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Abstract. Rosters are often used for real-world staff scheduling require-
ments. Multiple design factors such as demand variability, shift type
placement, annual leave requirements, staff well-being and the place-
ment of trainees need to be considered when constructing good rosters.
In the present work we propose a metaheuristic-based strategy for de-
signing optimal cyclical rosters that can accommodate uneven demand
patterns. A key part of our approach relies on integrating an efficient op-
timal trainee placement module within the metaheuristic-driven search.
Results obtained on a real-life problem proposed by the Port of Ab-
erdeen indicate that by incorporating a demand-informed random rota
initialisation procedure, our strategy can generally achieve high-quality
end-of-run solutions when using relatively simple base solvers like simu-
lated annealing (SA) and evolution strategies (ES). While ES converge
faster, SA outperforms quality-wise, with both approaches being able to
improve the man-made baseline.

Keywords: simulated annealing · evolution strategies · staff rostering ·
staff training · combinatorial optimisation · uncertainty

1 Introduction and Motivation

Staff rosters are an essential tool in scheduling personnel, as the usage of well-
established rota patterns allows personnel to plan their activities, both in and
out of work. In general, a successful roster considers the needs of the personnel,
while aiming to satisfy work commitments. Highly advanced staff rosters involve
hundreds or thousands of employees and can incorporate multiple rota patterns
as well as dedicated training time for staff members [1].

In recent decades, specialised metaheuristic solvers have become an increas-
ingly popular option for automatically generating timetables [2], complex rosters



and rota patterns [3]. While having strong interactions with timetabling prob-
lems from sectors like education [4][5], transport [6] and sports [7], efficient per-
sonnel scheduling is important in scenarios where a limited but skilled workforce
must ensure adequate service availability even when confronted with dynamic
demand patterns. This is often the case with emergency response staff [8][9],
airline crew [10], healthcare workers [11] and even call centre staff [12].

Popular solvers used include tabu search (TS) [13], hybrid scatter search
[14], noising methods combined with simulated annealing (SA) [15], ant colony
optimisation (ACO) [16] and evolutionary algorithms (EAs) [17].

The present work is motivated by a pilot roster modelling scenario proposed
by the Port of Aberdeen (PoA). As pilots provide a critical service for vessels, full
daily coverage must be ensured. However, PoA receives most pilotage requests
during early and late shifts, and least on night shifts. Furthermore, pilotage
needs also vary per weekday. For example, Tuesdays have the highest demand
and Saturdays the lowest. These demand trends are consistent over multiple
years. The historical PoA pilot roster, shown in Figure 1, is cyclical and based
on a weekly rota pattern. Designed for twelve staff members, the rota pattern is
twelve weeks long with a single shift type – Early (d), Late (l), Night (n), Flexible
(a) or TimeOff (o) – assigned to each day in the rota. The ratios of each shift type
within the rota are based on consultation with staff. There is a mandated three
week block of time off at the end of the rota. The PoA currently used the man-

Fig. 1: Historical / baseline pilot rota pattern (xh) at PoA

made pilot rota shown in Figure 1. The inauguration of a new harbour within
the PoA is expected to increase pilot demand and challenge the existing roster.
A critical feature when designing a new rota is a bespoke requirement to consider
placement of a variable number of trainee pilots. A rota should factor in the need
to train pilots without impacting high levels of service or overall schedule quality
in terms of work-life balance. Automation of rota generation will allow the PoA
the flexibility of easily testing and adapting to staffing scenarios that can rapidly
adjust to unknown demand dynamics introduced by the Port’s extension.



The remainder of this paper is organised as follows: Section 2 describes our
formalisation of the PoA pilot rostering problem. Section 3 describes our ap-
proach to optimising the pilot rota and the placement of trainees. In Section 4
we present the setup and results of our numerical experiments alongside their
interpretation. Finally, Section 5 contains conclusions and gives an outlook on
future work.

2 Problem Formalisation

Using previous notations for shift types, a rota pattern to the PoA rostering
problem can be encoded by an n-tuple (i.e., array x of size N) where N is the
total number of days in the roster – i.e., x ∈ {d, l, n, a, o}N . As the rotas we
aim to generate are cyclical, N is equal to the number of staff multiplied by
seven. However, given that the number of time off weeks at the end of the rota is
predefined based on user input, this part of the roster can be decoupled to reduce
problem size (e.g., N = 63 instead of N = 84 for the 12 person rota in Figure
1) and complexity (i.e., enforcing extended time off periods via constraints).

