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Abstract 

Accurate online estimation of the state of charge (SOC) and state of energy (SOE) of lithium-ion batteries are essential for 

efficient and reliable energy management of new energy electric vehicles (EVs). To improve the accuracy and stability of 

the joint estimation of SOC and SOE of lithium-ion batteries for EVs, based on a dual-polarization (DP) equivalent circuit 

model and time-varying forgetting factor recursive least squares (TVFFRLS) algorithm for online parameter identification, 

a joint estimation method based on singular value decomposition with adaptive embedded cubature Kalman filtering (SVD- 

AECKF) algorithm is proposed. The algorithm adopts the embedded cubature criterion and singular value decomposition 

method to improve filtering efficiency, accuracy, and numerical stability. Meanwhile, combining the idea of adaptive covari- 

ance matching for real-time adaptive updating of system noise to improve joint estimation accuracy. Finally, the results under 

different initial errors and complex operating conditions show that the SVD-AECKF algorithm improves the convergence 

time of SOC estimation by at least 26.3% compared to that before optimization. The SOE estimation error is reduced by at 

least 12.0% compared to that before optimization. This indicates that the SVD-AECKF algorithm has good joint SOC and 

SOE estimation accuracy, convergence, and stability. 

Keywords Lithium-ion batteries · State of charge · State of energy · Adaptive embedded cubature Kalman filtering · 

Time- varying forgetting factor · Singular value decomposition 

Introduction 

The new energy storage system becomes a key means for advancing clean energy, the energy revolution, and the 

development of sustainable energy under the direction of the “double carbon” strategy [1]. In the new energy storage 

system, lithium-ion batteries (LIBs) have been widely used in new energy electric vehicles as the “power source” of 

electric vehicles due to their high energy density, long cycle life, and low self-discharge rate [2, 3]. It directly affects the 
driving range, vehicle quality, and manufacturing cost, and has been a key factor limiting the development of electric 
vehicles [4, 5]. Battery performance is affected by operating conditions and battery status [6]. However, numerous factors 
influence the lifetime of LIBs [7]. Overcharging or over-discharging will speed up the aging of the battery and lead to 
changes in the service life of the battery. In serious cases, it is easy to cause battery fire and explosion, and it greatly reduces 
the safety of new energy electric vehicles [8–11]. Thus, it is particularly important to use a battery management system 
(BMS) to enable the monitoring and control of LIBs in electric vehicles. 

The SOC estimation of LIBs is one of the important functions of BMS. It not only indicates the remaining power of the 

battery but also manages and controls the charging and discharging processes of the battery in a balanced manner, ensuring 

the stable operation of the power battery [12]. The battery SOC estimation value is difficult to measure, and it is affected by 
a variety of factors such as voltage, charge/ discharge multiplier, working environment temperature, etc. [13]. As a result, it 
can only be obtained indirectly through other physical quantities and algorithms. The ampere-time integration method, 
open-circuit voltage method, internal resistance analysis method, data-driven algorithm, and model-based algorithm are the 
major methods used by both local and international academics to estimate battery charge state at the moment [14, 15]. 
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Among them, the open-circuit voltage method, the ampere-time integration method, and the internal resistance analysis 

method are the three early traditional methods [16]. C. Huang et al. [17] applied the open-circuit voltage method as an 

initial value correction for the Ah integration method to estimate the battery SOC and found that the open-circuit voltage 

leads to large deviations in SOC at different temperatures. The data-driven algorithms mainly include neural networks 

(NN), support vector machines (SVM), fuzzy logic (FL), and other intelligent computing methods [18]. This intelligent 

computing method is highly complex and requires a large number of data samples to train the battery model, which can 

easily lead to random output results and possibly large errors [19]. Compared with traditional methods and data-driven 

class algorithm methods, model-based algorithms for SOC estimation are more commonly used today [20]. The main 

methods in this category are Kalman filtering methods, particle filtering methods, and H∞ filtering methods, as well as 

other improved fusion algorithms [21–23]. The estimation of electrical SOC using a Kalman filter requires an accurate 

battery model, and the model and parameters are different for different types of batteries [24–26]. To better exploit the 

charging and discharging characteristics of the LIBs and reduce the impact of overcharge and over-discharge on the cycle 

life of the LIBs, Shiqiang Zhuang et al. [27] proposed the cubature Kalman filter (CKF) algorithm to estimate the SOC. 

