
NKISI-ORJI, I., PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and CORSAR, D. 2023. Failure-driven
transformational case reuse of explanation strategies in CloodCBR. In Massie, S. and Chakraborti, S. (eds.) Case-

based reasoning research and development: proceedings of the 31st International conference on case-based
reasoning 2023 (ICCBR 2023), 17-20 July 2023, Aberdeen, UK. Lecture notes in computer science (LNCS), 14141.

Cham: Springer [online], pages 279-293. Available from: https://doi.org/10.1007/978-3-031-40177-0_18

This version of the contribution has been accepted for publication, after peer review (when
applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or
any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-031-
40177-0_18. Use of this Accepted Version is subject to the publisher's Accepted Manuscript terms of
use.

This document was downloaded from
https://openair.rgu.ac.uk

Failure-driven transformational case reuse of
explanation strategies in CloodCBR.

NKISI-ORJI, I., PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and
CORSAR, D.

2023

https://doi.org/10.1007/978-3-031-40177-0_18
https://doi.org/10.1007/978-3-031-40177-0_18
https://doi.org/10.1007/978-3-031-40177-0_18
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Failure-Driven Transformational Case Reuse of
Explanation Strategies in CloodCBR⋆

Ikechukwu Nkisi-Orji1, Chamath Palihawadana1, Nirmalie Wiratunga1, Anjana
Wijekoon1, and David Corsar1

School of Computing, Robert Gordon University, Aberdeen, UK
{i.nkisi-orji,c.palihawadana,n.wiratunga,a.wijekoon1,d.corsar1}@rgu.ac.uk

Abstract. In this paper, we propose a novel approach to improve problem-
solving efficiency through the reuse of case solutions. Specifically, we
introduce the concept of failure-driven transformational case reuse of ex-
planation strategies, which involves transforming suboptimal solutions
using relevant components from nearest neighbours in sparse case bases.
To represent these explanation strategies, we use behaviour trees and
demonstrate their usefulness in solving similar problems. Our approach
uses failures as a starting point for generating new solutions, analysing
the causes and contributing factors to the failure. From this analysis, new
solutions are generated through a nearest neighbour-based transforma-
tion of previous solutions, resulting in solutions that address the failure.
We compare different approaches for reusing solutions of the nearest
neighbours and empirically evaluate whether the transformed solutions
meet the required explanation intents. Our proposed approach has the
potential to significantly improve problem-solving efficiency in sparse
case bases with complex case solutions.

Keywords: case-based reasoning, case reuse, explainable AI, behaviour
trees

1 Introduction

iSee project uses case-based reasoning (CBR) to systematically capture, retrieve,
reuse, revise, and retain user explanation experiences for the benefit of other
users. The primary objective is to establish a comprehensive repository of best
practices, which can subsequently pave the way to compliance in explainable AI
(XAI). An explanatory experience, in its most fundamental form, comprises two
key components: the explanation requirement (a detailed description of the case
problem) and the suggested explanation approach (a thorough depiction of the
case solution).

The problem description should primarily capture the enquiries for which
end-users are expected to seek answers through an explanation. However, the

⋆ This research is funded by the iSee project. iSee is an EU CHIST-ERA project which
received funding for the UK from EPSRC under grant number EP/V061755/1.

2 Nkisi-Orji I et al.

problem description encompasses more than just these queries. It must also in-
corporate the context, considering factors such as the application domain, the
black-box model, the data utilised in model creation, and crucially, the end-
users’ knowledge levels. By addressing these aspects, an explanation experience
within the iSee project guarantees that the recommended strategies cover all
facets of XAI. The solution description captures the explanation strategy, which
unlike a single explanation captures alternative ways in which end-users’ expla-
nation needs can evolve. Recent work suggests that multiple explanations (such
as factual, semi-factual, and counterfactual) using alternative explanation tech-
niques are necessary to achieve user satisfaction and engagement with XAI [11,
12]. In iSee, an explanation strategy is captured as a behaviour tree [14] in order
to manage transitions between alternative explanation styles in an interactive
manner (e.g., conversational interaction using a chatbot).

