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Abstract: This study addresses a significant research gap related to hydrate formation in subsea gas
pipelines, with a specific focus on deposition rates during shutdown scenarios, which has received
limited attention in previous studies. Past research has employed various methodologies, including
experimental, analytical, and computational fluid dynamics (CFD) approaches, to predict hydrate
formation conditions, but none have tackled the prediction of hydrate deposition during shutdowns.
In this study, we employ a multiple linear regression modeling approach using the MATLAB re-
gression learner app. Four distinct regression models were developed using data generated from
81 CFD simulations, utilising a 10 m length by 0.0204 m diameter 3D horizontal pipe model in Ansys
Fluent, as previously developed Through cross-validation against experimental data, the standard
linear regression model emerged as the most reliable choice for predicting hydrate deposition rates,
providing predictions within £10% uncertainty bounds of experimental results up to pressures of
8.8 MPa at hydrate-forming temperatures. The uniqueness of this new model lies in its ability to
estimate the risk of hydrate deposition in subsea gas pipelines, especially with low gas flow rates and
during shutdown periods, which are critical for maintenance planning. Furthermore, by estimating
depositional volumes, the model predicts hydrate slurry volumes at receiving facilities, contributing
to energy sustainability and benefiting gas transport pipeline operators, particularly in aging gas
fields with declining production.

Keywords: hydrate deposition rate; linear regression modelling; subcooling temperature; gas
pipeline; pipeline diameter

1. Introduction

The importance of addressing gas hydrates in pipelines for both energy sustainability
and industry applicability remains a continuous research concern. This reflects the ongoing
efforts and focus within the energy industry and the scientific community to find solutions
and develop strategies for managing gas hydrates to ensure the efficient and sustainable
transportation of energy resources. Efforts to develop predictive models and favour cleaner
energy sources such as natural gas contribute to achieving more sustainable energy practices
within the oil and gas sector. The formation of hydrates in subsea gas-dominant pipelines
continues to obstruct the safe flow of gas to processing plants. Hydrate deposition occurs
very fast within the first hour of hydrate formation, and can plug the pipeline more
quickly when large mass of hydrates are detached from the wall by sloughing events [1].
Therefore, estimating the deposition rate of hydrates allow for the estimation of the volume
of hydrates deposited and the severity of hydrate plugging events within a given period of
pipeline operation. The emphasis on predicting hydrate deposition rates has been studied
using experiments [2—4], analytical models [5,6], and CFD models [7,8]. The experiments
have provided the basis for understanding the flow parameters influencing the deposition
rates of hydrates in gas pipelines through parametric analysis of the effect of subcooling
temperature, water volume fraction, gas velocity, and pipeline diameter. Therefore, it is
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possible to formulate a multiple linear regression model where hydrate deposition rate is
the dependent variable. Previous studies adopted machine learning regression modelling
of hydrate formation equilibrium temperature and pressure [9-14]. The multiple regression
approaches implemented in the cited literature include the use of genetic algorithm (GA),
least square support vector machine (LSSVM), and support vector machine (§VM). Recently,
hydrate volume fraction was predicted using regression modelling [15]. Again, Yu and Tian
(2022) [16] adopted random forest, naive Bayes, and support vector regression to determine
hydrate formation conditions for pure and mixed hydrate-forming gases. However, no
regression modelling approach has been adopted to specifically predict the deposition
rate of hydrates in gas pipelines. The results of the improved hydrate deposition rate
CFD model in our previous publication [7] compared more favourably with experimental
data in relation to existing models [6,17], especially at low gas velocities. Hence, the CFD
model has been adopted in simulations for this study. Also, in contrast to current machine
learning models that focus solely on predicting the conditions for hydrate formation, the
CFD model goes a step further by predicting hydrate depositional rates. This improvement
aims to enhance routine maintenance planning for gas pipelines prone to hydrate formation.
Estimating the depositional volume in L/min, as recommended in previous experimental
studies [2,4], enables us to approximate the volume of hydrate slurries expected at the
receiving facility. This study’s specific contribution to knowledge lies in quantifying and
estimating the risk of hydrate deposition in gas pipelines, particularly with lower gas flow
rates and during shutdown scenarios. Aging gas fields experiencing declining production
encounter low gas flow rates, which significantly impact routine maintenance planning.
By utilising our model to estimate the severity of hydrate formation during shutdown
scenarios, gas transport pipeline operators in the oil and gas industry can benefit from
improved decision-making and enhanced flow assurance.

Regression modelling is implemented when the data to be observed are not easily acces-
sible and measured from the field, and this is applicable to measuring the deposition rate of
hydrates in industry-scale gas pipelines. The following necessary conditions for the formation
of natural gas hydrates are stated in the literature [18] as follows: firstly, a specific combination
of low temperature and high pressure must be present, determined by the composition of
the gas. Secondly, gas hydrate formers such as methane, ethane, and carbon dioxide need
to be present. Thirdly, an adequate amount of water is required. Additionally, the literature
suggests that two other factors equally contribute to hydrate formation: turbulence resulting
from high flow velocity and agitation, and the presence of nucleation sites such as elbows,
tees, and valves, as well as free water, which facilitates a favourable water—gas interface for
nucleation. However, based on the parametric studies conducted in the literature [3,4,6], this
study proposes a regression model with subcooling temperature (AT), pipeline diameter (D),
water volume fraction (xy), and gas velocity (V) as predictors, while the deposition rate of

