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Abstract—Presentation attacks pose a threat to the reliability
of face recognition systems. A photograph, a video, or a mask
representing an authorised user can be used to circumvent
the face recognition system. Recent research has demonstrated
high accuracy in intra-dataset evaluations using existing face
presentation attack detection models. Nonetheless, these models
did not achieve similar performance when evaluated across
datasets due to limited generalisation. Consequently, this article
presents task-specific feature learning using deep pre-trained
models. Model performance was evaluated using three public
datasets: the SiW dataset was used for intra-dataset evaluation,
while CASIA and Replay Attack were used for cross-dataset
evaluation. Custom task-specific feature learning, compared to
deep and hybrid models, demonstrated improved cross-dataset
performance and exhibited more generalisability. The results
suggest future direction for further research toward improving
the model’s generalisation using custom task-specific feature
learning.

Index Terms—Face presentation attack detection, deep learn-
ing, generalisation

I. INTRODUCTION

Face Recognition (FR) has become more prevalent as means
of personal authentication. Despite significant technological
advances, FR systems are still vulnerable to a variety of
attacks. The most common attacks involve photos, videos, or
masks of authorized users, called Presentation Attacks (PA).
With the availability of personal images on the Internet and
advances in printing technology, PAs have become more varied
and accessible. Face Presentation Attack Detection (FPAD) is
extensively studied since these attacks impact the reliability
of FR systems. In addition, newly developed PA variants
act as unseen attacks against existing FPAD models. In the
presence of unseen attacks, detection performance deteriorates,
indicating that the models are not sufficiently generalised
to capture all types of attacks. Therefore, generalisation has
become increasingly significant in the FPAD context [1].

The FPAD model detects PA based on differences in features
between fake and genuine facial images. In order to accom-
plish this, earlier FPAD models used handcrafted features [2]
related to texture, image quality, motion, and frequency. The
extracted features were classified with SVM, RF or K-NN
classifiers. These hand-crafted features are domain-specific
features [3]. Hence, hand-crafted feature methods had limited

generalisation as they use only domain-specific features rather
than task-specific features, especially in the RGB domain.

The automatic feature extraction capability of deep learning
models further enhanced FPAD performance. In a deep model,
lower layers provide domain-specific features such as edges,
and corners. However, the higher layers learn task-specific
features. The FPAD task is to differentiate between real and
fake facial images of the same user. But image classification
categorises different objects in the given images. Thus, task-
specific features of FPAD are different from that of image
classification. Hence, learning task-specific features is more
important in improving generalisation in FPAD.

As a deep learning technique, transfer learning has been
exploited in a number of ways to address FPAD by learning
either domain-specific features or task-specific features. For
transfer learning, existing FPAD models have used pre-trained
image classification or face recognition models. Since task-
specific features are provided by higher layers, image classi-
fication models were used after modifying the top fully con-
nected layers and fine-tuning them to detect PA [4]. Domain-
specific features were learned [5] by fine-tuning a few lower
convolutional layers in a pre-trained face recognition model
using multi-spectral data. Nonetheless, the majority of Face
Anti-Spoofing (FAS) datasets are in the RGB domain. So,
it may be more effective to use a model that can extract
task-specific features from RGB datasets rather than using
multi-modal data. The other research [6] has shown that
fusion models using deep pre-trained models and hand-crafted
methods improved PA detection in intra-dataset evaluations.
Thus transfer learning has been explored extensively in face
anti-spoofing.

This article presents a transfer learning model, to learn
task-specific features to improve generalisation. The higher
convolutional layers of deep pre-trained models were fine-
tuned along with the fully connected layers using a public
FAS dataset SiW. This fine-tuned model was used to extract
features, which were used to form fusion models. Fusion
models were formed using the deep features from fine-tuned
models and combining the deep features with hand-crafted
features. The experiments used the public FAS datasets, CA-
SIA, and Replay Attack, for cross-dataset validation. The main
contributions of this article are:



• A task-specific feature learning method using deep pre-
trained models for Face Presentation Attack Detection
(FPAD).

• Fusion models combining deep fine-tuned features and
hand-crafted features for FPAD.

• Intra-dataset and cross-dataset evaluations to assess the
detection performance and generalisability of the models.

