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Extraordinary Claims in the Literature on High-Intensity Interval Training (HIIT):  29 

I. Bonafide Scientific Revolution or a Looming Crisis of Replication and Credibility? 30 

Abstract 31 

The literature on High-Intensity Interval Training (HIIT) contains claims that, if true, could 32 

revolutionize the science and practice of exercise. This critical analysis examines two varieties of 33 

claims: (i) HIIT is effective in improving various indices of fitness and health, and (ii) HIIT is as 34 

effective as more time-consuming moderate-intensity continuous exercise. Using data from two 35 

recent systematic reviews as working examples, we show that studies in both categories exhibit 36 

considerable weaknesses when judged through the prism of fundamental statistical principles. 37 

Predominantly, small-to-medium effects are investigated in severely underpowered studies, thus 38 

greatly increasing the risk of both Type I and Type II errors of statistical inference. Studies in the 39 

first category combine the volatility of estimates associated with small samples with numerous 40 

dependent variables analyzed without consideration of the inflation of the Type I error rate. 41 

Studies in the second category inappropriately use the p > .05 criterion from small studies to 42 

support claims of "similar" or "comparable" effects. It is concluded that the situation in the HIIT 43 

literature is reminiscent of the research climate that led to the replication crisis in psychology. As 44 

in psychology, this could be an opportunity to reform statistical practices in exercise science. 45 

 46 

Key words: multiplicity, Type II error, positive predictive value, false positive risk, equivalence 47 
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1. Introduction 59 

 In the mid-1990s, exercise science underwent what can be characterized as the most 60 

consequential paradigmatic shift in its history, expanding its focus from exercise training for 61 

fitness enhancement to lifestyle physical activity for the promotion of public health [1,2]. This 62 

new perspective resulted in a series of physical activity recommendations from organizations in 63 

the United States, including the Centers for Disease Control and Prevention [3], the Surgeon 64 

General [4], and the National Institutes of Health [5,6], followed by similar initiatives in other 65 

countries. These recommendations converged on a common, easy-to-remember message: adults 66 

should accumulate (in short bouts, dispersed throughout the day) at least 30 min of physical 67 

activity, performed at least at a moderate intensity, on most, but preferably all, days of the week.  68 

 At the time, several aspects of these recommendations were criticized for their lack of 69 

specificity (e.g., what is "moderate" intensity?) or for relying on a weak empirical basis (e.g., 70 

scant evidence on "accumulated" physical activity). Furthermore, while the recommendations 71 

implied that additional health benefits could be obtained with activities of higher-than-moderate 72 

intensity, the emphasis was clearly placed on activity options that involve moderate intensity, 73 

such as brisk walking, based on the assumption that such options are realistic and non-74 

intimidating for a largely hypoactive adult population [7]. This rationale was supported by a 75 

meta-analysis showing that interventions attempting to implement activity of higher intensity 76 

were associated with lower participation [8]. 77 

 Despite good intentions, the guidelines had no measurable effect on public participation 78 

in physical activity. Accelerometry data from the 2003-2004 National Health and Nutritional 79 

Examination Survey (NHANES), a nationally representative study in the United States (with 80 

6,329 individuals providing at least one day of data), showed that only 3.5% of individuals 20 to 81 
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59 years of age and 2.4% of those aged 60 years or older registered at least 30 min of moderate-82 

intensity physical activity per day on at least five days per week [9]. Less than 1% of adults 83 

registered 20 min of vigorous-intensity activity on at least three days per week [10]. In the 2005-84 

2006 NHANES, the situation was unchanged, with only 3.2% of adults achieving the 85 

recommended dose of moderate-intensity activity [11]. The absence of positive results from 86 

population surveys encouraged calls for renewed emphasis on higher intensity [12-14]. Indeed, 87 

reformulated physical activity guidelines explicitly offered a choice between moderate intensity 88 

(for at least 30 min on five days per week or 150 min per week), vigorous intensity (for at least 89 

20-25 min on three days per week or 75 min per week), or an equivalent combination [15,16].  90 

 In 2005, in the midst of the debate preceding the reformulation of the guidelines and the 91 

renewed emphasis on vigorous-intensity activities, researchers published results from a doctoral 92 

dissertation [17] in the Journal of Applied Physiology. The article reported a remarkable finding, 93 

namely that a group of two women and six men doubled their cycling endurance performance 94 

(time to fatigue while pedaling at 80% VO2peak) after a total of only about 15 min of high-95 

intensity interval training (HIIT) over two weeks, without changing their maximal aerobic 96 

capacity. An accompanying editorial [18] underscored the "effectiveness and remarkable time 97 

efficiency" of high-intensity training but noted that the "price" participants have to pay is a need 98 

for "a high level of motivation" and "a feeling of severe fatigue lasting for at least 10–20 min" (p. 99 

1983) [18]. Over the next several years, fueled by extensive media coverage in which HIIT was 100 

portrayed as a solution for individuals with limited available discretionary time, HIIT became a 101 

top trend in the fitness industry worldwide [19]. Moreover, since 2005, HIIT has been the subject 102 

of approximately 4,000 articles, with more than 700 new articles being added to the literature 103 

each year, 10% of them being meta-analyses (see Figure 1). 104 
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 The data on the fitness and health benefits of HIIT have been characterized as "clear and 105 

convincing" (p. 1231) [20]. Nevertheless, as claims about HIIT are now influencing policy on a 106 

national and global scale (e.g., through exercise prescription guidelines and physical activity 107 

recommendations), it would be prudent to assess whether these claims can withstand statistical 108 

scrutiny. Steen [21] has argued that "error and fraud are the main sources of scientific 109 

misinformation" but "error is more prevalent than fraud" (p. 501). He insisted that "bias can also 110 

result from earnest error, statistical naiveté, or other innocent causes; not all bias is fraud" (p. 111 

502). However, it has already been established that some of the extraordinary claims surrounding 112 

HIIT cannot be attributed solely to earnest human error. For example, on 14 February 2019, the 113 

British Journal of Sports Medicine issued a press release, promoting the publication of a meta-114 

analysis entitled "Is interval training the magic bullet for fat loss?" [22], which purportedly 115 

showed that, indeed, HIIT results in significantly larger reduction in total absolute fat mass than 116 

moderate-intensity continuous exercise (-2.28 kg, 95% CI -4.00 to -0.56, p = 0.0094). The press 117 

release issued by the journal appeared under the title "Interval training may shed more pounds 118 

than continuous moderate intensity workout," and attracted the attention of major news outlets, 119 

including the global news agency Reuters and influential magazines like Runner's World.1 120 

However, the meta-analysis was later retracted because the authors could not explain how they 121 

obtained their data (e.g., a larger reduction of body fat by -13.44 kg in HIIT than moderate-122 

intensity continuous exercise, associated with a 12-week study that reported no relevant data). 123 

Drawing lists of studies from two recently published systematic reviews, the present 124 

critical analysis focuses on statistical concerns emanating from the rapidly expanding literature 125 

 
1 See: (1) https://bjsm.bmj.com/content/bjsports/suppl/2019/02/19/bjsports-2018-099928.DC1/bjsports-2018-099928.pdf; (2) 

https://www.reuters.com/article/us-health-exercise-training/interval-training-burns-off-more-pounds-than-jogging-or-cycling-idUSKCN1Q71TT; 
(3) https://www.runnersworld.com/news/a26339798/interval-training-for-weight-loss-study/ 
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on HIIT. This analysis highlights alarming parallels between prevalent practices in the HIIT 126 

literature and the emergence of a replication crisis in other scientific fields. The narrative 127 

culminates in a call for a return to fundamental principles of statistics. Unlike some of the more 128 

complicated scenarios outlined by Sainani et al. [23], the points raised in the following sections 129 

refer to elementary statistical principles, such as the mechanisms that raise the risk of Type I and 130 

Type II errors of statistical inference. The analysis culminates in a call not for the 131 

implementation of novel, obscure, or advanced statistical methods but rather for a return to 132 

fundamental statistical principles, along with the readoption of the critical outlook that should, in 133 

principle, characterize all manner of scientific inquiry. 134 

2. Statistical Preliminaries: (Mis-) Understanding Null-Hypothesis Significance Testing 135 

 Studies evaluating the effectiveness of HIIT reach their conclusions following the 136 

statistical methodology known as null-hypothesis significance testing (NHST). Despite strong 137 

concerns [24,25] and the presence of alternatives (i.e., Bayesian inference and fiducial inference) 138 

[26], NHST has been established as the standard method for evaluating statistical tests in most 139 

domains of human-science research, including the exercise sciences. Despite its popularity, 140 

however, the NHST is frequently misunderstood, misapplied, and misinterpreted [24,25,27]. 141 

 NHST represents the amalgamation of the testing methodologies proposed during the 142 

period 1915-1933 by Ronald Aylmer Fisher (1890-1962) and the duo of Jerzy Neyman (1894-143 

1981) and Egon Sharpe Pearson (1895-1980). Fisher on the one hand, and Neyman and Pearson 144 

on the other, contributed different pieces of what evolved into the NHST methodology, but it is 145 

important to emphasize that, as applied today, the NHST is "essentially an anonymous hybrid" 146 

and "a marriage of convenience that neither party would have condoned" (p. 171) [28]. 147 

 Fisher, who emphasized the importance of inductive reasoning (i.e., analyzing samples to 148 
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draw inferences about the population), is credited with the concept of the null hypothesis (i.e., 149 

data demonstrating random variance) and the use of exact p values as a quantitative measure of 150 

the "extremeness" of the data given the null hypothesis. By extension, he considered p values as 151 

an indication of the plausibility or implausibility of the null hypothesis. However, although he 152 

famously wrote that "we shall not often be astray if we draw a conventional line at .05" (p. 82) 153 

[29], for Fisher, a low p value, such as p < .05, represented merely a sign that a finding may be 154 

worthy of further study, starting with an attempt at replication. 155 

 In the central point of contention with Fisher, Neyman and Pearson espoused a deductive 156 

approach, in which the null hypothesis is either rejected in favor of an alternative or retained for 157 

further study (which is not the same as accepting that the null hypothesis is true). Unlike Fisher, 158 

who believed that a specific hypothesis can be tested using data from a single study, Neyman and 159 