hydrates (Qpq) is the dependent variable. This is to further ensure that the prediction of hydrate
deposition rate is handy in the field, so that the model can be used as a quick predictor of
the risk of pipeline plugging by hydrates. The prediction of hydrate deposition rates at lower
gas velocity of 4.7 m/s by the CFD model developed in our previous paper [7] were more
representative of experimental predictions than the existing analytical model by [6]. Hence,
the data used in developing the multiple regression model have been simulated from the
validated CFD model for predicting the deposition rate of hydrates. Another driver for this
study is the need to predict the deposition rates of hydrates when the pipeline is shut down if
depressurisation is not affected. The deposition of hydrates has been reported in gas pipelines
during shutdown due to unforeseen operational problems without the need to depressurise
the line [19-22]. However, it is not possible to simulate this condition using CFD by setting
the gas flow velocity as “zero”. Hence, with a multivariate regression model, the deposition
rate can still be predicted by setting the velocity term to zero. Usually, cooldown times are
up to 24 h [21] or 48 h [19], and it is important to estimate the amount of hydrates deposited
within this shutdown period. Multiple regression modelling is implemented to identify the
best combination of the predicting variables [23] when the independent variables are more
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than one [24]. In this study, the combination of the predictor variables has been selected based
on the parametric sensitivity simulations conducted in our previous paper [7] and the effects of
subcooling temperature and gas velocity on the empirical deposition of rates of hydrates [3,4].

2. Method

This study develops an approximating function for the deposition rate of hydrates in
gas-dominant subsea pipelines, operating in environmental temperature conditions that favour
hydrate formation. The main assumption in this study is that the rate of hydrate deposition in
a pipeline can be accurately predicted by the gas velocity, water volume fraction, subcooling
temperatures, and pipeline diameter from empirical evidence [2—4,6,7]. Stable hydrates form
when the system temperature is below the hydrating equilibrium condition for stable hydrates.
The subcooling temperature reduces the gas temperature by the subcooling value into the stable
hydrates zone. The equilibrium pressure must be lower than the operating pressure of 8.0 MPa
and the pipeline temperature must be less than 292 K to ensure that hydrates are forming
before using this regression model. The equilibrium hydrate formation pressure equation
for methane temperature ranging from 0-25 °C by Sloan and Koh (2007) [25] is adopted to
compute the minimum pressure required for hydrate formation. Stable hydrates are formed
at temperatures below 292 K for methane hydrates as discussed in the literature [2,7]. Hence,
the regression model is for natural gas with methane gas above 82% by composition. The
model is based on the parametric simulations conducted using the validated CFD model for
predicting the deposition rates of hydrates mentioned earlier. The data are made up of 81 x 5
matrix data table with a total of 405 data. The basis for the selected variables is discussed as
follows based on evidence in the literature [2-4,6,7]: (i) gas velocity defines the nature of fluid
flow—laminar, transitional, or turbulent; (ii) hydrate formation, agglomeration, and pipe wall
deposition are affected by the gas velocity; (iii) increase in gas velocity under the same pressure
and subcooling temperature increases the deposition rates of hydrates; and (iv) increasing the
subcooling temperature of the pipeline at constant gas velocity also increases the deposition
rate of hydrates. Also, the additional outcome of the CFD simulations proposes that: (i) an
increase in pipeline diameter under the same gas flow condition increases the deposition rate
by similar factor; and (ii) an increase in the volume fraction of water reduces the deposition rate
of hydrates. The developed regression model was validated with experimental studies. The
stages of the adopted method In the development, validation, and application of this regression
model are presented in Figure 1 below.

Define Outcome Variable and Multiple
Regressor Variables

Conduct Numerical Simulation with Select Final Multiple Linear
Validated CFD Model for Varying Velocity, Regression Model
Subcooling Temperature, Pipe Diameter
and Water Volume Fraction

A

Perform Parametric Analysis

Train Multiple Linear Regression
Models in MATLAB Regression Leaner
App, Assess and Export Results

l

Estimate Hydrate Deposition Rates and
Validate Models with Experimental Data

Figure 1. Methodology.
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2.1. Defining Variables and Data Generation

The data for the regression model development were obtained from the CFD simula-
tions. The measured variables are defined based on the parametric studies conducted in
the literature [7]. The validated CFD model is a 10 m length by 0.0204 m diameter pipe and
a wall thickness of 0.0012 m. Given that the pipeline is constructed from steel, in order to
mitigate the impact of pipe wall thickness on subcooling temperature, the entire wall was
adjusted to match the hydrate-forming temperature. Initial multiphase flow is made up
of natural gas and water. The simulation was conducted in a commercial CFD software—
ANSYS Fluent, version 2020 R1. The architecture of the computer for the simulations is
designed with Intel Xeon Gold 6230 quad-core 2.10 GHz CPU and RAM of 16 GB. Input
variables are operating pressure, temperature, water volume fraction, and gas velocity. This
research utilises the Eulerian—Eulerian multiphase framework, incorporating boundary
conditions and physical flow parameters primarily to improve the interaction between gas
and water interfaces. Previous computational fluid dynamics (CFD) simulations focusing
on gas hydrates have favoured the Eulerian-Eulerian approach as the most suitable method
for enhancing interfacial interactions between gas and water [26,27]. Since hydrate deposi-
tion on the pipe wall is a near-wall viscous effect, the realisable k—¢ two-equation turbulence
model was employed to improve the modeling of near-wall viscosity in predicting the
deposition of hydrates [7,28]. In order to improve the efficiency of multiphase flow in
the oil and gas sector, pipeline designs aim to minimise frictional losses and pipe wall
erosion, thus reducing pressure drops. Consequently, the study enhanced the stability of
the computational fluid dynamics (CFD) simulation by selecting a mesh size that yielded
the least noticeable pressure drop, as determined through a sensitivity analysis of the mesh
grid. This mesh sensitivity analysis was conducted at specific conditions: an inlet velocity
of 10 m/s (equivalent to a flow rate of 3.3 kg/s), a temperature of 292 K, and a pressure of
8.8 MPa. The simulation was conducted for different ranges of pipe diameter, gas velocity,
subcooling temperatures, and water volume fraction. A total of eighty-one (81) deposition
rates of hydrates were predicted from 81 simulations. The sample size was determined as
per the recommendation in the literature [29,30] using G*Power software, version 3.1 [31],
with a conservative effect size of 0.30 because the CFD model was already validated with
experimental results, and statistical power of 95%, which yielded a minimum sample size of
72. Detail documentation on the development and validation of the CFD model is already
discussed in the literature [7,32]. The input variables for the CFD simulations are defined
in Table 1 as follows.