Given the complex structure (as opposed to a class label) and inherent sparse-
ness of the collection of explanation experience cases, it is unlikely that a solution
derived from a single neighbouring case would be sufficient to satisfy the end-
user’s explanation needs. This circumstance necessitates the implementation of
efficient reuse operations to ensure that the CBR system can combine expla-
nation strategies from multiple cases. In particular, we examine the impact of
failures in aligning with end-user questions on suboptimal explanation strategies,
and alternatively, identify neighbouring cases wherein entire or partial explana-
tion strategies can be amalgamated based on varying degrees of correspondence.
Specifically, we study the impact of failures in matching end-user questions which
lead to suboptimal explanation strategies and instead identify neighbouring cases
wherein entire or partial explanation strategies can be combined based on levels
of match. Since the underlying CBR engine used with iSee is CloodCBR [9], it
becomes important to implement reuse operators that are compatible with the
microservices architecture upon which CloodCBR is built. Accordingly, the key
contributions of this paper are as follows.

– Formalise a novel reuse operator as a transformational adaptation method
for CloodCBR aligned with the modular and scalable design requirements
of its microservices architecture.

– Evaluate the effectiveness of the reuse operator and provide insights into its
operation.

The remainder of this paper is structured as follows. Section 2 provides a
brief overview of previous work on adaptation techniques for case reuse. Section
3 introduces our failure-driven reuse technique and the updates to CloodCBR to
support the reuse operation. Section 4 measures the extent to which the reuse
operation satisfies the intent of the query and discusses our findings. Section 5
concludes the paper with considerations for future work.

2 Related Work

There are two main approaches to learning adaptation knowledge for case reuse:
weighted majority voting and case difference heuristic (CDH) [15]. Weighted

Failure-Driven Case Reuse 3

majority voting is a method used in k-NN retrieval to determine the solution of
a query by calculating the weighted majority of the solutions of the k-nearest
neighbours [6, 13]. To determine the optimal value of k, several techniques in this
method employ a leave-one-out test that computes a set of n closest neighbours
for each query case, where n ranges from 1 to the size of the case base. Weighted
majority voting is applied to each set of neighbours to calculate the solution of
the query, which is then compared to the actual solution. The value of n that
results in the best overall quality of the CBR system is used as the value of
k in the future. The CDH approach, first proposed by Hanney and Keane [3],
involves pairing cases from the case base and using each pair to learn a rule for
adapting one case to another [4, 5, 7, 16]. Liao, Liu, and Chao [5] proposed a CDH
adaptation method for regression tasks that employs a case difference heuristic
approach and a neural network to learn the difference characterisation. Their
approach involves training a network to map problem differences to differences
in output values, eliminating the need for pre-defined generalisation strategies.
Additionally, Jalali, Leake, and Forouzandehmehr [4] used the CDH approach
for classification by using a statistical method to generate case adaptation rules
while Ye, Xiaomeng, et al. [16] introduced an approach that uses neural networks
to learn adaptation knowledge from pairs of cases. Unlike the case solutions in
this paper, these adaptation techniques work with simple structures such as class
labels in classification tasks and numbers in regression tasks.

3 Failure-Driven Reuse

Organising multiple end-user enquiries into distinct intents can streamline their
management and improve efficiency. This approach involves systematically cate-
gorising questions based on their underlying purpose or intent, resulting in more
coherent and targeted responses to each group of enquiries. Additionally, this
organisation facilitates the evaluation of failure for Reuse by identifying the ex-
tent to which questions have been matched during the retrieval process and the
degree to which intents have been addressed.

3.1 Case representation

In iSee, a case c consists of attributes which include a user intent and a set of
questions that express that intent as shown in Figure 1. The explanation strategy
for the intent-related questions forms the case solution. Other attributes in the
case description are used to express the context of the explanation strategy such
as the attributes of the AI Model (e.g., AI task and dataset type), the explana-
tion criteria (e.g., explanation scope) and the user/user group (e.g., knowledge
level). The attributes that form the representation of the case are formalised by
iSeeOnto 1.

1 iSee ontologies that form part of the iSee project https://w3id.org/iSeeOnto/
explanationexperience

4 Nkisi-Orji I et al.

Fig. 1. Explanation Experience Case structure

As depicted in Figure 1, the focus of this paper is the explanation intent
that is expressed as questions and how the solution aligns with the questions
to satisfy the intent. For example, a user can express their explanation need,
i.e. intent for transparency of the AI model or the decisions of the AI model by
using one or more questions. A complete case should consist of a solution that
addresses each question to the user’s satisfaction.