II. RELATED WORK

Face recognition remains vulnerable to PA despite recent
technological advancements. In order to create PAs, new
technologies are being utilized, including manufacturing and
printing materials, lighting, and cameras with improved resolu-
tion, to name a few. There is a serious problem associated with
the generalisability of the existing FAS models arising from
these emerging PAs [1]. This has driven the biometric research
community to investigate a variety of techniques to improve
the generalisation of FPAD. Thus, FPAD can be divided into
three types: hand-crafted feature methods, deep learning-based
methods and hybrid methods. Many existing FPAD models
have challenges related to generalisation, particularly when
tested against unseen attacks.

FPAD uses feature descriptors related to texture, colour,
image quality and frequency. Extracted features are passed to
standard classifiers such as SVM (Support Vector Machine)
and RF (Random Forest) for PA detection. Local Binary Pat-
tern (LBP) and its variants have been extensively used in hand-
crafted feature methods for FPAD [7]. Authors of [8] used
Colour texture analysis (CLBP) incorporating colour texture
features, unlike other LBP variants which used only grey-scale
images. Histogram of Oriented Gradient descriptors (HOG)
[9], Speeded-Up Robust Features (SURF) [10], Difference of
Gaussian (DoG) [11] were a few other descriptors used in
FPAD. Authors of [2] used image quality features includ-
ing colour diversity, specular reflection, and colour moment.
Transform-based features were also used to detect PAs [12].
Manual feature engineering with high domain expertise is
needed for these methods, which is one of the disadvantages
of these methods.

Convolutional Neural Networks (CNN) can automatically
extract distinguishable features for more effective PA detec-
tion. The recent trend in deep learning-based FPAD includes
approaches such as transfer learning [13], anomaly detection,
auxiliary supervision, few-shot and zero-shot learning [14] and
multi-modal methods. Anomaly detection, uses only real face
images for training [15], therefore any PA variant is detected
as an anomaly. This approach helps to overcome dataset
limitations in terms of attack variants. Auxiliary supervision
[16] is also used to improve unseen attack detection. Different
auxiliary features include noise, depth, and reflection. Deep
CNN models mainly use RGB images, but they also use multi-
modal data in NIR, SWIR, thermal and depth domains for
PA detection [5]. However, multi-modal data needs extended
imagery which is a less cost-effective authentication system.

Transfer learning aims to achieve unseen attack detection
through domain adaptation [5] and domain generalisation [17]

in FPAD. In transfer learning, either domain-specific or task-
specific features were extracted for PA detection. Authors of
[5] used domain-specific adaptation by fine-tuning lower layers
of the pre-trained FR model using a NIR dataset in order
to extract the corresponding domain-specific features for PA
detection in the vehicular authentication system. A similar
method was also in [18], where a multi-modal dataset was
used for fine-tuning lower layers of the pre-trained FR model.
The overall model included four channels. Each channel
corresponded to each domain including NIR, thermal, depth
and RGB. Each channel was made of a pre-trained FR model.
The channels corresponding to NIR, depth and thermal, the
lower layers of the pre-trained model were fine-tuned using the
domain-specific data. The output features from the four were
then combined to form the final feature vector and passed to
the classifier layers. However, the channel corresponding to
RGB data was not fine-tuned. Thus, domain-specific features
were extracted from three channels in this model. Multi-modal
data is used to extract domain-specific features, which requires
extra imagery. It is important to note, however, that most
mobile devices that use FR for authentication do not support
extended imagery. It is therefore necessary to further explore
RGB-based methods for obtaining discriminative features in
order to enhance the FPAD. Higher layers of a deep model
provide task-specific features. This concept was used in FPAD
by fine-tuning top fully connected layers to extract such task-
specific features [4], [13], [19]. Task-specific features were
also extracted by unfreezing higher convolutional layers of
deep pre-trained image classification models including VGG-
19 and VGG-16 [20]. However, this method exhibited low
generalisability.