Table 1. Range of input data for CFD simulations.

Variables Range
Gas Velocity (m/s) 2.0-8.8
Subcooling Temperature (K) 1.0-9.0
Water Volume Fraction (-) 0.02-0.12
Pipe diameter (m) 0.0204-0.0612
Hydrate Deposition Rate (L/min) 0.0370-0.7030

2.2. Regression Model Development

The regressor variables are as defined earlier, including the subcooling temperature
(AT), pipeline diameter (D), water volume fraction (), and gas velocity (V) as predictors,
while the deposition rate of hydrates (Qpq) is the outcome variable. This is represented in
Figure 2, below.
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Figure 2. Interaction of regressor variables with the deposition rate of hydrates.

Selecting a multiple regression model with the most appropriate explanatory and
predictive power is difficult and depends on the selection of an appropriate set of variables
that defines the expected response. In MATLAB, multiple regression modelling can be
achieved by the standard linear regression, robust linear regression, interaction linear
regression, and stepwise linear regression. The standard linear model is also known as
ordinary least square (OLS) estimation of the intercept and coefficients to minimise the error
sum of the squares [29]. However, there are instances where the data sets contain values
that have high discrepancy from the expected outcome, also known as outliers. When this
occurs, as with some experimental outcomes, an alternative approach using robust linear
regression may be adopted. The robust linear regression modelling approach produces
improved estimates by minimising the weights given to outlying cases when calculating
the regression coefficients [29]. Thus, the presence of outliers in the data sets is ruled out
when the outcome of the robust linear regression model compares favourably with the
predictions of the OLS model. Both models are represented in Equation (10). The stepwise
linear regression modelling approach in Equation (11) was considered to enhance the
predictability of hydrate deposition rates in MATLAB. In the stepwise regression approach,
one variable at each stage is selected from a group of predictors that produces the highest
coefficient of determination (R2). The selected variable is the regressor that produces the
largest value of F statistic [24], implying that variables are either added or removed at each
step leading to an iterative sequence of regression modelling. However, one problem with
this approach is the high dependence on chance and the likely underestimation of predictive
confidence intervals [29]. In the equation, two sets of interactions between two regressors
were included with the four additive regressors in the OLS equation (Equation (10)). The
last approach adopted is the interaction linear regression model in Equation (12). In the
interactions approach, additional sets of interacting variables are added to the additive
models of the original regressors as in the OLS. Here the interaction predictors are products
of the original predictors [29]. The regression modelling approach adopted in this study
did not consider a squared form of input variables to prevent over-fitting, where the
model fits the training data too closely. Again, when squared terms are introduced into
linear regression models, the assumption of a linear relationship between the predictor
variables and the response variable can be undermined and the model becomes nonlinear.
Furthermore, our adoption of a linear modelling approach is supported by the experimental
results in the literature [2,4] used for the model validation.

2.3. Model Selection Criteria

The adopted model for the parametric studies was based on a combination of five
model selection criteria, including the error sum of squares (SSg), adjusted R-squared
(Rzadj.), Akaike information criterion (AICc), standard F test, and root of mean square
error (RMSE). Statistical significance was determined using the p-value at alpha («) level
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of 0.05. Lowering the significance level below 0.05 may shift the focus towards statistical
significance at the expense of practical significance in the study, primarily due to the
model’s limited ability to detect lower deposition rates. This shift can reduce proactive
predictability and increase the vulnerability of the pipeline to hydrate plugging events.
Each criterion is discussed further to provide insight into the parameters that influenced
the predictive power of the chosen model.

Error sum of squares (SSg): In regression analysis, the sum of squares is used to
explain the dispersion of the data sets around a mean. The residual sum of squares, or error
sum of squares as used in this study, is based on the residual after the model-fitting process.
SSg represent the regression sum of squares of the data set that predicted the model-fit
regression line. The total sum of squares (SSt) describes the total variability in the research
data. The estimation of SSg, SSg, and SS are defined in Equations (1)—(3) below.

SSe =Y (vi— 9i)° @

i=1
SSk=Y (9, —9)° @)

i=1
SSt=SSp+SSp =Y (v — )’ ®)

i=1

where SSg is the regression sum of squares; 7;, is the predicted value per data point; y;,
is the original target value; ¥/ is the mean of the data set representing the regression line
prediction, and y; — 7, is the deviation of the predicted value per data from the mean.

Adjusted R-squared (Rzadj.): The coefficient of determination (R?) is determined from
the ratio of the SSg and SSt (Equation (4)). Since it is a ratio where the denominator is
always higher or equal to the numerator, the value is from 0 to 1. The value of R? indicates
the extent to which the variance in the predicted variable is dependent on the predictor
variables. However, because the value of R? increases as new variables are added to the
regression equation, it is seldom problematic in determining model fit when comparing
models. To overcome this weakness, the R-squared is adjusted (R?adj.) as in Equation (5)
to compensate for this effect, so that the R? value decreases as more predictor variables are
added to the regression model [24], hence guarding against overfitting. Consequently, it is
important to select the predictors that have a higher effect on the variance of the response
variable.