Experimental results show that the maximum error of the algorithm to estimate the SOC is kept within 4% and the 

average error is kept within 1%. However, there are problems that it is difficult to accurately obtain the statistical 

characteristics of the measurement noise and there is the possibility of losing the positive characteristics in the iterative 

process leading to the reduction of the filtering accuracy [28–32]. Therefore, continuous optimization of the algorithm is 

required to effectively improve the battery state estimation. SOE is one of the basic parameters of the battery safety 

protection module in BMS, which directly reflects the internal energy change of the battery [33]. Under the current 

situation where the range estimation accuracy is not high, SOE is used to achieve the range estimation of new energy 

vehicles and provide the driver with accurate range information [34–36]. Accurate SOE estimation not only helps the 

battery management system to develop a reasonable energy control strategy and optimize the energy control performance 
of new energy electric vehicles but also has practical significance to promote the development and promotion of electric 
vehicles [37–41]. The classification of the SOE estimation method is roughly the same as that of the SOC estimation 
method, which can be divided into the direct method, model-based method, and data-driven method [42–44]. The power 
integration method is one of the direct methods, which has the advantages of rapidity and high efficiency, but it also has 
the disadvantage of being susceptible to environmental disturbances leading to accuracy degradation. Xin Lai et al. [34] 
proposed a joint method using a particle filter (PF) and extended Kalman filter (EKF) for high-precision estimation of 
SOE, with a maximum estimation error of less than 3%. Zhang et al. [45] used a model-driven method with an adaptive 
traceless Kalman filter to achieve an adaptive noise covariance matrix in the calculation process, which further improved 
the accuracy and achieved SOE accurate estimation. L. Ma et al. [38] proposed a data-driven method for simultaneous 
estimation of SOC and SOE based on long short-term memory (LSTM) deep neural network and verified the effectiveness 
of the algorithm by two dynamic drive cycles under different operating conditions such as different temperatures, different 
battery materials, and noise interference. Xiao Yang et al. [44] used two modular adaptive controllers to optimize the CKF 
algorithm for joint estimation of SOC and SOE in lithium-ion batteries. Under complex conditions, the experimental 
results show that the rate of convergence of SOC estimation is improved by 52.17%, and the maximum error of SOE 
estimation is 0.0463, which is 24.59% less than that of the traditional CKF algorithm. The algorithm significantly 
improves the joint estimation accuracy and rate of convergence. However, the method selects a fixed value for the cubature 
point weights, and this can easily lead to the selected cubature points exceeding the integration region and making the 
algorithm unworkable.
To improve the accuracy and stability of battery state estimation in the complex operating environment of the LIBs in new 
energy electric vehicles, an improved SVD-AECKF algorithm for joint online high accuracy estimation is proposed in this 
article. The main contributions of this article are as follows. 

(1) The TVFFRLS algorithm can improve the accuracy of DP equivalent circuit model parameter identification by 

changing the forgetting factor in real time. 

(2) The proposed SVD-AECKF algorithm not only uses the embedded cubature criterion and singular value 

decomposition (SVD) method to improve the filtering accuracy, efficiency, and numerical stability but also combines 

the idea of adaptive covariance matching to reduce the influence of system noise on the estimation in complex 

environments, thus extending the applicability of the algorithm and improving the joint estimation accuracy. 

(3) The CKF algorithm, embedded cubature Kalman filtering (ECKF) algorithm, and singular value decomposition- 
embedded cubature Kalman filtering (SVD-ECKF) algorithm are experimentally validated against the SVD-AECKF 
algorithm under different operating conditions, and the convergence speed, maximum error, and average error factors are 
compared. The experimental results show that the proposed SVD-AECKF algorithm has the best convergence and the 
highest accuracy in the joint estimation of SOC and SOE. 