Pearson were not interested in developing a method for drawing inductive inferences about a 160 

single hypothesis based on the "statistical significance" of data from a single study. Instead, their 161 

goal was to use a deductive approach and probability theory to develop "rules of behavior" (i.e., 162 

rejection vs. non-rejection of a hypothesis) to ensure that the frequency of errors (i.e., the 163 

erroneous rejection or non-rejection) would be kept below an acceptably low limit over a series 164 

of many studies: 165 

But we may look at the purpose of tests from another view-point. Without hoping to 166 

know whether each separate hypothesis is true or false, we may search for rules to govern 167 

our behaviour with regard to them, in following which we insure that, in the long run of 168 

experience, we shall not be too often wrong. Here, for example, would be such a "rule of 169 

behaviour": to decide whether a hypothesis, H, of a given type be rejected or not, 170 

calculate a specified character, x, of the observed facts; if x > x0 reject H, if x ≤ x0 accept 171 
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H. Such a rule tells us nothing as to whether in a particular case H is true when x ≤ x0 or 172 

false when x > x0. But it may often be proved that if we behave according to such a rule, 173 

then in the long run we shall reject H when it is true not more, say, than once in a 174 

hundred times, and in addition we may have evidence that we shall reject H sufficiently 175 

often when it is false (p. 291) [30]. 176 

 The Neyman-Pearson approach, therefore, implied two types of errors, called Type I and 177 

Type II, with the rate of those errors symbolized by the Greek letters α and β, respectively, as 178 

well as the concept of statistical power, symbolized as 1-β [31]. A Type I error (α) occurs when 179 

"if we reject H0, we may reject it when it is true," whereas a Type II error (β) occurs when "if we 180 

accept H0, we may be accepting it when it is false, that is to say, when really some alternative is 181 

true" (p. 296) [30]. Statistical power (1-β) is defined as "the probability of rejecting the 182 

hypothesis tested, H0, when the true hypothesis is Hi" (p. 498) [32]. 183 

 Fisher [33] concurred with the notion of Type I errors and was keenly aware of the risk of 184 

raising the rate of such errors as a result of performing a multitude of tests. For example, he 185 

argued that a comparison between two extreme values "picked out from the results, will often 186 

appear to be significant, even from undifferentiated material" (p. 66). His proposed remedy was 187 

analogous to alpha-splitting, namely making the criterion for evaluating the p value more 188 

stringent: "We might, therefore, require the probability of the observed difference to be as small 189 

as 1 in 900, instead of 1 in 20, before attaching statistical significance to the contrast" (p. 66). On 190 

the other hand, arguing from an inductive standpoint, Fisher rejected the notion of Type II errors 191 

because he believed that scientific research is a process of "learning by experience" and, in such 192 

a process, a priori knowledge is "almost always absent or negligible" (p. 73) [34]. Thus, although 193 

he considered the rate of Type I error "calculable, and therefore controllable," he insisted that 194 
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Type II error is "incalculable both in frequency and in magnitude" (p. 73). 195 

 Interestingly, while Fisher rejected the notion of Type II error, he was aware of the 196 

importance of statistical power (although he used the term "sensitivity" or "sensitiveness") and 197 

the role of sample size and a higher number of repetitions in increasing statistical power: "By 198 

increasing the size of the experiment, we can render it more sensitive, meaning by this that it will 199 

allow of the detection of a lower degree of sensory discrimination, or, in other words, of a 200 

quantitatively smaller departure from the null hypothesis" (p. 25) [33]. Commentators have noted 201 

that "Fisher's 'sensitivity' and Neyman-Pearson's 'power' refer to the same concept" (p. 173) [28], 202 

but Fisher "denied the possibility of assessing it quantitatively" (p. 1245) [35]. 203 

 The main misinterpretations surrounding the NHST emerged following the merger of the 204 

Fisher and Neyman-Pearson approaches by anonymous researchers [35,36], a merger "that 205 

neither party would have condoned," to repeat the phrase of Hubbard and Bayarri (p. 171) [28]. 206 

This anonymous and unsanctioned merger has resulted in several persistent misuses and 207 

misinterpretations that have plagued research for decades [24,37,38]. Of these, the following 208 

problems are arguably most relevant to research on HIIT. 209 

2.1. The p Value as an Indication of the Plausibility of the Null Hypothesis 210 

First, there is a widespread but mistaken belief that a p value of .05 means that there is 211 

only 5% probability of the null hypothesis being true (or, conversely, for 1-p, that there is 95% 212 

probability that the null hypothesis is false). This belief is mistaken because p values are 213 

calculated from the data under the assumption that the null hypothesis is true [39]. A p value 214 

merely indicates the probability (assuming that the null hypothesis is true) of observing a test 215 

statistic (e.g., a t value) as extreme or more extreme than the value observed in the present 216 

sample. This can be expressed as Pr(data|H0) in probability notation. This statement is not 217 



High-Intensity Interval Training and Replication - 11 

 

equivalent to the interpretation that a p value of .05 means that there is only 5% probability of 218 

the null hypothesis being true, namely Pr(H0|data). While the p value does provide some 219 

indication of the plausibility or implausibility of the null hypothesis, a p near .05 "greatly 220 

overstates the evidence against the null hypothesis" (p. 139) [37]. Berger and Sellke [40] 221 

calculated that the lower bound of Pr(H0|data) can be estimated as: 222 

 Pr(H0|data) = (1 + (1 + n)-1/2 exp{t2 / [2 (1 + 1/n)]})-1   

Using a t value that yields p = .05 (t = 1.96) and a sample size of n = 50 per group results in 223 

Pr(H0|data) = .52, which surpasses p = .05 by more than an order of magnitude [40,41].  224 

2.2. The p Value as an Index of the Risk of Type I Errors 225 

 Second, related to the previous point, there is pervasive confusion between a p value, 226 

namely the probability of obtaining a test statistic at least as extreme as that obtained from a 227 

given study under the assumption that the null hypothesis is true, and α, namely the rate of Type 228 

I errors [28]. In actuality, a single number (i.e., a p value) cannot simultaneously serve the dual 229 

function of providing an indication of the "extremeness" of the data from any given study and, at 230 

the same time, an indication of the "long-run" frequency of improperly rejecting the null 231 

hypothesis when it is true [39]. Nevertheless, statisticians [40-42] have estimated that, at least for 232 

the range p < 1/e, where e is Euler's constant (2.71828), namely p < .36787, the lower bound of α 233 

(i.e., the minimum risk of a Type I error when rejecting the null hypothesis) can be estimated by: 234 

 α(p) = (1 + [-e p log(p)]-1)-1  

where log(p) is the natural logarithm of the p value. Substituting p = .05 yields α = .289. This 235 

means that there is at least 28.9% probability of a Type I error when rejecting the null hypothesis 236 

on the basis of a p value close to .05. In other words, at least 28.9% of p values near .05 can be 237 

expected to come from studies in which the null hypothesis is true. 238 
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2.3. The p Value as an Index of Replicability 239 

 Third, researchers often mistakenly assume that a low p value (e.g., p < .05) entails that, 240 

if the same test were performed on a different sample randomly drawn from the same population 241 

(e.g., same sample sizes, same treatments), there would be high probability (e.g., > 95%) that the 242 

new p value would be similarly low (e.g., p < .05) [43]. In fact, except in studies with levels of 243 

statistical power over 90%, p values are characterized by extraordinary uncertainty [44,45]. 244 

Thus, for a comparison between two means resulting in p < .05, the probability of finding p < .05 245 

in a (theoretical) "identical" replication (with the difference between the means being in the same 246 

direction) has been estimated as only 50% [46-49]. 247 

2.4. A Non-Significant p Value As a Basis for Accepting the Null Hypothesis 248 

 Fourth, a widely prevalent and persistent misunderstanding is that obtaining a 249 

nonsignificant test result (e.g., p > .05) can be interpreted as an indication that the null hypothesis 250 

(e.g., μ1 - μ2 = 0) is true or as indication of the absence of an effect [24,37,38,50-52]. Fisher [33] 251 

famously asserted that "the null hypothesis is never proved or established, but is possibly 252 

disproved, in the course of experimentation" (p. 19). Accordingly, one of the oft-quoted 253 

admonitions of statisticians is that "the absence of evidence is not the same as evidence of 254 

absence" [53-54]. A non-significant p value cannot provide a basis for accepting the null 255 

hypothesis as true or for the rejection of alternatives. It only suggests that a null effect is 256 

statistically consistent (or not inconsistent) with the data, along with the range of other effects 257 

encompassed within the confidence interval. However, p > .05 provides no indication that the 258 

null effect, specifically, is the most likely among these. Moreover, using non-significant p values 259 

as an indication in support of the null hypothesis is especially precarious in scientific fields, such 260 

as the exercise sciences [55], that are characterized by a preponderance of underpowered studies. 261 
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Authors have warned that "null results are surprisingly easy to obtain by mere statistical 262 

artefacts; simply using a small sample or a noisy measure can suffice to produce a false 263 

negative" (p. 97) [56]. 264 

 Collectively, the aforementioned misinterpretations suggest that NHST is a potentially 265 

useful, but delicate, test methodology. As such, it should be approached cautiously, recognizing 266 

and respecting its considerable limitations. The wide prevalence of the misinterpretations and 267 

misuses of the NHST across many domains of scientific research cannot be deemed a valid 268 

excuse for their ubiquity within the field of exercise science in general and research on HIIT in 269 

particular. Likewise, the fact that prestigious journals within the field of exercise science have 270 

permitted such practices does not render them any less egregious or harmful. 271 

 While there is ongoing debate about the causes and potential remedies of these 272 

misinterpretations and misuses of the NHST [57], many statistical experts see these 273 

misinterpretations and misuses as contributors to the phenomenon of non-replicable research 274 

[58-61]. Whether implemented deliberately or inadvertently, questionable statistical practices 275 

can result in intriguing, albeit fanciful, findings, with a high probability of attracting the attention 276 

of other researchers and the public. Serra-Garcia and Gneezy [62] speculated that, while 277 

evaluating manuscripts, journal editors and peer reviewers probably weigh two considerations 278 

against each other, namely the likely robustness or reliability of the result on one hand and its 279 

interest or curiosity on the other: "when the paper is more interesting, the review team may apply 280 

lower standards regarding its reproducibility" (p. 4). 281 

3. Misuses of Null-Hypothesis Significance Testing in Research on HIIT 282 

 The following two sections present critical commentaries on two major variants of claims 283 

pertaining to HIIT, namely (i) that HIIT is effective in improving a variety of fitness and health 284 
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outcomes, and (ii) that HIIT is as effective as more time-consuming moderate-intensity 285 

continuous exercise. We examine studies contained in two recent systematic reviews to 286 

demonstrate that deviating from elementary statistical principles can result in data that can be 287 

portrayed as supporting both of these conclusions, but with a high probability that such 288 

conclusions reflect errors of statistical inference. It is important to reiterate that the problems to 289 

be discussed are certainly not unique to the HIIT literature but have long plagued the broader 290 

exercise-science literature [63]. 291 

3.1. The "Is Effective" Problem 292 

 As evidenced in meta-analyses, [64,65] a striking feature of the research literature on 293 

HIIT is an abundance of implausibly large effect sizes (e.g., standardized mean differences over 294 