R SS
2 . 2 n—1

where nn — k — 1 is the degree of freedom for the denominator, k represents the numbers of
the measured predictor variables, and #, the total data points.

Standard F test: Another statistical measure for model selection is the standard F test,
which tests the significance of the obtained value of the R?. It is used to determine if the
set of predictor variables statistically explain a significant amount of the outcome. Higher
values of F indicate better model performance. F test is estimated from Equation (6).

R*(n—k—1)
F=—F——F—

k(1 —R?) ©)
where k represents the numbers of predictor variables and n — k — 1, the statistical degree
of freedom. Similarly, the p-value measures the statistical significance of the regression
model or individual coefficients within the model and assesses the probability of obtaining
the observed regression coefficients. The p-value is not directly used in model selection;
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however, it does provide evidence of the strength of the contributing variables in regression
analysis.

Root of mean square error (RMSE): This model selection measure is the standard
deviation of the prediction errors or residuals. The RMSE provides insight into how far the
error is from the prediction. Models with lower RMSE have higher predictive power. The
RMSE is estimated from Equation (7) below, where the symbols #, §, and y; are as defined

earlier.
n

RMSE = |3 (: — yi)? @)
i—1

Akaike information criterion (AICc): The AICc enhances the selection of the most
fit-for-purpose model because it compares the quality of each model against the other
models. It measures the estimated prediction error and the relative quality of a set of
data. The smaller case “c” in Equation (9) indicates that the calculated AIC value has
been corrected for smaller samples to prevent overfitting because of the inclusion of both
stepwise and interaction models in this study. The AIC criteria is generally an estimation
of the information loss because of the presence of the likelihood function, L. This index
also take into account the number of regression coefficients being tested [29]. When the
experimental data sets for cross-validation are sparse, the AICc have been found to be more
reliable than the F test [33]. The smaller the value of AICc, the better the model fit. AIC is

estimated using Equation (8).

AIC =2k —2In(L) (8)
AlCc = AIC + 242k )
- n—k—1

where L is the likelihood function, k is the numbers of predictor variables,and n — k — 1,
the statistical degree of freedom, implying that the higher the variables, the higher the AIC
value. Thus, from the discussion above, the model selection criteria are defined as follows
(Table 2).

Table 2. Criteria for model selection.

Parameter Criteria
R? adj. Higher
SSE Lower
RMSE Lower
AIC, Lower
F-Test Higher

A simple ranking method was adopted, where the most favourable of the four models
was awarded a score of 4 and the least favourable model was awarded a score of 1 on each
selection parameter. The model with the highest sum was adopted for the prediction of
hydrate deposition rates.

3. Result, Validation, Model Selection, and Discussion
3.1. Results

The data retrieved from the CFD simulation were trained in the regression learner
application in MATLAB version R2020a and the coefficient for each predictor variable was
recorded as presented in Table 3, for each regression model investigated. The p-value for
each coefficient is also indicated as defined below (Table 3).
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Table 3. Coefficients of predictor variables for each regression model.
Parameter Standard Linear Robust Linear Stepwise Linear In’;ja.ractlon
Estimates Regression Regression Regression R 1nea'r
egression
Bo —0.0845 * —0.0615 —0.4770 *** —0.0129
Bv 0.0163 *** 0.0131 *** 0.0156 *** —0.0105
BAT 0.0252 *** 0.0240 *** 0.0531 *** —0.0268
Bz —3.4127 *** —3.3872 *** 2.5804 2.2833
Bp 7.3412 *** 7.5444 *** 12.3156 *** 7.0976 ***
BAT. Botw - - —0.4020 * —0.0372
Baw. Bp - - —77.0638 *** —80.6991 ***
Bv. Batr - - - 0.0049
Bv. Baw - - - —0.2666
Bv. Bp - - - 0.2793
Bar. Bp - - - 0.5397 *

¥p<0.1;,* p<0.05,** p<0.0L.

At alpha («) level of 0.05, all the predictor variables have coefficients with a high level
of significance for the standard linear and robust linear regression models. For the stepwise
linear regression model, the coefficient for the water volume fraction is not statistically
significant. For the interaction linear regression model, only the coefficients for pipeline
diameter and the interaction between water volume fraction and pipeline diameter are
statistically significant. The corresponding regression equations based on the coefficients in
Table 3 are of the forms stated in Equations (10)-(12) below. All coefficients are standardised.

Standard and robust linear regression

Qna = Bo+ B,V + BATAT + BpD + Bayter (10)

Stepwise linear regression

Qpa = Bo + B,V + BATAT + BpD + Bayitw + BaTBuwAT&w + BayBpDty  (11)

Interaction linear regression

Qna = Bo + B,V + BarAT + BpD + Buytw + BarBuu ATk + Bay B0 Doty (12)
+BoPaTVT + BoPay, Vitw + BofDVD + BaTppTD

where B is the intercept of the model and ., BaT, Bp, and By, are the partial regression
coefficients of the respective regressor variables—gas velocity (V,m/s), subcooling tem-
perature (AT, K), pipe diameter (D, m), and water volume fraction («,, dimensionless), as
defined earlier. The regression graphs in Figure 3 are the outcome of each model predictions
compared with the original CFD hydrate deposition rates. As seen from the regression
graphs, the R-squared values for interaction linear regression model and the stepwise linear
regression model can have the error of overfitting because of the increase in predictor
variables.

The R? value of 0.867 for the interaction model in Figure 3 outperforms other models.
However, the rejection of the interaction model is based on the use of a combination of
model selection criteria presented in Table 2 and the performance when compared with
experimental data as discussed further in subsequent sections. Absence of outliers is
confirmed from the standard and robust regression models as the calculated R-squared
have approximately similar values of 0.8170 and 0.8134, respectively. In Figure 4, the
residual plots indicate that the residuals reduce as the hydrate deposition rate increases
for both the standard linear and robust linear regression models. The residuals for the
interaction linear and stepwise linear regression models are spread across the deposition
rates when compared to the standard linear and robust linear regression models. The
reduction in prediction error as the deposition rate increases for both standard linear and
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the robust linear models suggests that the predictor coefficients can account for a higher
variance in the deposition rate when the pipeline is most vulnerable, implying further
that both models are highly suitable in capturing higher risks of hydrate plugging events
from deposited hydrates. The most suitable model will be selected after validation with
experimental results.

Standard Linear Regression Model: R 2= 0.8170 0 Robust Linear Regression Model: R 2= 0.8134

Multiple Regression Model Predicted
Hydrates Deposition Rate (I/min)
Multiple Regression Model Predicted
Hydrates Deposition Rate (L/min)

00 01 02 03 04 05 06 00 01 02 03 04 05 06
Actual CFD Model Hydrates Actual CFD Model Hydrates
Deposition Rate (I/min) Deposition Rate (I/min)
0 Interaction Linear Regression Model: R%= 0.8670 0 Stepwise Linear Regression Model: RZ=0.8461

Multiple Regression Model Predicted
Hydrates Deposition Rate (IL/min)
Multiple Regression Model Predicted
Hydrates Deposition Rate (IL/min)

) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ) 0.0 0.1 0.2 03 04 0.5 0.6
Actual CFD Model Hydrates Actual CFD Model Hydrates
Deposition Rate (I/min) Deposition Rate (I/min)

Figure 3. Comparing plots for each regression modelling approach.
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Figure 4. Residuals plots for each regression modelling approach.
3.2. Validation of Models with Experimental Data
In Table 4, the predictive power of each model was validated with experimental data at
lower and higher gas velocities. Most importantly, the sensitivity of the regression models
to changes in subcooling temperatures at a lower velocity of 4.6 m/s were within £10% of
experimental outcomes, compared to the predictions of the analytical model in Di Lorenzo
et al. (2018) [6].
Table 4. Validation of regression models with experimental data.
Input Data Experimental CFD Model Hydrates Predicted Hydrates Deposition Rate (L/min) by Regression Models . )
. Subcooling Water Volume . . Hydr?(.es Del;_“’sm"“ Rates . . . xperiment
SV i cioncy  "PODeSr pepdion (Uminh Umome | Sondad | Rt e s, s
4.6 4.5 0.06 0.0204 0.06 0.06 0.05 0.06 0.09 0.04 Aman et al
4.6 6.0 0.06 0.0204 0.08 0.10 0.09 0.09 0.10 0.08 2016) [4] :
4.6 7.5 0.06 0.0204 0.11 0.13 0.12 0.13 0.11 0.12 (
88 25 0.06 0.0204 0.07 0.06 0.07 0.06 0.05 0.04 Di Lorenzo
88 4.3 0.06 0.0204 0.13 0.13 0.11 0.11 0.10 0.10 1 201'4
8.8 7.1 0.06 0.0204 0.15 0.14 0.18 0.17 0.17 0.18 etal. ( )
8.8 8.0 0.06 0.0204 0.19 0.18 0.21 0.20 0.19 0.20 Bl

In Figure 5, the outcome of the predictive regression models was compared and the R?
value of the standard linear model was the highest. However, the closeness of the R? value
for the standard linear model to the R? values for the other regression models suggests
that the R? is not independently suitable to defend the choice of the final selected model.
This is because the predictor variables in all the models were able to account for more
than 80% variance in the deposition rates of hydrates. The predictions’ goodness of fit is
in the following ascending order: interaction linear regression (0.01349) > standard linear
regression (0.01336) > stepwise regression (0.01078) > robust linear regression (0.006881).
However, only two coefficients of the equation for the interaction linear model were
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significant at p < 0.05. Hence, the most appropriate model is the standard linear regression
model with the highest goodness of fit value of 0.01336. The final model will be selected
after considering other criteria discussed in Table 2.

Standard Linear Regression Model: R 2= 0.9664 Robust Linear Regression Model: R2=0.9337
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Figure 5. Prediction of experimental results by each regression modelling approach.

A further investigation of the predictive power of the regression models along the ex-
perimental data sets suggest close predictions by all models at lower and higher deposition
rates of hydrates (Figure 6). However, as the experimental deposition rate increased to
0.24 L/min, only the standard linear model was able to indicate the capability of higher
out-of-data predictive power. The assumption of homoscedasticity and normality must be
fulfilled in linear regression modelling, else a non-linear approach is adopted [29]. The test
for normality and the consistency of the prediction of the models by fulfilling homoscedas-
ticity was investigated using the normal probability plot (Q-Q plot) in Figure 7. The Q-Q
plot normality test suggests that the predicted results are from the same population if
the plot resembles a straight line [23], The linear nature of all the predicted results also
aligns with experimental outcome, indicating the ability of the models to predict hydrate
deposition rates beyond the training data from the CFD model. The certainty of accurate
predictions as compared with experimental data is observed at 90% confidence interval
on the Q-Q plot in Figure 7a, and indicates higher predictive power at higher deposition
rates above 0.15 L/min. All the predictions are within a 10% prediction band of the normal
probability plot when compared with experimental values as indicated in Figure 7b. The
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selection of a 90% confidence interval and a 10% prediction width was made to guarantee
that the range encompasses observed experimental values.