Hybrid models, which combine hand-crafted features with
deep features, have demonstrated improved PA detection re-
cently [6], [21]. Authors of [22] proposed a hybrid method
that utilized Discriminant Correlation Analysis (DCA), Canon-
ical Correlation Analysis (CCA) and intensity distribution
control using image contrast adjustment along with transfer
learning and HOG features. Fang et al. [23] used a dual
stream fusion model combining frequency, texture and seman-
tic features. A multi-level frequency decomposition was also
applied to address generalisation in this fusion method. To
address the longer response times in parallel fusion methods
/citedwards2021effectiveness, a serial fusion method was ap-
plied using Siamese neural networks. Sharifi [24] proposed
a decision-level fusion strategy based on Log-Gabor filter
features. Using the Nearest Neighbor classifier, the scores were
classified. Simultaneously, feature extraction and classification
were performed by a CNN model. Using the OR rule, the
decisions from two modules were fused to get a final decision
on the genuineness of the facial image. Cai et al [25] used
a Hierarchical Fusion Module (HFM), which combined RGB
image and meta-pattern instead of hand-crafted features. Hand-
crafted features including colour, texture, spatial domain and
frequency domain features extracted from different channel
spaces were combined with deep features in [26], which
proposed least square weight fusion (LSWF) of channel-



based feature classifiers. Hybrid models were therefore able
to combine both hand-crafted features and deep functionality.

In recent research, vision transformers have also been used
in detecting PA [27]. Vision transformers were used by fine-
tuning the last fully connected layers with FAS datasets.
The model exhibited improvement in cross-dataset evaluation.
However, compared to the transfer learning models using
deep pre-trained models, vision transformers need more com-
putational resources. Hence, transfer learning using vision
transformers is to be explored more in the FPAD context to
use optimal computational parameters while achieving better
generalisation.

III. METHODS

Figure 2 provides a schematic diagram of the work pre-
sented in this paper. Typically, this includes utilising fine-
tuning pre-trained models, hand-crafted features extraction
and features fusion to form models to detect presentation
attacks. To improve generalisability, deep pre-trained models
were fine-tuned in order to learn task-specific features. Fusion
models were also formed using features extracted from fine-
tuned models and handcrafted features. Accordingly, fine-
tuned and fusion models were evaluated for intra-dataset and
cross-dataset performance as shown in Figure. 2. By using
the SiW train set, the models were fine-tuned. The SiW,
CASIA, and Replay Attack test sets were used to evaluate
the performance.

A. Datasets
The models were evaluated using public FAS datasets,

CASIA [28], Replay Attack [7], and SiW [29]. These datasets
consist of 2D PA variants including print, photo and video
attacks. Figure 1 shows samples of real and fake faces derived
from three datasets. Figure 1 shows genuine facial images in
the top row. In the lower row, corresponding fake facial images
are displayed. A comparison of the three datasets is presented
in Table.I.

Fig. 1. Real and fake facial image samples from SiW, CASIA and Replay
Attack datasets. The upper row in each figure contains the real-face samples,
whereas the lower row has the PA samples.

B. Fine-tuning
Existing FPAD methods used either domain-specific or task-

specific features through fine-tuning deep pre-trained mod-
els in different ways. Since lower layers provide domain-
specific features, some recent research followed the concept

TABLE I
COMPARISON OF FAS DATASETS USED IN THE EVALUATION

Dataset CASIA Replay Attack SiW
Subject 50 50 165
Live videos 150 200 1320
Attack videos 450 1000 3300
Attack types 2 Print, Replay Print, 2 Replay 2 print, 4 Replay

Display devices iPad iPhone 3GS, iPad iPad Pro, iPhone 7,
Galaxy S8, Asus MB168B

of domain-specific adaptation using multi-spectral data and a
pre-trained face recognition model. On the other hand, task-
specific features from RGB data were extracted by modifying
and fine-tuning the classifier layers of deep pre-trained classi-
fication models. These methods showed reduced cross-dataset
performance, while domain-specific adaptation required multi-
spectral data. To circumvent both limitations, higher convolu-
tional layers of the deep pre-trained classification model were
fine-tuned using the SiW train set. VGG-16 and InceptionV3
were fine-tuned in a similar way.

More specifically, the fine-tuned VGG-16 and ResNet-50
models had six higher convolutional layers re-trained. The
fine-tuned InceptionV3 model had eight higher convolutional
layers which were retrained using the SiW dataset. The top
layers included layers as follows: a fully connected layer of
size 4096, batch normalization layer, dropout layer, another
fully connected layer of size 4096, batch normalization layer,
dropout layer, a fully connected layer of size 512, another fully
connected layer of size 256 and a sigmoid layer.