2.0 or 2.5 standard deviations) reportedly demonstrating the extraordinary effectiveness of HIIT 295 

compared to control conditions or even compared to active interventions consisting of moderate-296 

intensity continuous exercise training. Some of these can be dismissed as mistakes, such as 297 

standardized mean differences (Hedges' g) of 11, 16, or 29 standard deviations [64], which can 298 

be readily attributed to computational errors (e.g., mistaking standard errors of the mean as 299 

standard deviations). Other cases, however, may be more complicated. For example, a 300 

remarkable standardized mean difference in maximal oxygen consumption of 4.59 standard 301 

deviations [65] from a 12-week comparison between HIIT and moderate-intensity continuous 302 

exercise [66] could be due to a host of well-established but frequently overlooked sources of 303 

methodological bias. These include, but are not limited to, the inadequate concealment of the 304 

randomization sequence, the absence of intention-to-treat analyses, and the use of unblinded 305 

outcome assessors. In addition, exercise researchers are aware of the biasing effect of several 306 

exercise-specific factors, such as the lack of control for verbal encouragement during tests of 307 
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maximal performance [67-69]. When exercise testing is conducted by researchers who are ardent 308 

proponents of HIIT (e.g., "HIIT should play a central role in health activity guidelines" because 309 

it can "maximize the benefits of physical activity globally," p. 5216) [70], and are unblinded to 310 

treatment allocation, finding a standardized mean difference of 4.59 standard deviations in favor 311 

of HIIT becomes a plausible occurrence. 312 

 Such methodological sources of bias are beyond the scope of the present analysis. Here, 313 

we focus on statistical mechanisms that can produce similarly extraordinary (and likely non-314 

replicable) results. For example, meta-analyses have reported that HIIT interventions have 315 

produced standardized mean differences that exceeded 2.5 standard deviations [71,72]. Closer 316 

inspection of the characteristics of the studies that produced these large effect sizes [73-75] 317 

reveals certain notable commonalities: (i) small sample sizes (e.g., 10-20 participants per group), 318 

resulting in wide confidence intervals and low statistical power to detect even large effects, (ii) 319 

long lists of dependent variables, covering several multidimensional domains (e.g., 320 

anthropometric characteristics, inflammatory or immune markers, indices of cardiac, vascular, 321 

cardiorespiratory, or metabolic function), (iii) absence of pre-registration that could have allayed 322 

concerns about selective reporting, (iv) absence of designation of dependent variables as primary 323 

vs. secondary, and (v) numerous statistical tests, each evaluated with the criterion of p < .05. 324 

Because of sampling variability and the lack of precision associated with small samples, 325 

estimates of population values (means, standard deviations) and, therefore, the associated p 326 

values "dance around" (p. 1720), as Gandevia [76] put it. Given a long enough list of dependent 327 

variables, it becomes almost inevitable that some means will happen to show exaggerated 328 

differences, thus resulting in extraordinarily large effect sizes. With a lax criterion such as p < 329 

.05, one or more comparisons will cross the threshold of "statistical significance," increasing the 330 
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likelihood of publication. A cynic might argue that this approach could be used, deliberately or 331 

unwittingly, as a recipe for producing seemingly "significant" and possibly novel or intriguing 332 

results, albeit results that are probably non-reproducible. 333 

 These basic statistical mechanics are taught in undergraduate and postgraduate university 334 

courses on research methodology. It is, therefore, surprising and disheartening that studies with 335 

the aforementioned characteristics, and attendant risk of producing untenable results, continue to 336 

be commonplace in large sections of exercise-science research [77], including research on HIIT.  337 

Nosek et al. [57] criticized the "disciplinary incentives" that tend to "inflate the rate of false 338 

effects in published science" and "favor novelty over replication" (p. 615). In the following 339 

sections, we elaborate on several aspects of this problem. 340 

3.1.1. Multiplicity  341 

 Methodologically strong studies, including most well-designed randomized controlled 342 

trials, have one outcome variable designated as "primary" and, accordingly, test one main 343 

hypothesis, typically using the criterion of p < .05. Moreover, methodologically strong studies 344 

are pre-registered, which eliminates concerns about "outcome switching" (i.e., replacing the 345 

primary outcome of interest if it did not reach statistical significance with a different one that 346 

did) or selective reporting (i.e., only reporting the outcome that happened to reach the threshold 347 

of statistical significance out of a larger set of tested outcomes). However, in several domains of 348 

research, including studies investigating the effects of HIIT, pre-registration remains rare, and 349 

researchers report results pertaining to numerous dependent variables, each tested using the 350 

criterion of p < .05. This scenario is problematic insofar as it can raise the risk of Type I errors 351 

(or "false positives"), namely rejecting the null hypothesis when it is true. 352 

 Besides pre-registration, it is important for the tested hypotheses to be precise (e.g., "it is 353 
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hypothesized that HIIT will improve outcome X as measured by test Y because of reason Z"). 354 

Instead, in the HIIT literature, studies often claim to have demonstrated the "effectiveness" of 355 

HIIT relative to control treatments or relative to moderate-intensity continuous exercise (despite 356 

a smaller time commitment) by testing imprecise hypotheses that refer to broad concepts (e.g., 357 

cardiorespiratory fitness, endurance performance, muscle enzymes, blood pressure, glucose 358 

metabolism, inflammatory parameters, cardiometabolic health). In turn, each of these broad 359 

concepts is assessed by several variables (e.g., long lists of different indicators of 360 

cardiorespiratory fitness, endurance performance, muscle enzymes, and so on). If researchers 361 

explicitly follow a "conjunction" approach [78], they need to reject all the constituent null 362 

hypotheses (e.g., one for each of the multiple inflammatory parameters) in order to claim that 363 

they rejected the joint null hypothesis (i.e., that HIIT has a stronger anti-inflammatory effect, in 364 

general, than moderate-intensity continuous exercise). The "conjunction" approach, because of 365 

the nature of the joint null hypothesis (i.e., all constituent tests must be significant), gives 366 

researchers only a single opportunity to reject the joint null hypothesis at the prespecified level 367 

of α (i.e., 5%) and, therefore, despite entailing multiple tests, it does not raise the overall risk of a 368 

Type I error. On the other hand, the "conjunction" approach is characterized by low statistical 369 

power because researchers would fail to reject the joint null hypothesis if even one of the 370 

constituent tests yields a non-significant result. The low statistical power is the likely reason why 371 

the "conjunction" approach is rarely encountered in the research literature. 372 

 In contrast, in the "disjunction" approach, it is only necessary to reject one of multiple 373 

constituent null hypotheses in order for researchers to be able to claim that they have rejected the 374 

joint null hypothesis [78]. For example, researchers may conclude that HIIT benefits "muscle 375 

enzymes" (or "cardiometabolic health" or "arterial stiffness" or "cytokines") if only one or two of 376 
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the variables that make up this broad category, out of a larger set of tested variables, showed 377 

significant results in the expected direction. Consequently, the "disjunction" approach increases 378 

the risk of Type I error because researchers have multiple opportunities to incorrectly reject the 379 

joint null hypothesis (i.e., each test of a constituent null hypothesis is also an opportunity to 380 

reject the joint null hypothesis). 381 

 For two independent events, the probability of observing both of these events together is 382 

given by the product of their (separate) probabilities. Therefore, if the probability of making a 383 

Type I error is α = .05, the probability of not making a Type I error (i.e., erroneously rejecting 384 

the null hypothesis when it is true) on two independent simultaneous tests would be given by (1-385 

α)  × (1-α)  = (1-α)2 = (1-.05)2 = .9025. Conversely, the probability of making a Type I error 386 

would be given by 1-(1-α)2 = 1 - .9025 = .0975. Therefore, more broadly, the formula for the 387 

inflation of the Type I error rate due to conducting multiple independent probability tests, often 388 

referred to as the Šidàk equation, is α* = 1-(1-α)M, where α* is the inflated value of α as a result 389 

of conducting multiple independent tests, α is the conventionally defined probability of 390 

committing a Type I error (typically, α = .05), and M is the number of independent probability 391 

tests conducted at the level of α [79-81]. 392 

 Applying this formula, one finds, for example, that conducting 14 independent tests 393 

following the "disjunction" approach results in α = .51, namely more than 10 times the nominal 394 

rate of .05. This means that, if 14 independent tests were to be conducted, one should expect the 395 

probability of making at least one Type I error to be greater than .50. According to a statistical 396 

textbook: "It is especially important to realize that failing to control for multiple testing may play 397 

a major role in contributing to a disappointing failure rate in attempts to replicate published 398 

studies" (p. 216) [82]. 399 
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 As noted, the aforementioned formula relies on the simplifying assumption that the 400 

multiple probability tests are independent of each other. This assumption, however, is usually 401 

false in practice since, in a common example, several variables within the same data set may 402 

examine various facets of the same phenomenon (e.g., different parameters of glucose 403 

metabolism, immune function, or health-related quality of life), and will, therefore, probably be 404 

intercorrelated. To account for this dependence, researchers have proposed variations of the 405 

Šidák equation [83-86]. For example, an approach that originated in the field of genetics [87,88] 406 

suggests that, when conducting 14 tests, instead of α rising to .51 when the tests are independent, 407 

α would rise to .48, .42, and .32 when the variables are intercorrelated r = .30, r = .50, and r = 408 

.70, respectively. Thus, while the formula α* = 1-(1-α)M represents only the "worst-case 409 

scenario," it is nevertheless a useful reminder of the possible deleterious consequences of 410 

conducting multiple tests without consideration of the inflation of the Type I error rate. 411 

 With pre-registration still being a rarity in exercise science [63], there is no guarantee that 412 

the dependent variables listed in an article represent a complete accounting of all the variables 413 

measured or analyzed. Even with this caveat in mind, it is common in the HIIT literature to 414 

encounter studies that follow the "disjunction" approach, hypothesizing joint null hypotheses, 415 

each consisting of numerous constituent tests, each tested at p < .05 [89-92]. This practice can 416 

increase the risk of Type I error to high levels (see Figure 2), even compared to other research 417 

within exercise science [55], thus raising serious concerns about the validity and reproducibility 418 

of any reported effects. 419 

3.1.2. Sampling variability and the instability of p values 420 

 To compound the problem of multiplicity described in the previous section, the samples 421 

used in the HIIT literature tend to be small (e.g., with as few as 5 individuals per group). The 422 
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combination of long lists of dependent variables and small samples creates a statistical "perfect 423 

storm," a recipe for non-replicable science [43,44,46,93]. Due to sampling variability, small 424 

samples produce highly volatile and imprecise estimates of the "true" population values (e.g., 425 

means, standard deviations, intermean differences, and p values). The combination of instability 426 

and imprecision with an extremely lax criterion for determining "statistical significance," given a 427 

large enough number of tests, essentially guarantees two outcomes: (i) at least some of the tests 428 

will cross the liberal threshold of "statistical significance" and (ii) these findings will have a high 429 

likelihood of being non-replicable in different samples. 430 

 The small samples have occasionally been justified on the basis of the argument that the 431 

studies are "pilot" trials that were "not designed to be powered to detect statistically significant 432 

differences in small or moderate effects" (p. 2072) [94]. Instead, their purpose is portrayed as 433 

estimating "the magnitude of effect to lay the foundation for a fully powered efficacy trial" (p. 434 

2072). It should be emphasized, however, that this rationale, although commonly encountered, is 435 

flawed, due to the inability of small-sample studies to accurately estimate population parameters 436 

[95,96]. This lack of precision can lead to considerable over- or underestimations of the true 437 

effect size, with potentially devastating consequences for the design of subsequent larger trials. 438 

 As noted earlier (Section 2), although some researchers operate under the assumption that 439 

a finding of p < .05 entails 95% confidence that the same result would re-occur in a subsequent 440 

replication study, this is not the case. This misconception has been termed the "replication 441 

fallacy" or "replication delusion" [61]. In actuality, following an initial finding of p < .05, a 442 

subsequent (hypothetical) "perfect" replication study drawing an equal number of participants 443 

from the same population has only about 50% chance of resulting in a finding of p < .05 with the 444 

intergroup difference in the same direction [43]. Based on an empirical analysis of 45,955 445 
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observed effects derived from the Cochrane Database of Systematic Reviews, van Zwet and 446 

Goodman [97] put the estimate considerably lower, at 29%. Many researchers may find these 447 

figures surprising, despite numerous relevant warnings having been issued in applied literatures, 448 

including in psychology [46], physiology [76,98,99], medicine [93,100], and pharmacology 449 

[101]. 450 

 In an effort to understand the implications of p values for replication, statisticians have 451 

been analyzing the behavior of p values under various conditions, including different 452 

hypothetical population effect sizes, the level of α, and sample size [43,102-105]. These efforts 453 

have resulted in formulas that enable researchers to calculate the probability of obtaining 454 

statistically significant results (e.g., p < .05) in subsequent replication studies [46]. One 455 

realization that has emerged from these investigations is that sampling variability renders p 456 

values extremely unstable and, therefore, an unreliable basis for drawing inferences about 457 

experimental effects in most applied-research contexts (given typical effect sizes and sample 458 

sizes), especially inferences regarding the replicability of findings [44,46,106]. 459 

 To illustrate the implications for the HIIT literature, we examined the 48-study database 460 

used in a meta-analysis by Mattioni Maturana et al. [65], which concluded that HIIT "was 461 

superior to [moderate-intensity continuous training] in improving VO2max" (p. 559). In this 462 

meta-analysis, the median sample size was N = 10 per group, and the pooled effect size for 463 

VO2max (i.e., the most extensively studied outcome) in comparison to moderate-intensity 464 

continuous training was d = 0.40. Assuming that the pooled effect size approximates the "true" 465 

population effect size δ, the combination of these two numbers results in a noncentrality 466 

parameter z = δ√(N/2) = .40√(10/2) = .894, which corresponds to an expected p value of .371 467 

(the observed mean p value was slightly lower, at .323, for reasons that will be explained in 468 
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Section 3.1.4). 469 

 Under these conditions (N = 10 per group, α = .05, δ = 0.40), statistical power (1-β) is 470 

only .14 (i.e., 14% of p values are expected to be below .05), much lower than the .80 471 

conventionally considered adequate. As shown in Figure 3, while 80% of the studies with 1-β = 472 

.81 will yield p values of .047 or less, 80% of the studies with 1-β = .14 will yield p values of 473 

.707 or less (which also means that 20% of studies will yield p values higher than .707). Indeed, 474 

39 of the 48 p values (81.25%) associated with the studies in the meta-analysis by Mattioni 475 

Maturana et al. [65] were lower than .707, whereas 9 of 48 (18.75%) were larger than .707. 476 

 As a demonstration of the volatility of p values one can expect from this combination of 477 

effect sizes and sample sizes, Figure 4 shows that the 48 p values related to VO2max [65] 478 

covered the range from p = .00000004 to p = 1.000, and effect sizes exhibited an astounding 479 

range of 5.33 standard deviations, from -0.74 to +4.59. In other words, assuming that the effect 480 

size of the phenomenon under investigation is in the range between small and medium, 481 

attempting to study it with approximately 10 participants per group can lead to any outcome [46]. 482 

 Moreover, as noted earlier and illustrated in Figure 5 and Table 1, if an initial study 483 

yields p < .05, there is a 50% chance that a subsequent replication will also yield p < .05, 484 

regardless of whether the population effect size is considered "known" or "unknown." However, 485 

if the initial study yields a p value of .371 (i.e., the p value expected from studies with the 486 

characteristics of those in the meta-analysis by Mattioni Maturana et al. [65]), the probability that 487 

a subsequent replication would yield p < .05 is only 14.6%. In other words, 85.4% of direct and 488 

exact replications (i.e., without any changes to research protocols, including sample size) would 489 

likely yield p > .05. Moreover, as noted by Cumming [46] and shown in Table 1, to have 90% 490 

confidence that a replication would yield p < .05, the initial study would have to produce p < 491 
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.00054. 492 

As shown in Table 2 and Figure 6, the p intervals are extremely wide. The two-sided p 493 

interval, from the 10th to the 90th percentile, extends from .006 to .828, whereas the one-sided p 494 

interval from zero to the 80th percentile extends to .662. This means that 80% of replication two-495 

tail p values would fall between .006 and .828 or between .000 and .662. Indeed, 85.42% of the 496 

two-tail p values associated with the studies in the meta-analysis by Mattioni Maturana et al. [65] 497 

were between .006 and .828, and 79.17% were between .000 and .662. For comparison (see 498 

Table 2), in a hypothetical literature in which one can expect a study to yield p = .001, the two-499 

sided p interval for a replication study, from the 10th to the 90th percentile, extends from 500 

.0000005 to .139, whereas the one-sided p interval from zero to the 80th percentile extends to 501 

.036 (or to .018 in the case of a one-tail test). 502 

3.1.3. Positive predictive value and false positive risk 503 

 Positive predictive value (PPV) is defined as the probability that a "positive" research 504 

finding (e.g., p < .05) represents a true effect (i.e., that the finding is a true positive). PPV can be 505 

estimated by the formula [107,108]: 506 

 
PPV R

R
=

−
− +
( )

( )
1

1
β

β α  

 

where 1-β is statistical power, R indicates the prestudy odds (i.e., the odds that an effect is indeed 507 

non-null prior to the study being conducted, based on prior evidence), and α is the probability of 508 

a Type I error. Although R is difficult to estimate, the highest value one can reasonably assume 509 

when there are no prior studies on a given topic is 50% (i.e., a 50-50 chance). Even in the 510 

unrealistic scenario of R = .50, using the above formula shows, for example, that conducting 19, 511 

23, 32, or 41 independent tests in underpowered studies (e.g., 1-β = .14) will result in only 7-512 



High-Intensity Interval Training and Replication - 24 

 

10% probability of a true positive (see Figure 7). Under the more realistic scenarios of 1-in-4 or 513 

1-in-5 odds (i.e., R = .25 or .20), the probability of a true positive drops to 3-5%. 514 

 As noted in the previous section, in the meta-analysis by Mattioni Maturana et al. [65], 515 

the median sample size was 10 per group (the mean was 13.2) and the pooled effect was d = 516 

0.40. As shown in Figure 8, assuming that this effect size approximates the "true" population 517 

effect (although this is likely an overestimate for reasons explained in Section 3.1.5), the median 518 

study exhibited only 14% statistical power (the mean of 16% was slightly higher due to one 519 

study with 75% power). This level of power is even lower than the median power of 21% 520 

highlighted as undermining the reliability of neuroscience [107]. Researchers have found that 521 

between 43% and 57% of studies in different domains of biomedicine have statistical power in 522 

the 0–20% range [109]. Of the 48 studies on VO2max included in the Mattioni Maturana et al. 523 

[65] meta-analysis, considering the pooled effect size of d = 0.40 as the effect size of interest, 42 524 

(88%) had statistical power in the 0–20% range and all but one (47 of 48, or 98%) were in the 0–525 

33% range. The combination of the Type I error rate (α) being allowed to escalate and the 526 

extraordinarily small (i.e., severely underpowered) studies can easily (i.e., in common, entirely 527 

realistic scenarios) lead to false discovery rates that approach 100%. 528 

 A complementary way to think of this problem is in terms of the False Positive Risk 529 

(FPR), namely the probability that a "significant" result (e.g., p < .05) represents a false positive. 530 

The FPR can be estimated by the formula [60]:  531 

 
FPR p R

p R R
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−
− + −
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where p is the p value of a study, R indicates the prestudy odds (i.e., the odds that an effect is 532 

indeed non-null prior to the study being conducted, based on prior evidence), and 1-β is the 533 
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statistical power of the study. The FPR is associated with efforts [40-42], reviewed in Section 2, 534 

to associate the p value from a single study to the lower bound of the long-run risk of Type I 535 

error (α). Applying the formula to the studies on VO2max that were included in the Mattioni 536 

Maturana et al. [65] meta-analysis, and assuming that R = .50, shows that only 3 of the 48 studies 537 

produced FPR lower than .05 (see Figure 9). Given their low level of statistical power (median 538 

.155, mean .169), even under the unrealistic assumption of R = .50, the FPR of the 13 studies that 539 

produced p < .05 was as high as .245, with a mean of .130 and a median of .123 (recall that the 540 

risk of Type I error associated with p = .05 has been estimated as at least .289). 541 

3.1.4. Excess of "significant" results 542 

 Assuming that the null hypothesis is false (e.g., that there is a difference between HIIT 543 

and moderate-intensity continuous training in terms of improving VO2max), and the effect size is 544 

δ = 0.40, samples of 10 per group are expected to reject the false null hypothesis in only 14% of 545 

the cases (i.e., statistical power of 14%). Instead, as shown in Figure 10, 13 of the 48 studies 546 

(27.1%) included in the meta-analysis by Mattioni Maturana et al. [65], nearly double the 547 

expected rate, produced results with p < .05. 548 

 This rate indicates an "excess of significant findings" according to the test proposed by 549 

Ioannidis and Trikalinos [110]. This is a χ2 statistic calculated as: 550 

 A = [(O–E)2/E + (O–E)2/(n–E)]  

where O is the number of studies reporting "statistically significant" results (p < .05), E is the 551 

sum of the levels of statistical power in all the studies in the sample to detect the population 552 

effect size (assumed here to equal the pooled effect size from the meta-analysis, namely d = 553 

0.40), and n is the number of studies in the sample. For the studies in the meta-analysis by 554 

Mattioni Maturana et al. [65], E is 7.851, O = 13, and n = 48. Therefore, χ2(1) = 4.038, p = .044, 555 
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indicating the presence of an excessive proportion of "statistically significant" results. 556 

 Various mechanisms may account for this phenomenon [111]. One category includes 557 

"researcher degrees of freedom" [112], some of which may be questionable (e.g., "p-hacking," 558 

selective outcome reporting, selective removal of data points, failing to account for multiplicity) 559 

and some of which may reflect publication bias (e.g., the "file drawer" problem, namely the low 560 

probability of studies reporting non-significant results being accepted for publication) [113]. 561 

3.1.5. "Winner's curse" 562 

 An additional problem, named "winner's curse" [114,115], emerges from underpowered 563 

studies. The "winner's curse" refers to the fact that, when an underpowered study happens to 564 

correctly reject a null hypothesis, the estimate of the magnitude of the effect derived from such a 565 

study will likely be exaggerated. This is because, for a result to satisfy the criterion of statistical 566 

significance (even the uncorrected p < .05) in an underpowered study, the effect will have to be 567 

unusually large. Young et al. [115] described the problem as follows: 568 

The average result from multiple studies yields a reasonable estimate of a "true" 569 

relationship. However, the more extreme, spectacular results (the largest treatment 570 

effects, the strongest associations, or the most unusually novel and exciting biological 571 

stories) may be preferentially published. Journals serve as intermediaries and may suffer 572 

minimal immediate consequences for errors of over- or mis-estimation, but it is the 573 

consumers of these laboratory and clinical results (other expert scientists; trainees 574 

choosing fields of endeavour; physicians and their patients; funding agencies; the media) 575 

who are "cursed" if these results are severely exaggerated—overvalued and 576 

unrepresentative of the true outcomes of many similar experiments (p. 1418).  577 

 The "winner's curse" can be shown by simulation, following the procedure proposed by 578 
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Colquhoun [116]. If we consider the pooled effect size reported by Mattioni Maturana et al. [65], 579 

namely d = 0.40, and run 100,000 simulated "experiments" by drawing random samples of 100 580 

per group from populations designed to differ by d = 0.40 (i.e., experiments with 80% statistical 581 

power), we find that (i) consistent with the theoretical power level of 80.36%, 80.38% of the 582 

comparisons satisfy the p < .05 criterion of statistical significance, and (ii) importantly, the 583 

average observed effect size is d = 0.45, which approximates the given effect size of d = 0.40. 584 

On the other hand, if one runs 100,000 simulated experiments with the same effect size but 585 

sample sizes of 10 per group, namely the median sample size of the 48 studies on VO2max 586 

included in the meta-analysis by Mattioni Maturana et al. [65], (i) the statistical power of 13.66% 587 

approximates the theoretical value of 13.55% but (ii) the average observed effect size is highly 588 

exaggerated, namely d = 1.04 instead of the given δ = 0.40 (see Figure 11). Indeed, after 589 

excluding an apparent outlier with a nearly fivefold effect size [66], the average effect size of the 590 

remaining 12 studies on VO2max in the meta-analysis by Mattioni Maturana et al. [65] that 591 

produced p < .05 was 1.01. In general, larger sample sizes enable the estimation of the 592 

population effects with greater precision, whereas small samples increase the risk of greatly 593 

exaggerated estimates of effects. 594 

3.1.6. Accuracy of population estimates 595 

 Davis-Stober and Dana [117] have proposed an index of the accuracy of population 596 

estimates produced by the conventional method of ordinary least squares (used in most of the 597 

commonly employed statistical tests, including tests of comparisons between sample means) 598 

compared against a "benchmark" method of estimation that uses random estimates for both the 599 

direction and the magnitude of treatment effects (called "random least squares"). The index, 600 

called the v-statistic, can range from zero to one, with a value of one indicating that the 601 
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conventional method of estimation (ordinary least squares) is consistently more accurate than the 602 

random method, and a value of zero indicating that the random method of estimation is 603 

consistently more accurate than ordinary least squares. The values of the v-statistic are 604 

influenced by (i) the sample sizes, (ii) the magnitude of the effect being investigated, and (iii) the 605 

number of parameters that need to be estimated (i.e., two means in the case of a t-test). 606 

Preempting the criticism that comparing the accuracy of statistical tests against a "benchmark" of 607 

random guessing sets a meaninglessly "low bar," Davis-Stober and Dana [117] wrote: 608 

If one's estimates are less accurate than our guessing benchmark more than half of the 609 

time, there is little point in using them to establish treatment effects. As low as this hurdle 610 

may seem, we show that v < .5, or even v = 0, can happen surprisingly often, particularly 611 

when researching effect sizes conventionally categorized as small and medium (p. 6) 612 

 This is precisely the scenario encountered in the HIIT literature: small- to medium-size 613 

effects are being studied with small samples. Therefore, to gauge the accuracy of estimates 614 

derived from the studies included in the meta-analysis by Mattioni Maturana et al. [65], 615 

comparing the effects of HIIT and moderate-intensity continuous exercise on VO2max, the v-616 

statistic for each study was calculated following the computational method outlined by Lakens 617 

and Evers [118]. The average v-statistic was .124 and the median was .000. Nearly all studies (46 618 

of 48, or 96%) had values of the v-statistic below .500, and more than half (28 of 48, or 58%) 619 

had a v-statistic of zero (see Figure 12). In the words of Lakens and Evers [118], "obviously, if a 620 

random estimator is more accurate than the estimator based on the observed data (indicated by a 621 

v-statistic smaller than .5), a study does not really reduce the uncertainty about whether the 622 

hypothesis is true" (p. 283).  623 

3.1.7. Summary 624 
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 In summary, when judged by conventional statistical standards, most studies 625 

investigating the effects of HIIT on fitness or health have limited informational yield. This is 626 

because they are examining small-to-medium effects with small samples, and commonly test a 627 

plethora of dependent variables. Estimates of small-to-medium effects derived from small, 628 

underpowered studies are characterized by such imprecision and volatility that, given a large 629 

enough number of tests, some will probably cross the conventional threshold of statistical 630 

significance. Such "statistically significant" results will likely reflect chance and, therefore, entail 631 

a low probability of replication. In addition, even if they represent true effects, such results likely 632 

overestimate the magnitude of the underlying effects. 633 

3.2. The "Is As Effective As" Problem 634 

 As noted in Section 2, statisticians commonly emphasize that "absence of evidence is not 635 

evidence of absence" [53,54]. The principle behind this motto is that p > .05 (i.e., "absence of 636 

evidence") provides no indication that the null effect, namely μ1 - μ2 = 0, is the most likely result 637 

(i.e., "evidence of absence"). In other words, finding p > .05 for a comparison between two 638 

sample means (such as the mean of a group participating in HIIT and a group participating in 639 

moderate-intensity continuous exercise training) only permits a researcher to decide not to reject 640 

the null hypothesis. Such a result cannot be taken as a basis for accepting the null hypothesis 641 

(i.e., to conclude that there is "no difference" or that the two treatments being compared have 642 

effects that are "same," "equal," "similar," "equivalent," or "comparable"). 643 

 Establishing the "equivalence" of two interventions requires a different hypothesis, 644 

different design, different power calculations, and a different statistical approach [50-52]. An 645 

equivalence study begins with the difficult decision of determining a difference between the 646 

treatments that represents the smallest effect size of interest (e.g., smaller than any effect that can 647 
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be considered clinically relevant, meaningful, or worthwhile). Then, the null hypothesis is 648 

formulated, stating that the difference between the two treatment means, or part of its 649 

surrounding confidence interval, falls outside the prespecified margin (i.e., suggesting that the 650 

treatments may not be equivalent, or one may be meaningfully more effective than the other). 651 

The alternative hypothesis would be that the difference between the treatments, and its 652 

surrounding confidence interval, are within the prespecified margin (i.e., that the treatments are 653 

equivalent, or one is as effective as the other). Power calculations for an equivalence study are 654 

based on the largest treatment difference considered to be practically irrelevant or 655 

inconsequential. The hypothesis of equivalence can be tested by specialized procedures, such as 656 

the "two one-sided tests" (TOST) method [119-121]. 657 

 Most researchers carefully avoid the use of the adjectives "similar" or "comparable" (let 658 

alone "equal" or "same") to describe treatment means following a finding of p > .05. This is 659 

because a very common scenario is that tests fail to reject the null hypothesis, even though it is 660 

false, because of low statistical power (e.g., having too few participants to detect an effect given 661 

the magnitude of that effect). Yet, the HIIT literature contains numerous claims that various HIIT 662 

protocols have "similar" or "comparable" effects to more time-consuming moderate-intensity 663 

continuous exercise. Invariably, these claims are made on the basis of findings of p > .05 from 664 

studies that are underpowered to detect small (d = 0.20, requiring N = 394 per group), medium (d 665 

= 0.50, requiring N = 64 per group), or even large effects (d = 0.80, requiring N = 26 per group). 666 

As noted earlier, of the 48 studies included in the Mattioni Maturana et al. meta-analysis [65] 667 

comparing HIIT to moderate-intensity continuous exercise on VO2max, all but one (47 of 48, or 668 

98%) had statistical power in the 0–33% range. Examples of claims made on the basis of 669 

underpowered studies include claims of "equal" changes across a wide range of physiological 670 
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parameters (samples of 8 and 8) [92], "similar" changes in aerobic capacity (samples of 7 and 7) 671 

[122], "similar" metabolic adaptations (samples of 10 and 10) [89], "similar" changes in arterial 672 

stiffness (samples of 10 and 10) [123], "similar" cardiometabolic changes (samples of 9, 10, and 673 

6) [90], "similar" cardiorespiratory adaptations in patients with heart failure (samples of 8 and 8) 674 

[124], "similar" changes in body composition and fitness (samples of 16, 16, and 14) [125], 675 

"similar" muscular and performance changes (samples of 8 and 8) [126], and "similar" 676 

enjoyment and adherence (samples of 9 and 8) [127]. Likewise, such claims are made on the 677 

basis of findings of p > .05 from studies using within-subject designs that are also underpowered 678 

to detect small (d = 0.20, requiring N = 199), medium (d = 0.50, requiring N = 34) or even large 679 

effects (d = 0.80, requiring N = 15). Examples include claims of "similar" adaptations in 680 

signaling molecules associated with mitochondrial biogenesis (N = 10) [128], "similar" 681 

mitochondrial function (N = 8) [129], "similar" 24-hour oxygen consumption (N = 8) [130], 682 

"similar" energy expenditure (N = 9) [131], "similar" increases in serum brain-derived 683 

neurotrophic factor (N = 8) [132], and "similar" enjoyment levels (N = 7 [133]; N = 11 [134]). To 684 

reiterate the essential point, claims of "similar" or "comparable" effects are unjustified on the 685 

basis of "non-significant" comparisons between means (p > .05). Claims of "similar" or 686 

"comparable" effects can only be justified if appropriate hypotheses and associated tests (i.e., of 687 

equivalence or non-inferiority) are used [119-121]. 688 

3.2.1. Poor reporting of power calculations 689 

 By using p > .05 as a criterion for establishing equivalence, there is no end to the 690 

extraordinary discoveries that researchers can claim. One common approach has been using 691 

severely underpowered comparative studies in conjunction with the p > .05 criterion in a race to 692 

discover the smallest duration or amount of exercise that can still be claimed to be "as effective 693 
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as" (or "similar" or "comparable" to) either "traditional" HIIT or moderate-intensity continuous 694 

exercise. These minimalist forms have been termed "low-volume HIIT," "very low volume 695 

HIIT," or "reduced exertion HIIT," among other labels. 696 

 To illustrate the problems associated with this approach, we examined the studies 697 

included in a recent systematic review of "low-volume HIIT," which concluded that it "can 698 

induce similar, and at times greater, improvements in cardiorespiratory fitness, glucose control, 699 

blood pressure, and cardiac function when compared to more traditional forms of aerobic 700 

exercise training including high-volume HIIT and moderate intensity continuous training, despite 701 

requiring less time commitment and lower energy expenditure" (p. 1013) [135]. This is a 702 

remarkable claim because "low-volume HIIT" was said to differ from regular HIIT solely by 703 

entailing a lower total duration of high-intensity intervals (< 15 min). Otherwise, the two 704 

modalities of training were said to share common features (e.g., intensity of 80–100% VO2max 705 

or HRmax, duration of each high-intensity interval of 1–4 min, work-to-rest ratio of 1:1 to 1:2). 706 

In other words, the review concluded that, contrary to conventional wisdom, doing less exercise 707 

is "as effective as" (or, remarkably, even "more effective than") doing more exercise while 708 

holding other important aspects of the exercise "dose" constant. 709 

 The review was based on 11 studies (see Table 3) and used the adjective "comparable" to 710 

describe the results of the comparisons between the minimalist versions of HIIT to the 711 

comparator groups in 9 of the 11 cases [135]. Predictably, the studies had the common 712 

denominator of being underpowered (sample size range: 5 to 22 per group, mean: 13.5, mode: 713 

12). Using a two-tail test, a two-group comparative study with N = 12 per group has 7.6%, 714 

21.6%, and 46.6% statistical power to reject a small (d = 0.20), medium (d = 0.50), and large (d 715 

= 0.80) false null hypothesis, respectively. 716 
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 Researchers might wonder how this is possible since item 7a of the CONSORT checklist 717 

explicitly states that authors must explain "how sample size was determined" [147]. Given the 718 

sample size range of 5–22 per group, it is unsurprising that the claimed adequacy of the sample 719 

size could not be verified in any of the 11 studies. In four, no information was provided for how 720 

the sample size was determined. In the remaining studies, the irregularities ranged from not 721 

providing complete information (e.g., not stating the anticipated effect size), citing nonverifiable 722 

or incorrect information (e.g., citing effect sizes for within-group changes from previous studies 723 

but aiming to conduct between-group comparisons), citing the effect size from an early study 724 

[66] that has been identified as an outlier [148], to reporting the required information but 725 

claiming that the sample size needed to be only a fraction of what the calculations indicated in 726 

order to reach the desired level of statistical power. As one example: 727 

Based on a meta-analysis that compared HIIT with continuous endurance training on 728 

maximal oxygen update (VO2max) improvements in adults, the estimated standardized 729 

mean difference (Cohen's d) between HIIT and [moderate-intensity continuous training] 730 

was approximately 0.4. Therefore, it was anticipated that a sample size of 12 participants 731 

per group was adequate to detect this difference between groups on our primary outcome 732 

(i.e., VO2max), with a power of 0.8 at an alpha level of 0.05 (pp. 1998–1999) [141]. 733 

 To reach 80% statistical power given an effect size d = 0.4 requires 100 participants per 734 

group rather than 12. Bonafiglia et al. [149] similarly found that 21 of 27 studies included in a 735 

meta-analysis comparing the effects of sprint interval training and continuous training either did 736 

not report sample-size calculations or did not provide full information. The reporting of power 737 

calculations is suboptimal both in the medical literature [150] and within exercise and sport 738 

science [151]. According to Charles et al. [150], only 34% of trials published in medical journals 739 
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reported all data required to calculate the sample size, had accurate calculations, and were based 740 

on accurate assumptions. Of the remaining, 43% did not report all the required parameters to 741 

allow readers to verify the calculation, and 5% did not report sample size calculations. Within 742 

exercise and sport science, the situation appears worse. An analysis of 120 manuscripts 743 

submitted to a prominent disciplinary journal [151] shows that the median sample size was 19. 744 

Only 12 of the manuscripts (10%) included any sample-size calculations and, of them, four did 745 

not provide a justification for the cited effect size. Similar to the situation in the HIIT literature 746 

discussed in this section [135], none of the 12 manuscripts provided all the information required 747 

to enable the correct reproduction of the cited sample-size goal (i.e., the statistical test to be 748 

conducted, the targeted effect size, the level of α, and the desired level of statistical power). This 749 

situation is of grave concern and necessitating urgent change [77]. 750 

4. A Crisis of Confidence, a Looming Trainwreck, or an Opportunity for Reform? 751 

 Over the past 15 years, the research literature on HIIT has produced some extraordinary 752 

claims, which, upon closer inspection, are backed by surprisingly fragile evidence. This 753 

phenomenon can be analyzed from several angles. Perhaps the striking discrepancy between the 754 

boldness of the claims and the limitations of the experimental evidence is a reflection of a field 755 

eager for a scientific breakthrough. As noted in Section 2, journal editors and peer reviewers 756 

may, consciously or subconsciously, "apply lower standards" (p. 4) [62] when evaluating 757 

manuscripts that purport to report findings that seem highly intriguing or novel. Likewise, the 758 

willingness of the press to disseminate, and occasionally amplify, the extraordinary claims 759 

surrounding HIIT also suggests that the public at large may be eager for a breakthrough from 760 

exercise science, some miraculous discovery that would magnify and accelerate the benefits of 761 

exercise while requiring less effort [152]. 762 
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 An equally fascinating question pertains to the apparent willingness of exercise science as 763 

a research field to enter a state of "suspension of disbelief," accepting and propagating claims 764 

that defy conventional wisdom and research choices that directly contradict established 765 

methodological and statistical best practices. Like other scientific fields, exercise science will 766 

inevitably, sooner or later, have to confront its own crisis of replication and confidence [63]. 767 

Postponing this conversation will not help avert it. Therefore, it seems ironic that, while a push 768 

for more stringent methodologies [112,153] and more responsible reporting [154] is sweeping 769 

the scientific landscape, one of the most prominent research lines within exercise science is 770 

characterized by a preponderance of studies with questionable statistical standards. 771 

 In the previous sections, it was shown that most samples in the HIIT literature are small, 772 

and thus the studies are underpowered to detect small, medium, or even large effects. This is 773 

important because the effect sizes, in most cases (especially when HIIT is compared against 774 

moderate-intensity continuous exercise rather than a no-exercise control), are likely to be small. 775 

It was also shown that most studies do not have one outcome designated as primary but rather 776 

tend to include long lists of dependent variables, all of which are tested at p < .05, without 777 

consideration for the inflation of α. There is also great flexibility in designs, definitions, 778 

outcomes, and analytic approaches, from the definition of HIIT to the selection of variables to 779 

represent various domains of physiological function (e.g., metabolism). Moreover, extraordinary 780 

claims related to the effectiveness of HIIT, along with claims that HIIT addresses "the most 781 

commonly cited reason for not exercising" (p. 212) [155] or "the primary reason for [the] failure 782 

to exercise on a regular basis" (p. 61) [156], namely "lack of time," stimulate the interest or 783 

curiosity of the public (e.g., the narrative that, contrary to current recommendations, one only 784 

needs to exercise for a few seconds per day). The intense interest from the media may encourage 785 
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or incentivize researchers to produce research results that support compelling narratives but may 786 

have low replicability. In particular, claims that smaller and smaller amounts of exercise were 787 

found to be "effective" for improving fitness and health are bound to capture the interest of the 788 

general public. For example, recent media reports have highlighted that repeated 4-sec spurts of 789 

exercise, totaling no more than 2 min per day [157], or a single 3-sec muscular contraction per 790 

day [158] have been found to result in "significant" gains in aerobic capacity (by 13%) and 791 

muscular strength (by 12%), respectively (based on samples of 11 and 13, respectively). 792 

 Arguably, there is a striking similarity between the patterns seen in the HIIT literature 793 

and what was unfolding in the research field investigating phenomena of behavioral priming 794 

within psychology in the 2000s. The literature was being inundated with findings that have been 795 

described as "implausible" (p. 13) [159], "spectacular" (p. 19) [160], "fascinating" (p. 20) [161], 796 

and "eye-catching and counter-intuitive... the kind of sexy research that popular science writers 797 

love to describe" (p. 6) [161]. Failed attempts to replicate several of these widely publicized 798 

results led to an ongoing "replication crisis" [162] or "crisis of confidence" [163] in psychology. 799 

In response, Nobel laureate Daniel Kahneman wrote an open letter to researchers involved in 800 

research on priming, in which he encouraged them to try to remove the question mark that had 801 

been attached to their field [164]. He emphasized: "Your problem is not with the few people who 802 

have actively challenged the validity of some priming results. It is with the much larger 803 

population of colleagues who in the past accepted your surprising results as facts when they were 804 

published." Reminding readers that "a posture of defiant denial is self-defeating," Kahneman 805 

pointed out what was at stake: "I see a train wreck looming. I expect the first victims to be young 806 

people on the job market. Being associated with a controversial and suspicious field will put 807 

them at a severe disadvantage in the competition for positions. Because of the high visibility of 808 



High-Intensity Interval Training and Replication - 37 

 

the issue, you may already expect the coming crop of graduates to encounter problems." 809 

 Although undertaking the kind of radical reforms advocated by Kahneman is unlikely to 810 

be universally appreciated or endorsed, psychology has, to some extent, entered a period of 811 

critical self-reflection. Many authors have argued that the replication crisis can be seen as an 812 

opportunity for positive change [165-167]. This perspective has grown into a movement [168] 813 

that has even been characterized, perhaps optimistically or prematurely, as a "renaissance" [169]. 814 

The winds of change are reaching other fields, even beyond the social sciences, such as cancer 815 

biology and drug development, which are coming to terms with the fact that they, too, are facing 816 

a replication crisis [170,171]. 817 

 The replication crisis in psychology offers a potential blueprint for how exercise science 818 

could proceed. Arguing that there is no problem is certainly a comforting option but, to echo 819 

Kahneman, "a posture of defiant denial is self-defeating." Continuing to overlook the 820 

fundamental principles of statistics in pursuit of implausible results that will capture the next 821 

headline will predictably lead to poor long-term outcomes. The exorbitant claims in the HIIT 822 

literature could serve as a clarion call that should inspire a period of critical self-reflection and 823 

positive reform. Recognizing the pitfalls, returning to, and respecting the fundamentals could 824 

have a lasting positive influence on the integrity, societal value, and reputation of exercise 825 

science. 826 

 It is, therefore, encouraging that the first signs of reform within exercise science have 827 

started to appear. Statistical experts [23,77] and journal editors [76,99,151,172] are making 828 

strong cases about the need to improve the quality of research designs and statistical analyses. 829 

Newly created organizations, such as the Consortium for Transparency in Exercise Science [63] 830 

and the Society for Transparency, Openness, and Replication in Kinesiology, are spearheading 831 
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educational initiatives aimed at promoting stronger research practices. In psychology, arguably 832 

one of the most consequential reform efforts has been the push to expand the practice of study 833 

preregistration [173-176]. Therefore, the growing number of journals within exercise science that 834 

encourage preregistration and welcome registered reports represents a particularly promising 835 

development [177]. Beyond these efforts, curricular reforms will be necessary, with the goal of 836 

significantly improving statistical literacy at both the undergraduate and postgraduate levels. At 837 

the undergraduate level, courses intended to promote critical appraisal skills, specifically 838 

designed for consumers of research information (i.e., future exercise professionals), should be 839 

considered a necessity for a field aspiring to fully transition to a model of evidence-based 840 

practice. At the postgraduate level, where most students are prospective producers of research 841 

information, the teaching of statistical skills should be combined with efforts to cultivate a 842 

mindset that welcomes openness and transparency while resisting the "disciplinary incentives" to 843 

"favor novelty over replication" (p. 615) [57]. Finally, an important issue that the extraordinary 844 

claims surrounding HIIT have brought to the surface is that the field of exercise science must 845 

critically reexamine its relationship with the mass media. Researchers, university press offices, 846 

and journal editors should also resist the temptation to construct and disseminate media-friendly 847 

narratives that are based on statistically questionable or fragile evidence. 848 
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Figure Captions 1387 

 1388 

Figure 1. 1389 

The number of entries per year in PubMed that include the strings "high intensity interval" or 1390 

"sprint interval" are shown in the line chart. The number of meta-analyses (subsample) is shown 1391 

in bars. 1392 

 1393 

Figure 2. 1394 

The inflation of the risk of Type I error as a function of the number of probability tests (at p < 1395 

.05). The estimates shown include the theoretical case of statistically independent (uncorrelated) 1396 

variables (using the Šidàk equation), as well as hypothetical cases in which the variables being 1397 

analyzed are intercorrelated at levels of r = .3, r = .5, and r = .7 (using the Meff method) [87,88]. 1398 

Note: DV – dependent variables. 1399 

 1400 

Figure 3.  1401 

The probability distribution of two-tailed p for three hypothetical studies: (i) an adequately 1402 

powered study, with population effect size δ = 0.5 and N = 64 per group (1-β = .81), (ii) the 1403 

example shown by Cumming [46] (p. 289), with population effect size δ = 0.5 and N = 32 per 1404 

group (1-β = .52), and (iii) an example consistent with the studies included in the meta-analysis 1405 

by Mattioni Maturana et al. [65], with population effect size δ = 0.4 and N = 10 per group (1-β = 1406 

.14). The 80th percentiles indicate that 80% of the area under each curve (the probability of two-1407 

tail p values) lies to the left of the marker and the figure indicated is the upper limit of the 80% 1408 

percentile p interval (with a lower limit of zero). The probabilities associated with conventional 1409 
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intervals of p (i.e., .05, .01, .001) are shown as percentages in the histograms.  1410 

 1411 

Figure 4. 1412 

The p values associated with the 48 studies comparing VO2max between HIIT and moderate-1413 

intensity continuous exercise groups that were included in the meta-analysis by Mattioni 1414 

Maturana et al. [65], illustrating the range from 0.000 to 1.000. 1415 

 1416 

Figure 5.  1417 

Probability (y axis) that a hypothetical "perfect" replication study (i.e., drawing samples of equal 1418 

size from the same population as the original, and applying identical treatment and assessment 1419 

methods) would obtain p < .05, as a function of the p value obtained in the original study (under 1420 

two assumptions: that the population effect size is known, and equal to the effect size obtained in 1421 

the initial study, or not). It can be seen that if the initial study yielded p < .05, there is only a 50% 1422 

chance that a replication would also obtain p < .05. If the initial study yielded p = .371 (i.e., the p 1423 

value expected from studies with the characteristics of those included in the meta-analysis by 1424 

Mattioni Maturana et al. [65], given δ = 0.40 and N = 10 per group), the probability of obtaining 1425 

p < .05 from a replication would be only .15 and .25, respectively. 1426 

 1427 

Figure 6.  1428 

P intervals estimated to indicate the probability of obtaining p < .05 in a replication study as a 1429 

function of the (two-tail) p value in an initial study. The two-sided p intervals, extending from 1430 

the 10th to the 90th percentile, are shown on the left, whereas the one-sided p intervals, 1431 

extending from zero to the 80th percentile, are shown on the right. Estimates are shown for both 1432 
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two-tail and one-tail tests in the replication study. The upper limits of the 90th percentile (left) 1433 

and 80th percentile (right) p intervals associated with an initial study yielding p = .371 (i.e., the p 1434 

value expected from studies with the characteristics of those included in the meta-analysis by 1435 

Mattioni Maturana et al. [65], given δ = 0.40 and N = 10 per group) are highlighted.  1436 

 1437 

Figure 7.  1438 

Positive predictive value (PPV), namely the probability that a "positive" research finding 1439 

represents a true effect (i.e., that the finding is a true positive), as a function of the Type I error 1440 

rate (α), when statistical power (1-β) is sufficient (i.e., 1-β = .80) and when it is the median of the 1441 

power of studies included in the meta-analysis by Mattioni Maturana et al. [65] comparing HIIT 1442 

and moderate-intensity continuous training on VO2max (i.e., 1-β = .14). When α is allowed to 1443 

escalate to high levels, even under the unrealistic scenario of R = .50, the PPV drops to < .10.  1444 

 1445 

Figure 8. 1446 

Levels of statistical power (1-β) for each of the 48 studies included in the Mattioni Maturana et 1447 

al. [65] meta-analysis comparing the effects of HIIT and moderate-intensity continuous exercise 1448 

on VO2max. Power was calculated from the reported sample sizes, assuming that the pooled 1449 

effect (d = 0.40) represents the "true" population effect and α = .05. Τhe median study exhibited 1450 

14% statistical power, 42 of 48 studies (88%) had statistical power in the 0–20% range and all 1451 

but one (47 of 48, or 98%) were in the 0–33% range. 1452 

 1453 

Figure 9 1454 

The estimated false positive risk (FPR) of the studies on VO2max that were included in the 1455 
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Mattioni Maturana et al. [65] meta-analysis, assuming R = .50. Only 3 of the 48 studies (6.25%) 1456 

produced FPR lower than .05. The FPR of the 13 studies that produced p < .05 was as high as 1457 

.245, with a mean of .130 and a median of .123. Two related figures are highlighted for 1458 

reference: (i) the minimum risk of Type I error (α) associated with p = .05 has been estimated as 1459 

.289; (ii) the relationship between p values and α holds until p < 1/e, namely p < .368, after 1460 

which α reaches a plateau. 1461 

 1462 

Figure 10. 1463 

The expected and observed frequencies of p values, in intervals ranging from p < .05 to .95 < p < 1464 

1.00, resulting from the studies on VO2max included in the meta-analysis by Mattioni Maturana 1465 

et al. [65], illustrating the presence of an excessive proportion of studies with p < .05.  1466 

 1467 

Figure 11 1468 

Results of simulated experiments (100,000 simulated tests per data point) illustrating the 1469 

phenomenon of "winner's curse," namely the inflation of the apparent effect size (d) compared to 1470 

the known population effect size (δ) from studies with various sample sizes resulting in p < .05. 1471 

For sample sizes of 10 per group, namely the median sample size of the 48 studies on VO2max 1472 

included in the meta-analysis by Mattioni Maturana et al. [65], a small effect (δ = 0.20) can 1473 

appear as large (d = 0.80), while a population effect size of δ = 0.40 (the pooled effect from the 1474 

meta-analysis by Mattioni Maturana et al. [65]) can appear highly exaggerated, namely d = 1.04. 1475 

Notice that samples of N = 100 per group suffice to eliminate the inflation of medium population 1476 

effect sizes (δ = d = .50) but samples of N = 700 per group are required to eliminate the inflation 1477 

for small population effect sizes (δ = d = .20). 1478 
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 1479 

Figure 12.  1480 

Values of the v-statistic proposed by Davis-Stober and Dana [116] for each of the 48 studies on 1481 

VO2max included in the meta-analysis by Mattioni Maturana et al. [65], comparing the effects of 1482 

HIIT and moderate-intensity continuous exercise. The v-statistic is an index of the relative 1483 

accuracy of population estimates produced by the traditional method of ordinary least squares 1484 

compared to "random least squares" (i.e., random estimates for both the direction and the 1485 

magnitude of treatment effects). The average v-statistic was .124 and the median was .000. 1486 

Nearly all studies (46 of 48, or 96%) had values of the v-statistic below .500, and more than half 1487 

(28 of 48, or 58%) had a v-statistic of zero, suggesting that random estimates were consistently 1488 

more accurate than estimates based on the observed data. 1489 

  1490 
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Table 1. Probability of obtaining p < .05 from a replication as a function of the p value obtained 1491 
in an initial experiment (p obt) under two assumptions (i.e., that the population effect size is 1492 
known, and equal to the effect size obtained in the initial study, or not). The column labeled 1493 
"Goodman" contains the values calculated by Goodman [43] (Table 1, p. 877), presented here as 1494 
evidence of validation. The p value of .371 (i.e., the expected p value from the meta-analysis by 1495 
Mattioni Maturana et al. [65], given δ = 0.40 and N = 10 per group) is also included, to highlight 1496 
the low probabilities of obtaining p < .05 from a replication study. 1497 
 1498 

 
 

 
Assuming δ is known (δ = d) 

 
Assuming δ is unknown 

 
p obt 

 
2-tail 

 
Goodman 

 
1-tail 

 
2-tail 

 
Goodman 

 
1-tail 

 
.001 

 
.908 

 
.91 

 
.950 

 
.827 

 
.78 

 
.878 

 
.005 

 
.802 

 
.80 

 
.877 

 
.726 

 
.71 

 
.794 

 
.010 

 
.731 

 
.73 

 
.824 

 
.669 

 
.66 

 
.745 

 
.030 

 
.583 

 
.58 

 
.700 

 
.561 

 
.56 

 
.645 

 
.050 

 
.500 

 
.50 

 
.624 

 
.503 

 
.50 

 
.588 

 
.100 

 
.376 

 
.37 

 
.500 

 
.417 

 
.41 

 
.500 

 
.200 

 
.249 

 
 

 
.358 

 
.327 

 
 

 
.399 

 
.371 

 
.146 

 
 

 
.227 

 
.247 

 
 

 
.298 

 
.400 

 
.134 

 
 