-o- Experimental Data

0.30 .
-m Standard Linear Model
- Robust Linear Model
0.25 -¥ Interaction Linear Model

-+ Stepwise Linear Model

0.20

0.15

Hydrates Deposition
Rate (L/min)

0.10
0.05

0.00
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Data Set

Figure 6. Comparing predictions by each regression modelling approach with experimental results.
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Figure 7. Normal probability plots. (a) With 90% certainty band. (b) With 10% prediction band.

3.3. Model Selection

The close predictions among the models as discussed in Section 3.2 above show that
the data generated using the CFD model are of experimental quality. In this section, the
preferred regression model was selected using the criteria discussed in Section 2.3. In
Table 5, a comparison of the values for each model fit selection criteria is presented. The
model selection criteria are based on a combination of adjusted R-squared, error sum of
squares, RMSE, AICc criteria, and F test, as defined earlier (Table 2). In Table 6, the model
selection parameters have been ranked in the order that aligns with the criteria for model
selection (Table 2), where 4 is given to the regression model that is most representative of
the set criteria and 1 for the least representative regression model for each model fitness
selection criteria.



Sustainability 2023, 15, 13824 13 of 20

Table 5. Comparing values of each model selection criteria for all regression models.

Standard Linear ~ Robust Linear  Stepwise Linear Inte.ractlon
Parameter . . . Linear
Regression Regression Regression .
Regression
R2adj. 0.9597 0.9204 0.9264 0.8547
SSE 0.0007 0.0011 0.0015 0.0017
RMSE 0.0106 0.0138 0.0156 0.0168
AlCc —50.730 —47.080 —45.300 —44.300
F-Test 5.752 2.817 3.063 1.452

Table 6. Parameter ranking based on fitness of each regression model to experimental results.

Standard Linear =~ Robust Linear =~ Stepwise Linear Inte‘ractlon
Parameter . . . Linear
Regression Regression Regression .
Regression
R%adj. 4 2 3 1
SSE 4 3 2 1
RMSE 4 3 2 1
AlCc 4 3 2 1
F-Test 4 2 3 1
Total Score 20 13 12 5

The standard linear model with the highest sum of model fit score in Table 6 is
selected. Again, a comparison of the normalised violin plots in Figure 8, which visualise
the distribution of numerical data, indicates that the shape of the standard linear model
is a close match to the experimental data. Also, from Table 3, only the coefficients of the
standard linear model exhibit statistical significance at an alpha level of 0.05.

Stepwise Linear Model-
Interaction Linear Model-
Robust Linear Model— -<>-
Standard Linear Model
Experimental Data

[T T T T T T T T T [TTITTTTTIT[TITITTITITITITI ]
-1 0 1 2
Normalized Predictions Compared

with Experimental Results

Figure 8. Normalised violin plots.

Therefore, the representative equation for the standard linear model based on the
coefficients in Table 3 are presented below.

Qyg = 0.0163V + 0.0252AT — 3.4127a, + 7.3412D — 0.0845 (13)

In Table 3, the p-value of the measured variables (pipe diameter, gas velocity, sub-
cooling temperatures, and water volume fraction) for the standard linear model are <0.01,
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suggesting stricter predictability. The relative impact of each predictor variable on hydrate
deposition rate can be inferred from Equation (13), as presented in Table 7.

Table 7. Relative impact of each predictor variable on hydrate deposition rate.

. . Sensitivity (other Variables Impact on Hydrates
Predictor Variabl ore
redictor variable Held Constant) Deposition Rate
. Increase Increase
Gas Velocit
y Decrease Decrease
. Increase Increase
Subcooling Temperature
& p Decrease Decrease
Pipeline Diameter Increase Increase
Decrease Decrease
. Increase Decrease
Water Volume Fraction Decrease Increase

As indicated in Table 7, velocity, subcooling temperature, and diameter have increas-
ing effect, while water volume fraction has a reducing effect on the deposition rate of
hydrates. Hence, increasing the velocity while keeping other variables constant will in-
crease the deposition rate of hydrates. Again, at constant velocity, increasing the subcooling
temperature increases the deposition rate of hydrates. Similarly, keeping other variables
constant, the deposition rates of hydrates increase with an increase in pipeline diameter.
This is due to the increase in the volume of gas [7]. Finally, as other variables are constant,
increasing the water volume fraction enhances transportability while reducing deposition
rate. Again, the gas velocity, volume fraction of water, and the pipe annulus approaches
zero as the hydrate deposition rate increases. Consequently, the stability of hydrates in the
pipe becomes solely dependent on the subcooling temperature, implying that increasing
the temperature of the pipeline can reduce the thickness of deposited hydrates in a gas
pipeline. Another important feature of this model is being able to predict the deposition of
hydrates when the velocity is set to “0”, as applicable during pipeline shutdown scenario.
Thus, this regression model satisfies the theoretical position on hydrate deposition and
transportability in subsea gas pipelines (e.g., Aman et al., 2016; Berrouk et al., 2020; Sule
etal., 2015 [4,27,34]). As indicated earlier, the practical application of the regression model
developed in this study is premised on the assumption that the gas temperature is below
the hydrate equilibrium temperature of 292 K for natural gas with predominantly methane
compositional value above 80%. The operating pressure for the CFD model was set at
8.8 MPa for all simulations. Lower pressures predicts lower deposition rates [19]. Hence,
the prediction of this model is proactive and represents the worst-case scenario at operating
pressure less or equal to 8.8 MPa.