Discussions with the PoA have revealed the best way to model the quality of
a given rota x is by penalising undesirable shift sub-patterns and understaffing.

Penalties were allocated on a scale from zero to one hundred, based on relative
severity of constraint violations elicited from end users. These penalties were
observed empirically to generate an appropriate response from the tested solvers.

Isolated shift penalty: pI(x) A shift xi ̸= f, 1 ≤ i ≤ N is considered isolated
if xi ̸= xi−1 and xi ̸= xi+1

4. When marking with ωI the number of isolated
shift occurrences: pI(x) = 50 · ωI .

Late shift before early shift penalty: pLE(x) If xi = l and xi+1 = d
a medium base penalty is incurred. If ωLE marks the number of late→early
infringements: pLE(x) = 50 · ωLE .

Insufficient rest penalty: pR(x) If the set R contains all the disjoint rota
sub-patterns ri = xs+1 . . . xs+k with the property that |ri| = k ≥ 7 and xs+i ̸=
o,∀0 ≤ i ≤ k then pR(x) = 25 ·

∑
ri∈R(2

|ri|−6 − 1) as the aim is to generally
discourage working more than 6 days in a row without rest. This penalty is
designed to increase exponentially based on the seriousness of its violation(s).

Too many successive night shifts penalty: pSN(x) If the set SN contains
all the disjoint rota sub-patterns ni = xs+1 . . . xs+k with the property that
|ni| = k ≥ 4 and xs+i = n, ∀0 ≤ i ≤ k then pSN (x) = 10 ·

∑
ni∈SN (2|ni|−3 − 1)

as the aim is to discourage working more than 3 night shifts in a row.

4 As we are operating on cyclical rotas, x0 = xN and xN+1 = x1



Insufficient time off after night shift penalty: pO(x) If ωO denotes total
number of occurrences when xi = n and xi+1 ̸= n, and for the jth such occur-
rence oj denotes number of consecutive time off shifts after the night shift (with
the count starting at xi+1), the partial time off penalty score is defined as:

p(oj) =


7 if oj = 0

3 if oj = 1

1 if oj = 2

0 if oj ≥ 3

and the total penalty is pO(x) = 100 ·
∑

1≤j≤ωO
p(oj). The idea behind this

penalty is to encourage adequate rest periods after night shifts.

Unmatched shift demand penalty: pU(x) Let ddi, dli, dni ∈ N with 1 ≤ i ≤
7 denote the historical/expected demand for early, late and night shift pilots on
the ith day of the week. The supply of pilots for each (day, shift) pair is marked
by sdi, sli, sni and computed via a column-wise summation of the relevant shifts
in the rota pattern (e.g., for the rota in Figure 1, sdi = sli = sni = 2,∀i). The
unmatched shift demand penalty is computed as:
pD(x) = 100·

∑
1≤i≤7 [max(ddi − sdi, 0) +max(dli − sli, 0) +max(dni − sni, 0)]

Insufficient trainee supervision penalty: pT (x) Given that both trainee
and experienced pilots can be placed on the rota, the previously defined supply of
pilots can be broken down into sdi = sdTi +sdEi , sli = slTi +slEi , sni = snT

i +snE
i

with sdEi , sl
E
i and snE

i denoting the number of experienced pilots for each (day,
shift) pair. Given that it is highly preferable for trainees to always be supervised
by at least one experienced member of staff, rota occurrences when this is not
the case are penalised using:
pT (x) = 80 ·

∑
1≤i≤7 [max(1− sdei , 0) +max(1− slei , 0) +max(1− sne

i , 0)].
It is important to note that the particular placement of trainees on the rota
heavily impacts the value of pT . For example: when placing two trainees on start
weeks 1 and 2 (as trainee placement combination C1) on the rota in Figure 1
we obtain pT (x,C1) = 0, but when the trainees are assigned start weeks 2 and
7 (as placement combination C2) we obtain pT (x,C2) = 80 as sne

1 = 0. This
aspect is discussed at length in Section 3.2. The total penalty associated with
a rota x is obtained by summing the seven penalty types and the search for a
high-quality rota can be formalised as:

min f(x) = pI(x)+pLE(x)+pR(x)+pSN (x)+pO(x)+pU (x,D)+pT (x,Cb), (1)

where D is a set that aggregates predefined pilot demand values for all (day, shift)
pairs and Cb denotes the best possible start week placement for a predefined
number of trainees that must be placed on the rota.