Case solution is an explanation strategy modelled using Behaviour Trees (BT).
A BT is a conceptual model that formalises the behaviours and navigation of an
entity in an environment [1]. We adapt BTs for designing explanation strategies
by introducing behaviours such as detecting an intent or a question and exe-
cuting an explainer. Table 1 presents the nodes and functionalities used in the
Explanation Strategy BT design.

Type Node Description

Composite
Sequence Has one or more children nodes and the children nodes are exe-

cuted from left to right until one fails.

Priority Has one or more children nodes and the children nodes are exe-
cuted from left to right until one succeeds.

Condition
Intent Given user intent, checks if it matches the node intent.

Question Given user question, checks if it matches the node question.

Action Explainer Given context of an explanation requirement including data in-
stance and AI model decision, execute the explanation technique
to generate an explanation.

Table 1. Explanation Strategy Behaviour Tree Nodes

A sub-tree that consists of a Sequence Node with a Question Node and an
Explainer Node as children is considered a self-contained sub-tree that is not
affected by (or influences) other parts of the tree. Accordingly, an explanation
strategy can be seen as a collection of such sub-trees that essentially guides
the user to receive explanations as they raise questions. Figure 2 presents an
example explanation strategy which can be interpreted as follows. If the intent

Failure-Driven Case Reuse 5

is transparency and the user expressed this intent by posing Q-A question, the
Integrated Gradients explainer is executed to provide an explanation. If the
user has a follow-on question Q-B, the Nearest Neighbour explainer is executed.
Similarly, if the user asked a Q-C question in relation to the performance intent,
the AI Model Performance explainer is executed. Note that questions A, B and
C can be pre-set questions which an AI system designer have considered to
be relevant to end-users who might be seeking explanations. For instance, in a
loan applicant assessment system aimed at determining eligibility for a loan, the
question ”how can I get a different outcome” represents an anticipated inquiry
from applicants and falls under the category of actionability intent. Figure 3
presents examples of questions classified by their corresponding intents, as used
in this work. The case solution BT is also formalised by iSeeOnto.

Fig. 2. A case solution modelled as a Behaviour Tree

3.2 Reuse failure and Transformation using Gale-Shapley Algorithm

Due to the complex structure of BT case solutions and the sparse collection of
explanation strategies, a single neighbouring case may not provide sufficient ex-
planation for the end-user needs. Thus, we propose a reuse operation to combine
explanation strategies from multiple cases. Specifically, we align end-user ques-
tions with case questions using the Gale-Shapley algorithm [2] to amalgamate
entire or partial explanation strategies from neighbouring cases.

The Gale-Shapley algorithm, also known as the deferred acceptance algo-
rithm, is a mechanism for solving the stable marriage problem. The problem
involves finding a stable matching between two sets of equal size, such as men
and women, doctors and hospitals, or students and schools. The algorithm works
by having each member of one set, say the men, propose to their most preferred

6 Nkisi-Orji I et al.

How much evidence has been considered to build the AI
system?
How much evidence has been considered in the current
outcome?
What are the possible outcomes of the AI system?
What features are used by the AI system?
What is the impact of feature {feature} on the AI system?
What are the important features for the AI system?
What features does the AI system consider?
What is the scope of the AI system capabilities?
What is the goal of the AI system?
How does the AI system respond to feature {feature}?
What is the impact of feature {feature} on the outcome?
How does feature {feature} impact the outcome?
What are the necessary features that guarantee this outcome?
Why does the AI system have given outcome A?
Which feature contributed to the current outcome?

Which instances get a similar outcome?
Which instances get outcome {outcome}?
What are the results when others use the AI System?
How accurate is the AI system?
How reliable is the AI system?
In what situations does the AI system make errors?
What are the limitations of the AI system?
In what situations is the AI system likely to be correct?
How confident is the AI system with the outcome?

Performance

Transparency

What is the overall logic of the AI system?
What kind of algorithm is used in the AI system?
What does {term} mean?
How to improve the AI system performance?

Comprehensibility

How well does the AI system capture the real-world?
Why are instances {A} and {B} given different predictions?

Compliancy

Is this the same outcome for similar instances?
Is this instance a common occurrence?