C. Fusion

Fusion models using pre-trained classification models and
colour texture features [6] exhibited improved intra-dataset
detection performance compared to transfer learning models.
Hence, fusion models were formed using fine-tuned ResNet-
50 features and hand-crafted features including colour texture
(CLBP), Difference of Gaussian (DoG), Histogram of Ori-
ented Gradients (HOG) and Fast Fourier Transform (FFT).
Thus, in fusion models, apart from texture features, image
quality and frequency-related hand-crafted features were also
combined to evaluate the performance. Fine-tuned ResNet-
50 exhibited improved cross-dataset performance indicating
better generalisation. Hence, ResNet-50 was selected to create
fusion models with hand-crafted features. These fusion models
combined task-specific features from ResNet-50 and domain-
specific hand-crafted features. Fusion models were also imple-
mented combining extracted features from fine-tuned ResNet-
50, VGG-16 and InceptionV3 models. In this scenario, task-
specific features from different deep models were combined
and evaluated. Thus, fusion models were formed in three ways;

• Fusion of fine-tuned ResNet-50 feature and hand-crafted
features.

• Fusion of fine-tuned ResNet-50 and VGG-16 features.
• Fusion of fine-tuned ResNet-50, VGG-16 and Incep-

tionV3 features.
colour texture analysis (CLBP), Difference of Gaussian

(DoG), Histogram of Oriented Gradients (HOG), and Fast
Fourier Transform (FFT) features were extracted to use in
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Fig. 2. A schematic of the main experiment. All deep models are pre-trained on ImageNet and fine-tuned using SiW to learn task-specific features. Both
deep learning and hand-crafted features (CLBP, HOG, DoG and FFT) are fused using concatenation in combinations as detailed in the text.

fusion models. PAs introduce chrominance disparities while
preserving luminance variations. Hence, the chrominance dis-
parities cannot be identified in RGB colour space. FAS needs
alternative colour spaces such as HSV and YCbCr to uti-
lize chrominance disparities invisible in RGB colour space.
HSV and YCbCr have chrominance components. As HSV
and YCbCr colour spaces contain spoof-specific chrominance
disparities, the images can be converted into these colour
spaces and texture analysis can be performed to detect PAs
[8]. The HOG provides information about the structure of
the objects in the image. HOG provides edge features as
well as edge direction. By extracting the edge orientation
and gradients, this edge direction is provided. Thus, HOG
features derived from an image represent local disparities
in gradient and orientation, which can be applied to detect
PAs [9]. Recapturing eradicates high-frequency features from
the images, creating a disparity between real and fake facial
images. These disparities can be used to identify PAs [11].
Edge detection has been used to identify differences in local
features to detect PAs. DoG is applied to an image to mitigate
noise and preserve high-frequency features, especially edges.
Being an edge detection filter, DoG enhances the edges in the
final image. The deformities in the PAs introduce differences
in local features compared to the real facial image. Hence,
edge detection has been used to detect recaptured images and
PAs. Frequency disparities between real and fake facial images
can also be extracted using FFT [12].

In colour texture analysis (CLBP) [8], RGB images were
converted into HSV and YCbCr colour spaces and then the

LBP of each channel in these images were extracted. LBP
histograms from these six channels were combined to form a
final feature vector of size 354. DoG [11] was implemented
with the inner Gaussian filter standard deviation, σi = .6 and
the outer Gaussian filter standard deviation σj = 1. DOG
resultant images were converted to grey-scale images. Then,
the histogram was extracted to get the feature vector of size
256 from the images. For HOG [9] feature extraction, the
experiments used a region cell size of 16 × 16. Histograms
from these cells together form a final feature vector of size
1568. To extract FFT [12] features, the RGB image was
converted into a gray-scale and the calculated magnitude of
the transform function. Since the spatial domain image of
the magnitude spectrum represents the frequency features, the
LBP histogram of this image was used to extract the feature
vector of size 59.

The fusion models can be explained as follows: Let Fm be
a feature vector with size m and Fn be another texture feature
vector with size n. Thus FFusion will have the size (m+n).
Then the final feature vector FFusion can be represented [30]
as

FFusion = Fm ∪ Fn (1)

Following Eq. 1, more feature vectors can be combined to
form feature vectors of different sizes. Deep feature vectors
from ResNet-50, VGG-16 and InceptionV3 had a size of 512.
hand-crafted feature vectors had varying feature sizes. Thus,
the resultant feature vector size will be the sum of the feature
vectors used in the experiments. The final feature vectors were



passed to a neural network based classifier as in the fine-tuned
model.