Mathematical analysis 

Double polarization equivalent circuit model 

In consideration of model complexity and accuracy, this article proposes to use the equivalent circuit model for battery 

state estimation. The typical equivalent models commonly used at home and abroad are the internal resistance (Rint) 

model, the partnership for the new generation of vehicles (PNGV) model, the Thevenin circuit model, the multi-order RC 

model, etc. The structure of the Rint model is very simple, and the model has only one ohmic internal resistance, which 

cannot well represent the battery transient response process and internal polarization phenomena, and cannot be used as the 

basis of the joint estimation research. The Thevenin model adds an RC parallel circuit to the Rint model, which fully takes 

into account the polarization characteristics of the LIBs and can describe the polarization phenomenon of batteries more 

completely. The PNGV model is based on the Thevenin model with the addition of a series capacitor, which makes up for 

the disadvantage of the constant open circuit voltage of the Thevenin circuit model. However, the PNGV model is 

relatively complicated in parameter identification and not easy to implement. Combining the accuracy, complexity, and 

implementation analysis of the model, this article proposes to use the dual-polarization (DP) equivalent model to model the 

LIBs, and the circuit schematic is shown in Fig. 1. 
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Fig. 1 DP equivalent circuit model 

The DP equivalent model is based on the Thevenin model and uses a series of resistive capacitive parallel circuits. It not 

only accurately reflects the polarization effect of LIBs but also facilitates LIB characterization and parameter 

identification. Based on Kirchhoff’s voltage law, the state expressions of voltage and current are obtained by analyzing the 

circuit as shown in Eq. (1). 

In Eq. (1), UOC denotes the open circuit voltage of the battery; UL is the terminal voltage of the battery; I is the 

operating current of the battery; C and R denote the resist- ance and capacitance of the battery. 

   Combining the SOC and SOE definition equations, choose to select [SOC U1 U2]
T and [SOE U1 U2]

T are chosen as

the state variables of SOC and SOE, respectively. Then the equivalent circuit model is discretized, and the discrete 

state space square expressions can be obtained as shown in Eqs. (2) and (3). 
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In Eqs. (2) and (3), Δt is the sampling interval; is the time constant, r = RC is the time constant of the electrochemical 

circuit; wk is the state noise; and vk is the measurement noise, which is the zero-mean white noise of the covariance 

matrices Q and R, respectively; QN is the rated capacity of the battery; EN is the total energy of the battery; r, is the 

charging and discharging efficiency of the LIBs, which is set to 0.98. 

Online parameter identification based on TVFFRLS 

The recursive least squares (RLS) algorithm based on the theory of minimizing the sum of squares of errors is a 

commonly used system parameter optimization identification technique. The algorithm is simple in principle and 

easy to implement, and is widely used for online identification of model parameters of the LIBs. With the increase of 

observed data, new data is easy to be submerged by old data, and the phenomenon of “data saturation” occurs; 

thus, the RLS algorithm cannot accurately track the changes in model parameters in real time. The least squares 

algorithm with fixed forgetting factor (FFRLS) reduces the proportion of old data information in the gain and 

reduces the impact of data saturation by adding a fixed forgetting factor. The core formula is shown in Eq. (4). 

 In Eq. (4), yk is the output of the system; rpk is the input of the system; ek is the prediction error of the terminal voltage; 
Kk is the algorithm gain matrix; 0,..k is the parameter variable. Due to the LIBs of new energy electric vehicles usually 
working in a complex time-varying environment, the rapidly changing current will lead to large errors in the 
identification results of the FFRLS algorithm with a fixed forgetting factor, and it cannot meet the requirements of 
identification accuracy. Therefore, based on the FFRLS algorithm, an improved time-varying forgetting factor recursive 
least squares (TVFFRLS) algorithm is formed by automatically finding the optimal value of the forgetting factor by the 
voltage mean square error at data points within the data sliding window in different time-varying environments to 
improve the stability and recognition accuracy of online parameter tracking. This time-varying forgetting factor λ of the 
algorithm is calculated following Eq. (5): 
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    In Eq. (5), k represents the current data point;   is the forgetting factor obtained from the current operation;  max 
and   min are the maximum and minimum values of the forgetting factor, respectively; M is the window size; ei is the 

terminal voltage error at the ith data point. p is the sensitivity factor; Lk is the mean squared error of the voltage at the kth 

data point. The flow chart of the process of parameter identification by the TVFFRLS algorithm is shown in Fig. 2 