Debugging

What are the alternative scenarios available?
What type of instances would get a different outcome?
How can I change feature {feature} to get the same outcome?
How to get a different outcome?
How to change the instance to get a different outcome?
How to change the instance to get outcome {outcome}?
Why does the AI system have given outcome {A} not {B}?
Which features need changed to get a different outcome?

Actionability

How does the AI system react if feature {f} is changed?
What is the impact of the current outcome?
What other instances would get the same outcome?
What would be the outcome if features {f} is changed to {v}?

Effectiveness

Fig. 3. Examples of question templates for different explanation intents

member of the other set, say the women. Each woman then reviews her pro-
posals and rejects all but her most preferred suitor. The men who were rejected
then propose to their next most preferred woman, and the process repeats un-
til every woman is engaged. The algorithm guarantees that a stable matching
will be reached, meaning that there are no two pairs who would both prefer to
be with each other instead of their current partners. In addition, the match-
ing is “men-optimal”, which means that every man is matched with his most
preferred woman among all possible stable matchings, and “women-pessimal”,
which means that every woman is matched with her least preferred man among
all possible stable matchings.

Given a query, we perform a retrieval of K nearest cases using an appropri-
ate retrieval strategy. Starting with the closest case to the query, we match the
query questions with the case questions using the Gale-Shapley algorithm. The
preference order of a question in one set is determined by the similarity of that
question with every question in the other set. We use Sentence-BERT (SBERT),
a variant of the pretrained BERT network that utilises siamese and triplet net-
work architectures to derive semantically meaningful sentence embeddings [10].
When applied to the question texts, the resulting embeddings are then compared
using cosine similarity. After a stable matching is found, we determine the aver-
age similarity of the returned question pairs using SBERT and check if the score
is up to an acceptance threshold, α. If the average similarity score reaches the

Failure-Driven Case Reuse 7

threshold, we stop and reuse the explanation strategies that are associated with
the matched case questions. Otherwise, we increase the case neighbourhood by
1 and apply the Gale-Shapley algorithm again. This process of increasing the
neighbours continues until either the average score of the question pairs reaches
α or we have considered all K cases.

The matching process is as shown in the recursion in Equation 1. NNi is the
set of questions in the ith nearest case retrieved and K is the maximum number
of cases that are retrieved for the reuse operation. We initialise α to a real value
in the interval [0, 1], i = 1 and Lq = NNi.

MATCH(cq, Lq) =

{
pairs, score = match(cq, Lq), if score ≥ α or i = K

MATCH(cq, Lq +NNi+1), otherwise

(1)
The function match(cq, L) in Equation 1 implements the Gale-Shapley algo-

rithm and is executed whenever we callMATCH(cq, Lq). Operation Lq+NNi+1

increases i by 1 and also increases the neighbourhood for consideration of reuse
by 1. In our experiments, we observed that α values in the range of 0.6 to 0.9
yielded positive results. match(cq, L) matches unequal sets (that is, query ques-
tions and questions of retrieved cases) as follows.

1. Let cq be the set of query-associated questions and Lq be the set of questions
from k nearest cases that are retrieved for the query

2. For each x ∈ cq, create a preference list pref(x, Lq) that orders the elements
of Lq by similarity (decreasing) to x. Create similar preference lists for each
y ∈ Lq for the elements of cq

3. Initialize all x ∈ cq and y ∈ Lq to be without partners (unpaired)
4. While there exists at least one x without a partners and y ∈ Lq which x has

not attempted to pair with:
(a) Choose x
(b) Let y be the highest-ranked Lq in pref(x, Lq) to whom x has not yet

attempted to pair with
(c) If y is free (i.e. not already paired), then pair x and y
(d) Otherwise, if y is currently paired to another x ∈ cq, then compare x

and x using y’s preference list (pref(y, cq)):
i. If y prefers x over x, then break the pairing between y and x and

pair x and y
ii. Otherwise, x remains unpaired and continues the attempt to pair

with the remaining y ∈ Lq

5. The algorithm terminates when every free cq has attempted to pair with
every member of Lq.

When the matching method is terminated, we return pairs (pairs of matched
query and case questions) and score (average similarity of pairs). The solution
that is being constructed from pairs is considered to have failed whenever score
is less than α.

8 Nkisi-Orji I et al.

Fig. 4. