings also verify our idea. 

The five parameter graphs for R0, R1, R2, C1, and C2 are shown in Fig. 10(a) and (b), respectively. The BWO-FFRLS 
algorithm identification results may be found to have a significant initial change fluctuation in the result graphs, 
which is caused by initialization, the passage of time, and the stability of the whale landing probability. Beluga 
optimization gradually stabilizes the identification results by iteratively choosing the best initial parameter 
value and forgetting the factor value of time k. 

Fig. 10 Five parameters under parameter identification

(a) The value of  under parameter identification (b) The value of  under parameter identification 

Fig. 11 SOC estimation results and errors under HPPC conditions 

(a) Estimates under different algorithms (b) Error of estimated results under different algorithms 

Verification of SOC estimation based on ASAPSO‑PF algorithm 

To verify the accuracy of the algorithm, mixed pulse power characterization (HPPC) data at room temperature (25 °C) was 
selected to estimate the model. The results of BWO-FFRLS parameter identification were applied to the ASAPSO- PF algorithm 
for SOC estimation, as shown in Fig. 11. 

The four algorithms all exhibit a step-like declining tendency over time, as seen in Fig. 11(a). The error comparison 
chart shows that there is a clear deviation between the estimated value of the PF algorithm and the reference value. The PSO 
algorithm, which is based on the PF algorithm, decreases error loss. However, the PSO algorithm tends to easily enter the 
local optimal in the early stages of time. This causes a significant discrepancy between the result and the actual value, and 
the highest error can reach 9.137%. However, throughout time, the PSO algorithm has undergone some optimization for 
the PF child poverty problem. The PSO algorithm is optimized by the introduction of the simulated annealing process. The 
addition of simulated annealing can help with the issue that the PSO method is prone to slip into local optimality at the 
beginning, as can be seen from the error graph. The inertia weight coefficient is controlled by the hyperbolic tangent 
function, and the non-linear adaptive change based on simulated annealing reduces error and increases precision. The 
model was simulated using the BBDST experimental data to further test the reaction of the estimating technique to the level 



of charge of lithium batteries under more complicated application situations. While the actual application conditions of high-
power lithium batteries are complex and variable, using BBDST experimental data to verify the feasibility of the algorithm will be 
more convincing. BBDST includes the data of the car in starting, taxing, acceleration, rapid acceleration, and other operations 
with authenticity and dynamics. Figure 12(a) compares SOC estimation outcomes for various algorithms, while Fig. 12(b) 
compares estimate errors for various algorithms. 

It is clear from Fig. 12 that the estimation outcomes of the three algorithms are in line with the functionality of HPPC. The 
PF algorithm has the highest variation in SOC estimating error, as can be observed from the error result chart, and the 
contrast between the earlier and later fluctuations is somewhat mild. The implementation of PSO can minimize 
significant PF volatility in the future, but it also has drawbacks of its own. The SA algorithm, which is based on 
PSO-PF, reduces the experiment’s maximum error from 1.942 to 1.228%, and non-linear adaptive modifications bring 
the estimated value closer to the actual value. Compared with PF, PSO-PF, and SAPSO-PF algorithms, the error 
curve of the ASAPSO-PF algorithm is relatively stable, and the maximum error is 0.7638%. Therefore, the rationality 
of the proposed algorithm can also be verified. 

The robustness of our approach during the DST is extremely important for our examination of experimental 
results. The error curve in Fig. 13 shows that the PF, PSO- PF, and SAPSO-PF algorithms have considerable error 
variations under DST conditions. Their maximum error is all greater than 3%; however, the fluctuation of the 
ASAPSO-PF algorithm is minimal, with a maximum error of only 1.756%, which is significantly lower than the 
estimation of other algorithms and thus validates the algorithm in this work. 

Fig. 12 SOC estimation results and errors under BBDST conditions 

(a) Estimates under different algorithms (b) Error of estimated results under different algorithms 

Fig. 13 SOC estimation results and errors under DST conditions 

(a) Estimates under different algorithms (b) Error of estimated results under different algorithms 

According to the research results of the above three complex working conditions, the ASAPSO-PF algorithm has a high-
precision effect on SOC estimation. To further confirm that the algorithm in this paper is the correct choice, MAE and 
RMSE are chosen to further compare the calculation results. The detailed calculation formula is shown in Eqs. (30) and 
(31). 

(30) MAE =

∑N

i=1
�� �SOC (t) − SOC(t)��

N



(31) 

The mean absolute error (MAE) represents the mean of the absolute error between the predicted and measured values. 
The root mean square error (RMSE) represents the sample standard deviation of the difference between the predicted value 
and the measured value and represents the degree of dispersion of the sample, and the size of its value reflects the prediction 
ability of the algorithm. The results obtained are shown in Fig. 14. It can be seen from the data graph that under three different 
working conditions, the error result of ASAPSO-PF is the smallest, which verifies the feasibility of the proposed algorithm. 

Fig. 14 Comparison of error results under different working conditions 
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(a) Comparison of MAE estimation results under (b) Comparison of RMSE estimation results under
different working conditions different working conditions 

Conclusion
Accurate SOC estimation of lithium-ion batteries is the key and most difficult point of lithium-ion battery condition 
monitoring. Based on the second-order RC-PNGV equivalent circuit model to characterize the state and output characteristics 
of lithium batteries, a state of charge estimation algorithm based on the beluga optimization-forgetting factor recursive least 
squares method and an improved particle filter are proposed. Through the experimental analysis, the following conclusions 
are drawn: 

(1) In the process of parameter identification, for the problem of multi-parameter identification of the battery model,
compared with the traditional FFRLS algorithm, genetic optimization algorithm, and BWO algorithm combined with
the introduction of FFRLS, it can be seen from the result comparison diagram that not only the results of online
parameter identification are realized, but also the operation is simple, high precision, and not complicated in the whole
identification process. Therefore, it can be concluded that the BWO algorithm combined with the FFRLS algorithm is
an innovation for parameter identification.

(2) In the SOC estimation of batteries, the ASA algorithm is introduced into the PSO algorithm to solve the sub-poverty
problem of traditional PF, and a series of problems such as PSO easy to fall into local optimal and slow convergence
speed are well optimized. Under the same conditions and different complex working conditions, different algorithms
were verified. From the verification results, we can see that the SOC error of the ASAPSO-PF estimation of batteries
is controlled within 2%, which further verifies that the ASAPSO-PF algorithm has high accuracy and robust- ness in
the SOC estimation of lithium batteries.

(3) Through the verification of the whole experiment process in this paper, it is known that it is feasible to
combine the BWO algorithm with FFRLS for parameter identification, and the application of the ASAPSO-
PF algorithm to estimate the SOC accuracy of the battery has also achieved a good optimization effect.
Therefore, in future work, we can try to apply this method to other studies and have deeper thinking about the
development of future lithium-ion batteries.
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