The classifier module for all models included 9 layers
including four fully connected layers two batch normalization,
two dropout layers and a sigmoid output layer. A detailed
structure of the classifier is as follows: a fully connected layer
of size 4096 followed by batch normalization and dropout,
another fully connected layer of size 4096 followed by batch
normalization and dropout, a fully connected layer with size
512, another fully connected layer with size 256 and a sigmoid
output layer.

IV. EXPERIMENT

The experiments in this article used the SiW train set to
fine-tune the deep pre-trained models. For model evaluations,
SiW, CASIA and Replay Attack test sets were used. SiW test
set was used for intra-dataset performance, whereas CASIA
and Replay Attack test sets were for cross-dataset evaluations.
Binary cross entropy loss and Adam optimizer were used for
model compilation. For fine-tuning and fusion models, the
learning rate used was 5 × 10−6 for all datasets. The batch
size and epochs were 512 and 10 respectively.

The fine-tuned models used different scenarios. They are:
• Fine-tune the higher six convolution layers of pre-trained

ResNet-50 and VGG-16 models.
• Fine-tune the higher eight convolution layers of the pre-

trained InceptionV3 model.
• Fine-tune all the layers in the pre-trained ResNet-50

model, including modified top layers.
• Transfer learning using the pre-trained ResNet-50 model

with modified top layers.
The fine-tuned ResNet-50 model was used for further exper-
iments using fusion models, as it exhibited the best cross-
dataset performance among the deep pre-trained models when
fine-tuned. Thus, fine-tuned ResNet-50 features were com-
bined with hand-crafted and other deep model-based features
to form fusion models. The included:

• ResNet-50 features and hand-crafted features
• ResNet-50 and VGG-16 features
• ResNet-50, VGG-16 and InceptionV3 features
From the dataset videos, faces were detected from CASIA

and Replay Attack frames were extracted at a rate of 2 frames
per second. Using the SiW dataset, frames were extracted at 1
frame per second and face detection was performed based on
the annotations provided. A random scaling of the bounding
box for SiW was also performed to provide some background
information and improve the diversity of facial images. The
facial images from three datasets were resized to 224 × 224
pixels. The official train-test split was maintained for all three
datasets. Table II summarizes the number of training and test
images in each dataset.

This article reports the results using accuracy, Average
Classification Error Rate (ACER) [1] and ROC curve analysis.

APCER =
FP

FP + TN

TABLE II
DATASETS USED IN EXPERIMENTS AND THEIR SAMPLE SIZE IN TRAIN AND

TEST PARTITIONS.

Dataset Train Test
Real Fake Total Real Fake Total

CASIA 527 1760 2287 824 2471 3295
Replay Attack 1689 5261 6950 1928 5645 7573
SiW 14733 26057 40790 12390 22389 34779

BPCER =
FN

FN + TP

ACER =
APCER+BPCER

2

where FP is false positive, TN is true negative, FN is false
negative, and TP is true positive.

V. RESULTS

Intra-dataset and cross-dataset comparisons of the fine-tuned
and fusion models are presented in Table. III and Table.
IV respectively. The results were reported in terms of accu-
racy, AUC and ACER. In the table, ResNet-50 (FC)indicates,
the transfer learning model using the pre-trained ResNet-50
model and ResNet-50 (ALL) is the model which had all the
layers fine-tuned using SiW train set. ResNet-50, VGG-16
and InceptionV3 represent the models with fine-tuned higher
convolutional as well as modified fully connected layers.

TABLE III
PA DETECTION PERFORMANCE OF MODELS IN INTRA-DATASET

EVALUATION USING SIW DATASET

Models ACC (%) ACER(%) AUC
ResNet-50 (FC) 97.53 2.33 0.99
ResNet-50 99.14 1.06 1.00
ResNet-50(ALL) 99.57 0.51 1.00
ResNet-50+CLBP 99.28 0.86 1.00
ResNet-50+HOG 99.27 0.90 0.99
ResNet-50+DoG 99.28 0.87 1.00
ResNet-50+FFT 99.28 0.89 0.99
ResNet-50+VGG-16 99.51 0.64 1.00
ResNet-50+Inception V3 99.23 1.01 0.99
ResNet-50 +VGG-16+ InceptionV3 99.53 0.60 1.00