3.4. Discussion

The study evaluated multiple regression models, including standard linear, robust
linear, stepwise linear, and interaction linear regression models, to predict hydrate deposi-
tional rates in gas pipelines. The study identified key predictor variables affecting hydrate
deposition rates in gas pipelines including velocity, subcooling temperature, diameter, and
water volume fraction. These variables have been simulated with a validated CFD model
in the literature [7]. Model selection criteria, including adjusted R-squared, error sum of
squares, RMSE, AICc, and F test, were used to select the most suitable regression model. The
results show that all models, including the standard linear model, are capable of accurately
predicting hydrate deposition rates, even beyond the training data. The analysis further
reveals that the standard linear model consistently outperforms other models based on the
selection criteria. Among these models, the standard linear model with the highest sum of
model fit score was adopted. The standard linear model has an impressive R-squared value
of 0.9597, indicating a strong ability to explain the variance in hydrate deposition rates. To
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assess the reliability of the regression models, validation was conducted using experimental
data, especially at both lower and higher gas velocities. The closeness of the standard linear
model predictions to experimental outcomes highlights the models” accuracy. In particular,
the regression models demonstrate a high degree of sensitivity to changes in subcooling
temperatures at a lower gas velocity. Again, the selected standard linear model indicates
that increasing velocity, subcooling temperature, and diameter have a positive effect on
hydrate deposition rates, while increasing the water volume fraction reduces deposition
rates. Most importantly, the model can predict hydrate deposition even during pipeline
shutdown scenarios, thus, providing the necessary flow assurance information during the
planned start-up of hydrate-forming gas pipelines.

4. Practical Application of Regression Model

The parametric analysis in this section was performed to investigate the practical
application of the selected regression model. These analyses include: (i) the prediction
of the deposition rates of hydrates in pipeline shutdown scenarios, (ii) predicting the
influence of change in environmental temperature on the deposition rate of hydrates, when
the integrity of the pipeline coating and heating system is questionable, (iii) predicting the
effect of change in gas velocity based on change in actual gas production, especially at low
flow velocity and constant subcooling temperatures, (iv) the influence of pipeline size on
hydrate deposition rate during pipeline sizing in design phase, and (v) the influence of
water volume fraction on the deposition rate of hydrates.

4.1. Pipeline Shutdown Planning

Estimating the deposition rate of hydrates at zero gas velocity can assist in determining
how long a gas pipeline that is experiencing hydrate formation should be shut down. The
change in the deposition rate of hydrates was predicted by the model in Figure 9 at the
subcooling temperature of 7.0 K, water volume fraction of 0.06, and pipeline diameter of
8 inches (0.204 m).

1.5,
1.50-

1457

Hydrates Deposition
Rate (L/min)

1.40-

1.35+———rr—r

0.0 20 40 60 80 100
Gas Velocity, V(m/s)

Figure 9. Change in the deposition rate of hydrates as the gas velocity increases at constant subcooling
temperature of 7.0 K, water volume fraction of 0.06, and pipeline size of 8 inches (0.204 m).

An increase in velocity while keeping the subcooling temperature constant increases
the hydrate deposition rate. From Figure 9, at the subcooling temperature of 7.0 K and
“zero” gas flow velocity, which is the scenario when the line is shut down, the gas pipeline
still experiences hydrate deposition at the rate of 1.385 L/min. Hence, the deposition of
hydrates is expected if the line is shut down at the pressure and temperature conditions that
encourage hydrate formation. This model provides a means to study hydrate deposition
when the pipeline is shut down due to process failure or for other maintenance within
the gas plant or maintenance of subsea production facilities. Depressurising the pipeline
outside the hydrate formation temperature and pressure zone is advised in this instance.
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However, if it is impossible to keep hydrates out of the line, the total deposition can be
estimated by multiplying the deposition rate with the duration that the line was shut
down to estimate the expected hydrate deposits in the line. The total expected volume
of hydrates is the sum of the deposited and dispersed hydrates. From the indication in
the literature [3,5], about 33.3% of hydrates formed are deposited in the wall. Hence,
an approximate total expected hydrate in the pipeline can be obtained by multiplying
the deposition rate estimated by this model under a shutdown scenario by a factor of
3. The predicted deposition rate of hydrates by the model can be a guide for pigging or
chemical injection. Evidence in the literature suggests that the growth of hydrates during
shutdown is relatively slow [19,21], leading to lower deposition rates as observed in the
model prediction in Figure 9.

4.2. Effect of Change in Subcooling Temperature on Hydrate Deposition

This sensitivity is important in determining the cool-down temperature during a
shutdown scenario to prevent hydrate formation and deposition. Also, during change
in the surrounding subsea temperature, the effect on the deposition of hydrates can be
estimated from the model. The velocity was set to 4 m/s, 0.06 water, diameter of 0.204 m,
and the subcooling temperature was varied from 3 K to 9 K. From Figure 10, the deposition
rate of hydrates increases as the subcooling temperature increases and vice versa, in
agreement with experimental results.

2.004
1.80
1.60

1.40{/

1.20

Hydrates Deposition
Rate (L/min)

1'00-""l""l""l""l""l
0.0 2.0 4.0 6.0 8.0 10.0

Subcooling Temperature, AT (K)

Figure 10. Change in the deposition rate of hydrates as the subcooling temperature increases at
constant gas velocity of 4 m/s, water volume fraction of 0.06, and pipeline size of 8 inches (0.204 m).

4.3. Effect of Change in Water Volume Fraction on Hydrate Deposition

This sensitivity studies the effect of increasing the volume fraction of water on the
deposition rate of hydrates. In theory, the deposition rate of hydrates reduces but hydrate
slurry forms instead, which can enhance transportability [7]. At a subcooling temperature
of 7.0 K, constant velocity of 4 m/s, and pipeline diameter of 0.204 m, the volume fraction
of water was varied from 0.06 to 0.12 to obtain the regression plot in Figure 11.