The global optimum for Equation 1 is f(x∗) = 0 and indicates a rota pattern
x∗ that does not incur any penalties. When considering the pilotage demand
vectors obtained from historical PoA data:

dd = [1, 2, 2, 2, 2, 2, 1]

dl = [2, 3, 2, 2, 2, 2, 2]

dn = [2, 1, 2, 2, 1, 1, 1]

(2)

and no trainee placement, the total penalty associated with the rota xh shown
in Figure 1 is f(xh) = 470 as: pI(xh) = 100, pLE(xh) = 0,pR(xh) = 250,
pN (xh) = 20, pO(xh) = 0, pU (xh, D) = 100 and pT (xh, Cb) = 0. One trainee can
also be placed on xh without penalty (irrelevant of start week). If two trainees
are to be placed on xh, starting them in weeks 1 and 4 would not impact pT (xh).

3 Proposed Approach

3.1 Rota Initialisation

After fixing N – the size of the rota – and subtracting the total number of flexible
(a) and time off (o) days, the main focus of the initialisation stage is to compute
how many Early (d), Late (l) and Night (n) shifts are to be allocated.

This allocation is based on historical or expected total relative demand across
the three types of work shifts. Assuming that Equation (2) reflects expected
demand trends for each weekday, the total relative demand for late shifts is:
Fl =

∑
dli∑

ddi+
∑

dli+
∑

dni
, 1 ≤ i ≤ 7 ⇒ Fl =

15
12+15+10 = 0.4054. Similarly Fd =

0.3243 and Fn = 0.2702. For example, given that after removing 40 time off and
2 flexible shifts from the rota in Figure 1, 42 days remain to be allocated among
the three types of work shifts, we would obtain an allocation of Fd · 42 = 13.62
early shifts, Fl · 42 = 17.02 late shifts and Fn · 42 = 11.34 night shifts for xh

based on the previously computed relative work shift demand. Settling on the
initialisation of (i) 17 Late shifts, 14 Early shifts and 11 Night shifts or (ii) 17
Late shifts, 13 Early shifts and 12 Night shifts is a somewhat subjective modelling
decision. In the experiments we report on in Section 4, we opted for (ii) in light
of the heavy penalties related to Night shift placements (i.e., pN and pO).

Once all the individual shift type counts have been determined based on
historical/expected demand for the analysed use case, our rota patterns are
initialised randomly to reflect the desired distribution of shift types.

3.2 Trainee Placement

A key part of our automated rostering strategy revolves around the optimal
placement of a variable number of trainees. This feature allows the Port of
Aberdeen flexibility to balance conflicting objectives under uncertain pilotage
demand trends. Rosters with an overconcentration of trainees will be unsatisfac-
tory should there be a surge in demand for highly skilled pilotage. Rosters with
insufficient trainee slots will fail to provide sufficient pilotage experience.



For determining trainee placement, we first compute all combinations of lo-
cations where a predefined number of trainees nt can be assigned a start week on
a rota pattern that covers nw work weeks. The total number of distinct trainee
placement locations is

(
nw
nt

)
. As the roster is cyclical, initial trainee placements

will iterate in a round robin fashion that induces an equivalence relation between
different placements. For example, in the case of a four week roster, with two
trainees (T) and two experienced staff members (E), as we have nt = 2 and nw =
4, there are

(
4
2

)
= 6 individual trainee placements and they are grouped into two

equivalence classes: {TETE,ETET} and {TTEE,ETTE,EETT, TEET}.
Our strategy for efficiently evaluating trainee placements applies a min-max

approach on top of the resulting trainee placement equivalence classes and is
described in Algorithm 1. As our goal is to discover a placement that results in a
minimal insufficient trainee supervision penalty for a given rota x, our approach:

1 computes the class penalty score associated with each equivalence class of
placements as the maximum pT (x) among the distinct trainee placements
(i.e., members) of that class;

2 selects the minimum class penalty score among all equivalence classes as
pT (x,Cb)) and a class representative (e.g., the first member) as Cb – the
best trainee placement option.

3 preemptively stops evaluating an equivalence class once a member displays
a pT (x) value that is higher than a previously computed class penalty score.

Algorithm 1 Trainee Placement Approach
Require: Rota x, number of trainees nt
Ensure: Best trainee placement Cb, insufficient trainee supervision penalty pt(x,Cb)
1: Extract the number of weeks in x: nw
2: Compute the trainee placement combinations: C1, C2, . . ., C(

nw
nt

)
3: Divide C1, C2, . . ., C(

nw
nt

) into equivalence classes: E1, E2, . . . Ek

4: Initialise: Cb = C1, pT (x,Cb) = ∞
5: for i = 1 to k do
6: Initialise: cps = 0
7: for C ∈ Ek do
8: Compute penalty score for trainee placement C: pT (x,C)
9: if pT (x,C) ≥ cps then

10: cps = pT (x,C)
11: end if
12: if pT (x,C) ≥ pT (x,Cb) then
13: Break the loop
14: end if
15: end for
16: if cps < pT (x,Cb) then
17: Extract class representative from Ek: Cr

18: Cb = Cr

19: pT (x,Cb) = cps
20: end if
21: end for
22: return Cb, pT (x,Cb)



3.3 Metaheuristic Solvers

Given that the initialisation method described in Section 3.1 ensures that the
distribution of work shifts required for obtaining a reasonable solution is present
in any randomly generated rota, our optimisation strategy is centred on the de-
ployment of a simple shift swap (variation) operator within several metaheuris-
tic approaches that (re)-position shifts whilst aiming to solve Equation 1. When
applied on a given rota x, the shift swap operator randomly selects two (day)
indices i and j, with 1 ≤ i, j ≤ N, and switches their shift types:

aux = xi

xi = xj

xj = aux

The first strategy experimented with was local search (LS) [18], but a ma-
jority of LS runs fell into local minima. Therefore, we continued with a slightly
more advanced trajectory-based solver: Simulated Annealing (SA) [19]. Simi-
larly to LS, at each iteration of SA a new candidate solution x

′
is generated by

applying the swap operator on the current solution of the algorithm: xc. Unlike
in LS, x

′
can be accepted, with a certain probability, as the new current solution

in SA even when f(xc) < f(x
′
), thus enabling the avoidance of local minima.

The acceptance probability of a non-improving candidate solution is inversely
proportional to the difference in quality with respect to f(xc) and directly pro-
portional to a temperature parameter that is gradually reduced to 0 during the
search (i.e., annealed). Preliminary parameter tuning tests with SA indicated
that the solver is able to produce high-quality solutions for our use cases.

In order to contextualise SA performance in terms of convergence speed and
final solution quality, we integrated the swap operator in a population-based
solver, namely a (1+λ) Evolution Strategy (ES) [20], as a mutation operator. At
each iteration (i.e., generation) of the ES, λ offspring (i.e., candidate solutions)
are created by applying the mutation operator to a single parent xp (i.e., current
solution). x

′
– the best among the λ offspring – becomes the parent of the next

generation provided that f(x
′
) < f(xp). Otherwise, xp remains the parent.

We used standard versions for both solvers as they discovered high-quality
solutions for the tested use case with zero trainees.

As the ability to optimally place trainees on the rosters is a PoA requirement,
an aim of our numerical optimisation runs with SA and ES is studying differences
in final rota qualities when opting between two trainee integration strategies:

– SwapCheck (SC): computes the trainee placement penalty using the strategy
outlined in Algorithm 1 in order to accurately evaluate f(x

′
) whenever the

solver generates a new candidate solution x
′
;

– FinalCheck (FC): disregards the pT (x
′
, Cb) component from the computation

of f(x
′
) during the run and applies Algorithm 1 only on the best rota to

estimate its final quality and associated best possible trainee placement.



The SwapCheck strategy provides the solvers with an accurate view of the
fitness landscape at all stages of the optimisation run whilst the FinalCheck
strategy has the advantage of proposing a simplified (but hopefully similar)
fitness formulation during the search. The main disadvantage of SwapCheck is
that it is computationally expensive. The main disadvantage of the FinalCheck
strategy is that the best possible trainee placement on a high-quality solution
for a problem formulation lacking trainees might still yield very large penalties.

4 Numerical Experiments and Results

4.1 Experimental Setup

While a limited test series indicates that our proposed approach can scale well
across problem instances of up to 26 weeks (i.e., N = 175) and 7 trainees (es-
pecially with the FinalCheck strategy), the single use case focused on in this
work is optimising the 12 week pilot rota used by the PoA when considering the
historical pilotage demand of previous years (see Equation 2) and a wish to place
one, two or no trainees on the rota. As previously mentioned, the historic rota
xh in Figure 1 has a baseline quality of 470 regardless of the number of trainees.

Across all SA and ES optimisation runs, we used a computational budget of
20,000 shift swap operations (each generating a new candidate solution). We per-
formed 1000 independent repeats for each solver run on the no trainees scenario
and 100 independent repeats for each solver run on the one and two trainees
scenarios. The reduced runs on the latter scenarios were due to significantly
increased computational cost of checking trainee constraints. Sufficient experi-
ments were conducted to support statistical testing. When testing the statistical
significance of differences between central tendency estimators, we applied a
one-sided Mann-Whitney U Test [21] with a preset significance level of 0.025.

Given the simplistic nature of our two solvers, the options for parameterising
them are fairly limited and are mainly intended to discover their best search
space exploration-intensification trade-off for the analysed use case.

In the case of SA, we experimented with different parameterisations of the
annealing schedule in order to force LS runs of various lengths at the end of the
optimisation. Thus, we tested variants that dedicated the last 10000, 7500, 5000,
2500 shift swaps to LS and also tested an SA variant with 0 dedicated LS swaps.

For the (1 + λ) ES, we used population sizes of λ =100, λ =50, λ =40 and
λ =25 which resulted in optimisation runs of 200, 400, 500 and 800 generations.

4.2 Results and Interpretation

No Trainees Scenario. In Figure 2 we plot the average convergence behavior
of SA and ES across the tested parameterisation options when there is no need
to place trainees on the optimised rotas.

Results indicate that ES has a faster convergence speed as all 4 variants are,
on average, able to discover rotas with a lower penalty (i.e., higher quality) than



Fig. 2: Comparative convergence behavior of 5 SA and 4 ES variants.

the baseline after only 4000 shift swap operations. Conversely, all 4 SA variants
that have dedicated LS shift swaps after their hot working (HW) phase discover
end-of-run solutions that are better than ES results. Across both solvers, it is
noteworthy that the two variants that prioritise exploitation of the search space
by integrating a long LS component (i.e., SA 10HW, 10K LS) or by evolving
a smaller population over a longer period (i.e., ES 800gen λ = 25) outperform
their peers both in terms of convergence speed and end-of-run solution quality.

Penalty-wise distributions of end-of-run solutions discovered by SA and ES
are plotted in Figure 3. Details regarding the central tendency indicators of these
distributions alongside information regarding the quality of the best solutions can
be found in Table 1. Statistical significance testing confirms three observations:

1. Each of the SA variants that includes a meaningful LS phase (i.e., 10K, 7.5K,
5K, 2.5K) delivers better results than any ES variant.

2. The SA variant without a dedicated LS phase at the end of the run (i.e., 0K
LS) underperforms the other 4 SA variants.

3. There is no meaningful difference between the end-of-run solution qualities
obtained by the 4 ES variants.



(a) SA variants

(b) ES variants

Fig. 3: Histograms of end-of-run solution penalty.

Table 1: End-of-run solution quality for the no trainees scenario
Solver: variant Best Average (µ) Median Std. deviation (σ)
SA: 10K HW, 10K LS+ 30 222 215 81.1
SA: 12.5K HW, 7.5K LS+ 40 224.7 215 79.6
SA: 15K HW, 5K LS+ 55 224.8 215 78.9
SA: 17.5K HW, 2.5K LS+ 40 239.8 230 84
SA: 20K HW, 0K LS− 60 283.2 280 92.8
ES: 200gen, λ = 100 105 271.9 257.5 115.8
ES: 400gen, λ = 50 25 256.6 265 115.9
ES: 500gen, λ = 40 25 275.2 260 115.9
ES: 800gen, λ = 25 10 263.4 250 117.3



Despite their average underperformance when compared with SA, three ES
variants were able to find near-perfect solutions (i.e., f(x) ≤ 25).

1 Trainee Scenario. Table 2 contains information regarding the differences
between end-of-run solution penalties when wishing to place one trainee on the
12 week rota compared with complementary end-of-run results for the no trainee
scenario. All solver variants used the computationally expensive SwapCheck (SC)
strategy for determining the optimal placement of the trainee on the rota.

As expected, the lowest (i.e., best), average and median penalties achieved
when placing one trainee on generated rotas are higher than equivalents for the
no trainee scenario. Across all variants5 differences are slightly higher than 80 –
the minimal non-zero value of the insufficient trainee supervision penalty pT (x).
As standard deviations are similar between scenarios, magnitude and consistency
of the best, average and median penalty increases indicate that any form of
trainee placement (i.e., including PT (x,Cb) in Equation 1) over-constrains the
PoA rostering.