From the Table. III, it is evident that the intra-dataset accu-
racy (99.57%) and ACER (.51%) showed as the best detection
performance when all the layers of the pre-trained ResNet-50
model were fine-tuned using SiW train set. However, ResNet-
50 (ALL) exhibited lower cross-dataset performance when
tested with CASIA and Replay Attack, compared to fine-tuned
models (ResNet-50 (FC) and ResNet-50) and fusion models
(Table. IV). In the cross-dataset evaluation of CASIA, ResNet-
50 showed the best performance. The model accuracy when
tested with CASIA was 88.80%. The ResNet-50 model ex-
hibited ACER of 13.98%. Nevertheless, the ResNet-50 model
showed an accuracy of 85.05% and ACER of 24.61% when
tested with Replay Attack.

The fusion model combining ResNet-50 and VGG-16 deep
features exhibited the best cross-dataset performance (accu-
racy:87.43% and ACER:20.11%) with Replay Attack. Except
with (ResNet-50 (FC) and ResNet-50 (ALL), cross-dataset
evaluation with CASIA and Replay Attack provided accuracy



TABLE IV
CROSS-DATASET EVALUATION PERFORMANCE OF THE MODELS TRAINED ON SIW AND TESTED ON CASIA AND REPLAY ATTACK.

Models CASIA Replay Attack
ACC (%) ACER(%) AUC ACC (%) ACER(%) AUC

ResNet-50 (FC) 75.45 48.89 0.43 74.86 48.78 0.65
ResNet-50 88.80 13.98 0.93 85.05 24.61 0.82
ResNet-50(ALL) 76.21 43.35 0.62 73.52 50.58 0.57
ResNet-50+CLBP 86.94 16.26 0.93 82.32 30.25 0.79
ResNet-50+HOG 86.65 15.47 0.91 84.19 26.62 0.77
ResNet-50+DoG 87.73 15.05 0.93 82.99 28.82 0.69
ResNet-50+FFT 87.34 16.68 0.88 82.83 29.14 0.77
ResNet-50+VGG-16 85.54 15.71 0.92 87.43 20.11 0.82
ResNet-50+Inception V3 87.39 14.20 0.94 85.92 23.05 0.75
ResNet-50 +VGG-16+ InceptionV3 87.00 14.21 0.92 85.60 22.80 0.85

greater than 80% which shows better generalisation. Fusion
models slightly reduced cross-dataset performance when tested
with CASIA. However, compared to ResNet-50 models, fu-
sion models using only deep features showed an increase in
performance when tested with Replay Attack. Cross-dataset
performance with Replay Attack also decreased slightly with
fusion models using hand-crafted features and ResNet-50
features.

ROC comparison of fine-tuned ResNet-50 models is shown
in Fig. 3. The ROC analysis indicates that in intra-dataset
evaluation with SiW, the models correctly detect PAs. Among
the models evaluated cross-dataset, ResNet-50 with fine-
tuned higher convolutional layers and fully connected layers
(ResNet-50 ) demonstrated the highest performance. The fu-
sion models were compared with the ResNet-50 model (Fig.
4). Compared to the ResNet-50 model, the fusion models
have very similar performance, both in intra-dataset and cross-
dataset evaluations. A fusion model based on the deep features
of ResNet-50 and VGG-16 performed better. Fusion models,
however, when formed using ResNet-50 features and hand-
crafted features, showed reduced performance for cross-dataset
performance in comparison to ResNet-50.

VI. DISCUSSION

PA detection evaluates the genuineness of the facial image
captured by the sensor. Therefore, the PA detection task
examines the disparities between fake and real facial images in
terms of features such as texture, image quality and frequency
in hand-crafted feature methods. In a deep learning model,
lower convolutional layers learn domain-specific features and
higher layers learn task-specific features. However, pre-trained
image classification models cannot fully provide the features
required to detect spoofing in RGB domain. The major cause
is that those models were trained to detect the object in the
images using the overall image features rather than checking
the genuineness of the images. Hence, various pre-trained
models were used after fine-tuning using FAS datasets for the
PA detection task.