Improved AECKF algorithm based on the SVD method 

The cubature Kalman filtering (CKF) algorithm is a nonlinear filtering algorithm. Compared with other nonlinear Kalman 

filtering algorithms, it has the features of good filtering effect, scalability, and less time consumption. The traditional CKF 

algorithm uses a third-order spherical mirror cubature criterion to select a fixed value of cubature point weights. It can 

easily cause the selected cubature points to exceed the integration region and make the algorithm inoperable. Therefore, to 

address the shortcomings of the CKF algorithm, this paper proposed an embedded cubature Kalman filter (ECKF) 

algorithm by using the embedded cubature criterion instead of the spherical mirror cubature criterion. 

The embedded cubature criterion changes the number of cubature points of the n-order system from 2n to 2n + 1. It not 

only expands the integration range of cubature points and solves the problem of fixing the corresponding weights of 

cubature points but also avoids the inherent defects of the spherical-radial cubature criterion and improves the efficiency 

and accuracy of the algorithm. The rules for finding the set of cubature points     and the corresponding weights wi of 
the CKF algorithm under the embedded cubature criterion are as follows in Eqs. (6) and (7). 

Fig. 2 Flow block diagram of TVFFRLS algorithm 

(7) 

(6)

      In Eqs. (6) and (7), [  ]i is the i-th cubature point;   is a free parameter, and    is empirically taken to a value of 1 in 
this study; is the embedded family parameter, generally taken as 1; n is the state dimension. 

As the number of algorithm iterations increases, the gradual increase in data error can easily lead to the loss of the 
positivity and symmetry of the state covariance matrix. The Cholesky decomposition in the a priori estimated covariance 

can easily lead to filtering interruptions and reduce the stability of the algorithm. Therefore, this paper proposes to 

introduce the singular value decomposition (SVD) matrix method to replace the traditional Cholesky decomposition 

method to improve the stability and performance of numerical computation. Take a matrix P of order m × n as an example; 

it can be decomposed into the following Eq. (8) form by SVD: 
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(8)  

 In Eq. (8), matrix U and matrix V are unitary matrices of order m and order n, respectively; S matrix is a diagonal 
matrix consisting of singular values of P. 

Combining the embedded cubature criterion and cubature Kalman filter theory, the specific implementation steps of
the joint estimation of SOC and SOE for lithium-ion batteries using the matrix decomposition method of SVD are shown 
below. 

Step 1 Initialization 

2.2 Calculate the cubature point according to the embedded cubature criterion: 

(11) 

2.3 Propagation of cubature points through the equation of state:

(12) 

1.1 Initialize the posterior error covariance P0 

1.2 Initialize the state vector x0 

1.3 Initialize the process noise covariance Q0. 

1.4 Initialize the measurement noise covariance R0. 
1.5 Calculate the initial mean "'x0 and covariance P0 with a randomly selected state vector x0: 

(9) 

Step 2 Update of time 

2.1 Perform SVD decomposition of the initial variance

(10) 

2.4 Calculate the predicted state: 

(13) 

2.5 Calculate the propagated covariance: 
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Step 3 Update of measurement 

3.1 Covariance matrix SVD transformation and recalculation of the cubature points:

(15) 

(16) 

3.2 Propagate the cubature points and calculate the predicted measurement: 

Step 3.3 Calculate the predicted values of the measurements:

(17) 

Step 3.4 Calculate the error covariance matrix and the cross-covariance matrix: 

(18) 

Step 4.3 Update the error covariance matrix: 

where SOX represents the estimated state of the battery 

Step 4 Update of the system state 
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Step 4.2 
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Update the posterior state:

In actual operation, due to the complexity of the system operating environment and the time-varying characteristics 

of the battery, these factors may lead to the variation of the process noise Qk and the measurement noise Rk in the 
system, and thus the estimation accuracy of the algorithm is degraded. Therefore, the idea of adaptive filtering based on 
the covariance matching principle is introduced in this study. 
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− ŷ k
k−1

)

�
y∗
i,

k
k−1

− ŷ k
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The specific adaptive noise correction process is expressed in the following Eq. (22): 