Table 2: End-of-run differences in solution quality for the 1 trainee scenario when
compared with results from Table 1. Positive values indicate the 1 trainee result
is worse.

Solver: variant ∆Best ∆µ ∆Median ∆σ

SA: 10K HW, 10K LS 125 127 125 10.4
SA: 12.5K HW, 7.5K LS 100 100.4 110 4.7
SA: 15K HW, 5K LS 135 92.3 97.5 0.5
SA: 17.5K HW, 2.5K LS 115 98.4 95 3
SA: 20K HW, 0K LS 105 96.9 95 0.4
ES: 200gen, λ = 100 5 100.5 107.5 0.5
ES: 400gen, λ = 50 150 128.5 117.5 -3.5
ES: 500gen, λ = 40 120 87.6 90 -1.2
ES: 800gen, λ = 25 175 123.0 137.5 -8.6

2 Trainees Scenario. Results in Table 3 indicate that when compared with the
1 trainee scenario – solved using SwapCheck (SC) –, the best end-of-run rotas for
the 2 trainees scenario have a generally increased average and median penalty
only when using the faster FinalCheck (FC) trainee placement strategy. When
applying solvers on the 2 trainees scenarios using the SC trainee placement
strategy, the impact of the extra trainee placement on PT (x,Cb) is minimal for
SA variants and reduced in comparison with FC in the case of ES.

5 Apart from the best penalties for ES 200gen, λ = 100.



Table 3: End-of-run differences in quality for 2 trainee scenario compared with 1
trainee SwapCheck (SC) results. Positive values mean 2 trainees result is worse.

Solver: variant ∆Best ∆µ ∆Median ∆σ
SC FC SC FC SC FC SC FC

SA: 10K HW, 10K LS 20 30 -12.3 39.3 -20 40 -1.6 -6.5
SA: 12.5K HW, 7.5K LS -20 60 3.1 50 0 45 4.2 -4.7
SA: 15K HW, 5K LS -25 -25 30 62.3 37.5 55 21.8 8.7
SA: 17.5K HW, 2.5K LS 10 -15 -3 54.8 15 57.5 3.4 17.4
SA: 20K HW, 0K LS 0 -25 0.5 42 5 55 18 15.7
ES: 200gen, λ = 100 15 -30 26 31.25 40 37 11 -13.1
ES: 400gen, λ = 50 -10 -35 -9.7 22 -15 22 -8.6 10.2
ES: 500gen, λ = 40 30 10 29.4 79.65 32.5 87.5 6.2 16
ES: 800gen, λ = 25 -50 5 13.7 36.7 0 30 31.5 22.8

Figure 4 shows the penalty-wise distributions of the end-of-run solutions
discovered by the best performing SA and ES variants when using SwapCheck
and FinalCheck. Statistical significance testing confirms the observation that the
best performing SA variant obtains better results than the best performing ES
variant regardless of which trainee placement strategy is used.

Fig. 4: Histograms of end-of-run solution penalty distribution for best performing
SA and ES variants using SwapCheck and FinalCheck placement strategies.

The best solution obtained by the ES: 200gen, λ = 100 variant on the 2
trainee scenario achieved a total penalty of f(x) = 80 that was entirely due to
a trainee supervision penalty (i.e., pT (x) = 80). This means that the discovered
rota (shown in Figure 5) is a perfect solution (i.e., global optimum) for the no
trainee scenario (see Table 1).



Fig. 5: Perfect solution for the no trainee scenario discovered using ES.

5 Conclusions and Future Work

The presented work shows how a bespoke trainee placement method based on an
efficient min-max search that speculates equivalent placements in cyclical rosters
can be combined with basic metaheuristic solvers like simulated annealing (SA)
and evolution strategies (ES) to produce high-quality rotas that can successfully
accommodate uneven shift demand patterns while also satisfying multiple staff
preferences related to their work-life balance.

Our numerical experiments indicate that SA variants that allow for a sig-
nificant LS phase at the end of the optimisation run outperform their faster-
converging ES counterparts with regard to final solution quality. Furthermore,
whilst solver performance is improved by evaluating trainee placement suitability
during all stages of the optimisation, a much faster approach of simply placing
the required number of trainees on the best solution for the simplified no trainee
scenario also produced high quality rotas (for a limited number of trainees).

Future work will address larger problem instances (increased length and num-
ber of trainees) likely to pose difficulties to both our optimal trainee placement
approach and the two base solvers we considered in our experiments so far.
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