The experiments presented in this article used the pre-
trained ResNet-50 model, which was fine-tuned using the FAS
dataset, SiW. Fine-tuning was carried out with three different
methods to analyse the performance (Section. III). Among

the three methods used to fine-tune the pre-trained ResNet-
50 model, the best was fine-tuning the higher convolutional
layers and fully connected layers, which provided impressive
performance in intra-dataset and cross-dataset evaluations as
in Table. III and Table. IV.

TABLE V
COMPARISON OF THE CROSS-DATASET PERFORMANCE OF THE PROPOSED
TASK-SPECIFIC LEARNING METHOD WITH SOTA METHODS. THE MODELS

WERE TRAINED USING SIW DATASET AND TESTED USING CASIA.

Model ACER(%)
FAS-TD-SF [31] 39.4
LGON [32] 20.56
Fusion model 14.20
ResNet-50 (Ours) 13.98

Domain-Specific Units (DSU) [5] have been used to achieve
domain adaptation in PA detention fine-tuning FR models
using multi-modal data. Nonetheless, higher convolutional
layers provide task-specific features. Therefore the present
article used a pre-trained ResNet-50 model, after fine-tuning its
higher convolutional layers, and fully connected layers using
only the RGB FAS dataset to extract task-specific general-
isable features. This fine-tuned model exhibited performance
comparable to the SOTA methods in intra-dataset as well as
cross-dataset evaluations ( Table. V ). The fine-tuned model
was also compared with fusion models, where extracted deep
features from this fine-tuned model were combined with either
hand-crafted features or deep features, extracted from fine-
tuned VGG-16 and InceptionV3 models.

Task-specific features should be learned for better-unseen
attack detection in FAS. It is a known fact that higher con-
volutional layers provide task-specific features. Hence, fine-
tuning higher convolutional layers can enable the extraction of
task-specific features which are essential for spoof detection
tasks to attain generalisation. In Table. V, two SOTA methods
are compared with the proposed fine-tuned and fusion models
in this article. The considered methods used similar train-test
dataset combinations in cross-dataset evaluation. It is evident
from the cross-dataset performance ACER values that fine-
tuned ResNet-50 in this article performs better compared to
FAS-TD-Sf [31] and LGON [32]. However, both fine-tuned
and fusion models perform slightly lower than LGON model
in cross-dataset evaluation with Replay Attack.
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Fig. 3. ROC comparison of fine-tuned ResNet-50 models trained on SiW train set and tested on (a). SiW (b). CASIA and (c). Replay Attack
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Fig. 4. ROC comparison of fine-tuned ResNet-50 and corresponding fusion models trained on SiW train set and tested on (a). SiW (b). CASIA and (c).
Replay Attack

Both CASIA and Replay Attack datasets performed better
with models using deep fine-tuned features and their fusion
rather than fusion models with hand-crafted features, showing
that models using deep fine-tuned features are more effective
in PA detection and generalisation. It also helps to avoid the
disadvantages of using hand-crafted features and their extrac-
tion. Fine-tuning higher convolutional and fully connected
layers of the deep pre-trained models using FAS data for
FAS increases the generalisation using the inherent feature
extraction capability of the deep CNN model.

VII. CONCLUSION

An FPAD method that fine-tunes higher convolutional lay-
ers of deep pre-trained models is presented in this article.
These fine-tuned models were used for extracting deep fea-
tures to form fusion models. Fusion models were formed
by combining deep fine-tuned features either with hand-
crafted features or with deep features from other fine-tuned
models. SIW dataset was used for fine-tuning the models.
CASIA and Replay Attack cross-dataset evaluations showed
that fine-tuning the higher convolutional layers of the pre-
trained ResNet-50 model would facilitate better task-specific
feature learning. Fusion models using extracted features from
fine-tuned ResNet-50, VGG-16 and Inception V3 performed
better than the fusion model combining fine-tuned ResNet-50
features with hand-crafted features, in intra-dataset and cross-
dataset evaluations. This illustrates that fine-tuning higher con-
volutional layers provide task-specific features, which in turn
improves generalisation in FPAD compared to hybrid models
and transfer learning. In order to test the effectiveness of this

task-specific feature learning approach, more deep pre-trained
models will be used after fine-tuning. In order to advance the
generalisability of FPAD, future research should incorporate
many datasets to facilitate more extensive intra- dataset and
cross-dataset evaluations. In order to improve generalisability,
the method will be evaluated after including custom losses.
Feature selection and more interpretable classifiers such as
gradient-boosted decision trees could also be explored in
future research.
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