(22) 

Fig. 3 Flow chart of SOC and SOE joint estimation for the SVD-AECKF algorithm 

In Eq. (22), en=yn − .,.y n ,  which is the voltage residual of the battery model at time step n; L is a free parameter that 

needs to be adaptive. 
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 The covariance of Qk and Rk in the system is adaptively corrected and updated by using the innovation sequence Ck 

of the real measured voltage and the model output voltage. An improved singular value decomposition-adaptive 

embedded cubature Kalman filtering (SVD-(AECKF) algorithm is obtained. This avoids the algorithm filtering accuracy 

degradation and divergence to ensure the accuracy of battery performance estimation. The flow chart of the SVD-

AECKF algorithm for joint SOC and SOE estimation is shown in Fig. 3. 

Experimental analysis 

In this section, data relating to the current, voltage, and SOC of lithium-ion batteries will be obtained 

experimentally under complex operating conditions. Model parameter identification and joint estimation 

validation analysis will also be carried out based on the obtained data. In addition, three evaluation criteria are 

used for the validation analysis in this article, which are maximum error, root mean square error (RMSE), and mean 
absolute error (MAE). The mathematical definitions of the above evaluation criteria are as follows. 

(23) 

 

In Eq. (23), yReal is the real value and yEst is the estimated value. N is the number of experimental data. 

Experimental platform 

The experiments in this study used 70-Ah power LIBs with a rated voltage of 3.7 V. The BTS200-100–104 

battery test equipment was used as the test platform, and software installed in the PC control terminal is used 

to control the charging and discharging conditions of the battery to match the test equipment. The 

experimental platform established in this study is shown in Fig. 4. 

Fig. 4 Schematic diagram of experimental platform construction 
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Table 1 Comparison of voltage error between the FFRLS and TVFFRLS algorithms 

Method MAE% RMSE% 

TVFFRLS 0.64 0.81 

FFRLS 1.04 1.11 

Co‑estimation results of SOC and SOE 

Experimental analysis under HPPC working condition 

In practical applications, the complex and variable currents of lithium-ion batteries impose stringent requirements on the 

dynamic performance of the batteries. To verify the convergence and stability of the online SOC estimation and the 

accuracy and reliability of the online SOE estimation proposed by the proposed algorithm. The results of different 

initial error algorithms and actual values are analyzed and verified under the hybrid pulse power characteristic (HPPC) 

working conditions selected. The experimental results are shown in Figs. 7 and 8. 

From Fig. 7(a) and (c), it can be seen that for the initial SOC values of 0.9 and 0.8, the convergence times of the 

CKF algorithm for SOC estimation are 192 s and 200 s. The convergence times of the ECKF algorithm for SOC 

estimation are 133 s and 154 s, which are 30.7% and 23.0% faster than the CKF algorithm, respectively. The convergence 
times of the SVD-ECKF algorithm for SOC estimation are 75 s and 89 s, which are 43.6% and 42.2% faster than the 
ECKF algorithm, respectively. The convergence times of the SVD-AECKF algorithm for SOC estimation are 36 s and 42 
s, which are 44.0% and 52.8% faster than the SVD-ECKF algorithm, respectively. From Fig. 7(b) and (d), it can be seen 
that when estimating the SOC for different initial values, the valuation of the SOC at the end of discharge shows a large 
error due to the severe electro- chemical reactions occurring in the battery. The comparative analysis with the other three 
algorithms reveals that the SVD-AECKF algorithm converges faster and it can converge to the actual more accurately, 
effectively improving the convergence speed of the filtering algorithm. 

(a) (b) 

(c) (d) 

Fig. 7 Comparison of SOC estimation results for different initial values under HPPC working conditions 



(a) (b) 

(c) (d) 

Fig. 8 Comparison of SOE estimation results for different initial values under HPPC working conditions 

As can be seen from Table 2, the RMSE of the SOE estimation for the SVD-AECKF algorithm is 0.69% and 0.72% for 
the initial values of SOE of 0.9 and 0.8, respectively. The errors of the other three algorithms are larger than the SVD-
ECKF algorithm. The error of the SVD-AECKF algorithm is 35.7% lower than the SVD-ECKF algorithm. By 
combining convergence time and error, it is shown that the SVD-AECKF algorithm has better  estimation accuracy and

stability than the other three algorithms under this condition. 

Table 2 Comparison of error results of SOC estimation in HPPC working conditions 

Method Initial 

value 

HPPC 

Convergence 

time (s) 

Maximum 

error (%) 

RMSE (%) 

CKF 0.9 192 3.75 3.20 

0.8 200 3.87 3.42 

ECKF 0.9 133 1.70 1.31 

0.8 154 1.82 1.48 

SVD-ECKF 0.9 75 1.28 1.07 

0.8 89 1.30 1.12 

SVD-AECKF 0.9 36 0.93 0.69 

0.8 42 0.98 0.72 



As can be seen from Table 3, the RMSE of the SVD- AECKF algorithm for SOE estimation is 0.68% and 0.81% for initial 
SOE values of 0.9 and 0.8, respectively. With small error fluctuations, the SVD-AECKF algorithm with different initial 
values of SOE reduces the error by at least 71.8%, 60.2%, and 32.5% compared with the SOE estimation errors of the 
CKF algorithm, ECKF algorithm, and SVD-ECKF, respectively. It indicates that the proposed algorithm gives more 
accurate SOE estimation results than the other three algorithms. 

Experimental analysis under BBDST working condition 
Due to the complex and changeable conditions of the LIBs in the practical application of new energy electric vehicles, to 
further verify the effectiveness and feasibility of the joint algorithm in the practical application, experiments were carried 
out under BBDST conditions. BBDST working conditions are derived from the actual data collection of the Beijing bus 
dynamic test, including the authenticity of various  operating data such as starting, taxiing, accelerating, etc., which

makes the verification algorithm more convincing. The experimental results of SOC estimation and SOE estimation of 

the three algorithms under BBDST conditions are shown in Figs. 9 and 10. 

The estimation results of the SVD-AECKF algorithm, SVD-ECKF algorithm, ECKF algorithm, and CKF 

algorithm for different initial SOC values under BBDST conditions are shown in Fig. 9. As can be seen in Fig. 9(a) and (c), 

the overall SOC estimation shows a fluctuating downward trend due to the alternating charging and discharging during the 

discharge process. For the initial SOC values of  0.9 and 0.8, the estimated SOC convergence times of the SVD-ECKF 

algorithm are 25 s and 30 s, respectively, and the convergence speed is at least 26.4% faster than the SVD-ECKF algorithm. 

The convergence speed of the SVD-ECKF is at least 32.0% faster than the ECKF algorithm. Compared with the CKF 

algorithm, the ECKF algorithm converges faster. The convergence speed of the ECKF algorithm is at least 16.6% 

faster than the CKF algorithm. The comparative analysis shows that the SVD-AECKF algorithm performs SOC 

estimation better than the other three algorithms in terms of filtering stability and convergence speed, and it can 

converge to close to the true value with higher accuracy and better stability in a short time. 

As can be seen in Fig. 8(a) and (c), the estimation results of the SVD-AECKF algorithm are very close to the actual values 
for different initial SOE values. From the enlarged plot in Fig. 8(b), it can be seen that when the initial error of SOE is 
10%, the maximum error of SOE estimation of the SVD-AECKF algorithm is 0.84%. Even if the initial error exists, the 
algorithm can still track and converge stably in  time, and the convergence speed is relatively fast. However, the SOE

estimation errors of the CKF algorithm, ECKF algorithm, and SVD-ECKF are large, with maximum estimation errors 

of 3.32%, 2.89%, and 2.23%, respectively. As can be seen from the enlarged plot in Fig. 8(d), when the SOE has an initial 

error of 20%, the maximum estimation errors of the CKF algorithm, ECKF algorithm, SVD-ECKF algorithm, and SVD-

AECKF algorithm are 3.82%, 3.51, 2.33%, and 1.01%, respectively. The comparative analysis reveals that compared with 
the other three algorithms, the SVD- AECKF algorithm not only effectively reduces the influence of noise on the 
estimation error and improves the accuracy but also makes the estimation results more stable. This fully proves the 
accuracy of the algorithm proposed in this paper for estimating SOE.

Table 3 Comparison of error results of SOE estimation with different initial values in HPPC working conditions 

Method Initial value HPPC 

Maximum 

error (%) 

RMSE (%) 

CKF 0.9 3.32 2.88 

0.8 3.82 3.32 

ECKF 0.9 2.89 2.67 

0.8 3.51 3.28 

SVD-ECKF 0.9 2.23 2.04 

0.8 2.33 2.12 

SVD-AECKF 0.9 0.84 0.65 

0.8 1.02 0.81 



(a) 

(c) (d) 

Fig. 10 Comparison of SOE estimation results for different initial values under BBDST working conditions 

(a) (b) 

(c) (d) 

Fig. 9 Comparison of SOC estimation results for different initial values under BBDST working conditions 



Table 5 Comparison of error results of SOE estimation with different initial values in BBDST working conditions 

Method Initial value BBDST 

Maximum 

error (%) 

RMSE (%) 

CKF 0.9 0.92 0.76 

0.8 0.98 0.82 

ECKF 0.9 0.84 0.72 

0.8 0.68 0.65 

SVD-ECKF 0.9 0.60 0.54 

0.8 0.63 0.58 

SVD-AECKF 0.9 0.54 0.47 

0.8 0.58 0.51 

As can be seen from Table 4, the maximum error and RMSE of the SVD-AECKF algorithm with different initial values 
of SOC are smaller than those of the other three algorithms. When the initial value error of SOC is 10%, the maximum 
error of SVD-ACKF is 0.65% and the RMSE is 0.57%, which are at least 59.1%, 52.8%, and 22.8% lower than the 
errors of the CKF algorithm, ECKF algorithm, and SVD-ECKF algorithm, respectively. When the initial value error of

SOC is 20%, the maximum error and RMSE of SVD-ACKF are 0.68% and 0.60%, and the errors are smaller than 

the estimation errors of the CKF algorithm, ECKF algorithm, and SVD-ECKF. Combining the convergence times in 

Table 4, it can be analyzed that the SOC estimation of the SVD-AECKF algorithm is accurate and effective and 

has fast convergence speed. 

When the initial value of SOE is 0.9, the SOE estimation results of the proposed SVD-AECKF algorithm, SVD-

ECKF algorithm, ECKF algorithm, and CKF algorithm are shown in Fig.10(a) and (b). From the enlarged plot in Fig. 

10(a), it can be seen that the SOE estimation of the SVD-AECKF algorithm is closer to the actual value and tracks the 

actual value well to obtain a good estimation accuracy. As shown in Fig. 10(b), the maximum errors of SOE estimation 

for the SVD-AECKF algorithm, SVD-ECKF algorithm, ECKF algorithm, and CKF algorithm are 0.54%, 0.60%, 

0.84%, and 0.92%, respectively. 

In addition, Fig.10(c) and (d) shows the SOE estimation results when the initial values are both 0.8. From the enlarged 

plots, it can be seen that the SOE estimation of the SVD-AECKF algorithm is closer to the reference value with a 

maximum error of 0.58%. The maximum error of the CKF algorithm is 0.98%. The maximum error of the ECKF 

algorithm is 0.84%, which is smaller than the CKF algorithm. The error of the SVD-ECKF algorithm is 0.60%, which 

is smaller than the ECKF algorithm. By comparing the different algorithms, it can be concluded that the SOE estimation 
error of the SVD-AECKF algorithm is smaller than the other three algorithms, and the SOE estimation is more stable 
and more accurate. 

Table 4 Comparison of error results of SOC estimation with different initial values in BBDST working conditions 

Method Initial 

value 

BBDST 

Convergence 

time (s) 

Maximum 

error (%) 

RMSE (%) 

60 1.71 1.47 

67 1.84 1.54 

50 1.35 1.21 

56 1.31 1.19 

34 0.85 0.71 

41 0.88 0.76 

25 0.65 0.57 

CKF 0.9 

0.8 

ECKF 0.9 

0.8 

SVD-CKF 0.9 

0.8 

SVD-AECKF 0.9 

0.8 30 0.68 0.60 
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