 
.211 

 
.238 

 
 

 
.285 

 
.600 

 
.082 

 
 

 
.131 

 
.195 

 
 

 
.214 

 1499 
 1500 
  1501 
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Table 2. Two-sided (extending from the 10th to the 90th percentile) and one-sided (extending 1502 
from zero to the 80th percentile) p intervals for two- and one-tail single-study replications as a 1503 
function of the p value obtained in an initial (two-tail) study (p obt). P intervals indicate the 1504 
probability of obtaining p < .05 in a single, identical replication study. Compare to the values 1505 
calculated by Cumming [46] (Table 1, p. 292) for validation. As noted by Cumming [46], "for 1506 
the 90% p interval [one-tail] to be [0, .05], p obt must equal .00054" (p. 293). The p value of .371 1507 
(i.e., the expected p value from the studies included in the meta-analysis by Mattioni Maturana et 1508 
al. [65], given δ = 0.40 and N = 10 per group) is also included, to highlight the extraordinarily 1509 
wide p interval associated with it. 1510 
 1511 

 
p obt 

 
10-90th percentile 
interval, two-tail 

 
10-90th percentile 
interval, one-tail 

 
0-80th percentile 
interval, two-tail 

 
0-80th percentile 
interval, one-tail 

 
.00054 

 
[.0000005, .099] 

 
[.0000001, .050] 

 
[.000, .023] 

 
[.000, .011] 

 
.001 

 
[.0000005, .139] 

 
[.0000005, .070] 

 
[.000, .036] 

 
[.000, .018] 

 
.010 

 
[.000012, .408] 

 
[.000006, .223] 

 
[.000, .162] 

 
[.000, .083] 

 
.020 

 
[.000035, .517] 

 
[.000018, .304] 

 
[.000, .242] 

 
[.000, .128] 

 
.050 

 
[.000162, .648] 

 
[.000081, .441] 

 
[.000, .379] 

 
[.000, .221] 

 
.100 

 
[.000544, .728] 

 
[.000273, .567] 

 
[.000, .491] 

 
[.000, .325] 

 
.200 

 
[.001924, .789] 

 
[.000988, .702] 

 
[.000, .591] 

 
[.000, .464] 

 
.371 

 
[.005998, .828] 

 
[.003397, .821] 

 
[.000, .662] 

 
[.000, .616] 

 
.400 

 
[.006848, .832] 

 
[.003978, .834] 

 
[.000, .669] 

 
[.000, .636] 

 
.600 

 
[.013091, .849] 

 
[.009726, .901] 

 
[.000, .701] 

 
[.000, .747] 

 1512 
  1513 
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Table 3.   Synopsis of the sample-size calculations of the 11 studies included in the review by 1514 
Sabag et al. [135], comparing the effects of low-volume HIIT to traditional HIIT or moderate-1515 
intensity continuous exercise. 1516 
 1517 
 
Study 

 
Samples 

 
Verbatim section on power 

 
Comment 

 
Tjønna et al., 
2013 [136] 

 
13 & 13 

 
Prior experience suggests a 
standard deviation (SD) of about 
2.03.0 ml/kg/min. According to 
sample size tables for clinical 
studies, we needed 10 subjects in 
each group (we included 13 in 
case of drop out). With a 
standardized within-group 
difference of 1.0 differences may 
be detected using a paired t-test 
with 80% power, at a significance 
level of 5%. Clinically, this 
corresponds to a detectable 
difference for VO2max of 3 
ml/kg/min (p. 3). 

 
While the calculations for 
a matched-pair t-test with 
d = 1.0 indeed yields a 
required sample size of N 
= 10, the cited source did 
not yield an effect size of 
d = 1.0. Also, the focus of 
this study was not on 
"within group" changes 
but rather inter-group 
comparisons, and the 
analysis was not based on 
a matched-pair t-test but 
rather on "mixed linear 
model analyses with 
group and time 
interaction." 

 
Ramos et al., 
2017 [137] 

 
21 & 22 

 
Sample size for the substudy was 
calculated using an anticipated 
mean difference in MetS z-score 
reduction of 0.60 (power = 0.80, 
alpha = 0.05 for two-tailed test) 
between HIIT and MICT groups. 
This was based on a previous 
study showing a similar mean 
difference in reduction of MetS 
z-score between HIIT and MICT 
(From: Supplementary material). 

 
The information provided 
lacks standard deviation. 
The cited source does not 
report a mean difference 
in MetS z-score reduction 
"similar" to 0.60 but 
rather 0.46 ∀ 1.55, and d 
= 0.29. This entails a total 
sample size of N = (188 + 
188) = 376. 

 
Oh et al., 
2017 [138] 

 
20 & 13 

 
Our study design did not consider 
sampling size calculation to 
estimate the effect of sample size. 
Therefore, the small sample size 
might have limited the statistical 
power of the study (p. 10). 

 
No sample-size 
calculation. 

  
13 & 12 

 
A limitation of the present study 
is the relatively small number of 
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Winding et 
al., 2018 
[139] 

participants, which may have 
masked differences between HIIT 
and END (p. 1138). 

No sample-size 
calculation. 

 
Abdelbasset 
et al., 2020 
[140] 

 
16 & 15 

 
For sample size estimation, an 
initial power analysis was applied 
(2-tailed test with statistical 
power of 0.80, a error=0.05, and 
effect size = 0.5). Estimates of 
mean difference and standard 
deviation for the [intrahepatic 
triglycerides] value from the 
previous study assessed 19 
patients who received aerobic 
exercise. According to that study 
measures, 13 patients were 
required in each group. Forty-
eight patients were included [for 
three groups] in the study to 
account for the dropout rate of 
20% (p. 3). 

 
Given the cited 
assumptions (d = 0.5, α = 
0.05, power = 0.80), the 
required sample is N = 64 
per group (128 for two 
groups, 192 for three 
groups, 230 with 20% 
oversampling for 
dropout). However, the 
cited source (which did 
not include power 
calculations) did not yield 
d = 0.5 for the comparison 
between exercise and 
placebo for hepatic 
triglyceride concentration 
but rather d = 0.3. This 
entails N = 170 per group, 
(340 for two groups, 510 
for three, 612 with 20% 
oversampling for 
dropout). 

 
Poon et al., 
2020 [141] 

 
12 & 12 

 
Based on a meta-analysis that 
compared HIIT with continuous 
endurance training on maximal 
oxygen update (VO2max) 
improvements in adults, the 
estimated standardized mean 
difference (Cohen's d) between 
HIIT and MICT was 
approximately 0.4. Therefore, it 
was anticipated that a sample size 
of 12 participants per group was 
adequate to detect this difference 
between groups on our primary 
outcome (i.e., VO2max), with a 
power of 0.8 at an alpha level of 
0.05 (pp. 1998-1999). 

 
The cited source (meta-
analysis) reported non-
standardized results (i.e., 
not Cohen's d). When 
converted to d using the 
information given (mean 
difference, 95% 
confidence limits), d was 
not 0.4. More importantly, 
the sample size required 
for d = 0.4, α = .05, power 
= .8 is N = 100 per group, 
not 12. 
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Sabag et al., 
2020 [142] 

12 & 12 An a priori, two-tailed power 
calculation at an α of 0.05 and β 
of 0.8 gave an actual power of 
0.813 for a sample size of 11 in 
each group. This calculation was 
determined using the effect size 
(ES) of 1.28 of a similar exercise 
intervention from a previous 
study, which detected significant 
improvements in liver fat within 
groups (p. 2373). 

Besides confusing β and 
1-β (power), the 
researchers referred to an 
effect size "within 
groups" as the basis for 
power calculations for a 
between-groups 
comparison (also, the 
reported effect size for 
high-intensity, low 
volume exercise was 1.42 
for intrahepatic lipids, not 
1.28). In the cited source, 
the effect size for the 
comparison between high-
intensity, low-volume 
exercise and low-intensity 
high-volume exercise was 
d = 0.19, requiring N = 
(436 + 436) = 872. 

 
Ryan et al., 
2020 [143] 

 
16 & 14 

 
 

 
No sample-size 
calculation. 

 
Matsuo et al., 
2014 [144] 

 
14 & 14 

 
A priori power analysis was 
performed to determine the 
sample size. The primary 
outcome variable of this study 
was the increase of VO2max 
achieved through three types of 
exercise intervention. On the 
basis of data from both a previous 
study and our preliminary study 
on changes in VO2max, we 
assumed a 15% difference in the 
training effect between the three 
groups with an SD estimate of 
10%. With an alpha error rate of 
0.017 (with Bonferroni 
adjustment for post hoc tests) and 
statistical power of 80%, the 
minimal sample size in each 
group was estimated to be 11 
subjects (33 subjects in total). 

 
Assuming a large effect d 
= 1.5 with an adjusted α = 
(0.05 / 3) = 0.017 indeed 
requires only N = 11 per 
group. However, the cited 
"preliminary study" only 
reported within-subjects 
changes in VO2max in 
two participants, not 
intergroup differences or 
standard deviations. 
Moreover, the "previous 
study" was conducted on 
a patient population (heart 
failure), with low baseline 
levels of VO2max and 
there is no indication of a 
"15% difference in the 
training effect" (the cited 
study reported increases 
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Assuming subject attrition such 
as dropout, we recruited 14 
subjects for each group (42 
subjects in total) in this study (p. 
46). 

of 46% vs. 14%, for 
interval and moderate 
continuous exercise, 
respectively). 

 
Wilson et al., 
2019 [145] 

 
11 & 5 

 
 

 
No sample-size 
calculation. 

 
Way et al., 
2020 [146] 

 
12 & 12 

 
Sample size was calculated based 
on a projected change in 
peripheral arterial stiffness [pulse 
wave velocity] with [moderate-
intensity continuous training] in 
adults with [type 2 diabetes] 
similar to the [moderate-intensity 
continuous training] protocol in 
our study. A priori, two-tailed 
power calculation of α = 0.05 and 
β = 0.20 gave a power of 0.82 for 
a total sample size of 45 (n = 15 
per group) (p. 150). 

 
The researchers did not 
cite an anticipated effect 
size, so the calculations 
cannot be verified. 
Solving for the missing 
effect size shows that the 
study was sufficiently 
powered only for a large 
between-group effect (d = 
1.2). The researchers 
reported basing their 
calculations on within-
group changes but their 
analyses were for inter-
group comparisons. The 
cited source reported d = 
0.80 (radial) and d = 0.50 
(femoral) for within-
group changes and d = 
1.10 (radial) and d = 0.84 
(femoral) for inter-group 
comparisons. 
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Figure 1 1520 
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Figure 2 1523 
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Figure 3 1526 
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Figure 4 1529 
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Figure 5 1532 
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Figure 6 1535 
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Figure 7 1538 
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Figure 8 1541 
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Figure 9 1544 
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Figure 10 1547 
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Figure 11 1550 
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Figure 12 1553 
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