As expected from theory, as the water volume fraction increase in Figure 11, the
deposition rate of hydrates decreases, implying that in gas lines with high water volume
fraction, the probability of having hydrate deposits on the wall of the pipeline is minimal.
This effect was studied in Berrouk et al. (2020) [27], where the flow of hydrate slurry was
enhanced by increasing the water volume fraction. Most importantly, the model developed
in this study can provide insight into the maximum water volume fraction to prevent the
deposition of hydrates, which would have required much computer simulation effort to
estimate using CFD.
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Figure 11. Change in the deposition rate of hydrates as the water volume fraction increases at
constant gas velocity of 4 m/s, subcooling temperature, and pipeline size of 8 inches (0.204 m).

4.4. Effect of Change in Pipeline Size on Hydrate Deposition in Design Phase

This effect was predicted in Figure 12 at the subcooling temperature of 7.0 K by keeping
the gas velocity constant at 4 m/s, and volume fraction of water at 0.06, while the pipeline
diameter is in the range of 4 inches (0.102 m) to 16 inches (0.408 m). The change in pipeline
diameter increases the deposition rate of hydrates because of the availability of more gas
in the pipeline, implying also that if the flowrate is kept constant and the pipe diameter
increases, there is a reduction in flowing pressure.

4.00-
3.00-

2.001
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Hydrates Deposition Rate (L/min)

0'00 L L DL L LA L L L L L L L L B |
0.0 0.1 0.2 0.3 0.4 0.5

Pipe Diameter (m)

Figure 12. Change in the deposition rate of hydrates as the pipe diameter increases at constant gas
velocity of 4 m/s, subcooling temperature, and water volume fraction.

5. Conclusions

Aside from the experimental, analytical, and CFD approaches, previous studies have
adopted machine learning regression modelling of the temperature and associated equilib-
rium pressure condition for hydrate formation. However, there are no regression models
that can predict the deposition rate of hydrates in gas pipelines, especially to predict
hydrate deposition during a shutdown scenario. This study closed this gap by adopt-
ing a multiple linear regression modelling approach using MATLAB regression learner
app to train 81 data sets generated by CFD simulation. Four different regression models
were developed and the outcome of the cross-validation using experimental data led to
the choice of the standard linear regression model, with predictions that compared more
favourably with the experimental validation data. Since lower operating pressures leads



Sustainability 2023, 15, 13824

18 of 20

to lower formation rates [19], the deposition rates of hydrates predicted by this model
are proactive and represent the worst-case scenario at the model operating pressure of
8.8 MPa. The uniqueness of our model lies in its ability to predict hydrate depositional
rates in a gas pipeline, surpassing existing models [6,17] by achieving higher comparability
with experimental data at a low gas velocity. Unlike current machine learning models
that solely forecast temperature conditions for hydrate formation, we go a step further
by predicting hydrate depositional rates. This advancement aims to enhance the routine
maintenance planning of hydrate-forming gas pipelines. By estimating the depositional
volume in L/min, as suggested in previous experimental studies [3,4], it becomes possible
to estimate the volume of hydrate slurries expected at the receiving facility. The specific
contribution of this study to knowledge is the possibility of quantifying and estimating
the risk of hydrate deposition in gas pipelines at lower gas flowrate and during shutdown
scenarios. Aging gas fields with declining production face low gas flow rates, which im-
pact routine maintenance planning. The use of our model in estimating the severity of
hydrate formation during shutdown scenarios benefits gas transport pipeline operators
in the oil and gas industry. The study contributes to energy sustainability by offering
simulation tools, providing further insights, and quantitative methodologies to manage
hydrate-related challenges efficiently, reduce energy losses, ensure system reliability, and
optimise energy transport and infrastructure design. The specific contributions of this
study to knowledge are as follows:

(@) Understanding that hydrate deposition rate increases with subcooling temperature is
valuable for energy sustainability. This knowledge can help engineers and operators
design pipelines and systems that minimise subcooling, reducing the risk of hydrate
formation and blockages. This contributes to efficient energy transport and minimises
the need for energy-intensive interventions to clear blockages;

(b) Being able to quantify and estimate the risk of hydrate deposition in gas pipelines
during shutdown scenarios is crucial for energy sustainability. It allows operators to
plan for and mitigate potential disruptions, ensuring a consistent and reliable energy
supply;

(¢) The regression model provides a quicker and less resource-intensive way to predict
hydrate deposition rates in field situations. This is beneficial for energy sustainability
as it enables early intervention and maintenance to prevent blockages and energy
losses in pipelines;

(d) The fact that the predicted results by the model are within £10% uncertainty bounds
of experimental results up to 8.8 MPa gas pressure at hydrate-forming temperatures
ensures the accuracy of hydrate-related predictions. This accuracy is essential for
optimising gas transport pipelines, reducing inefficiencies, and minimising resource
wastage for planned maintenance;

(e) Using the model’s predicted results as advisory input during pipeline sizing in the
design phase helps engineers choose the right pipeline diameter to manage hydrate
formation and deposition efficiently. Proper sizing reduces energy losses and ensures
sustainable energy transport;

(f) The model’s ability to determine the water volume fraction that aids hydrate transport
is essential for energy sustainability. It assists in designing pipeline systems that can
safely transport hydrates while minimising the risk of blockages;

(g) Themodel’s capability to estimate the expected volume of hydrates over the pipeline’s
operational timeline is valuable for planning maintenance and intervention strate-
gies. This helps maintain energy system reliability and sustainability by preventing
unexpected disruptions.
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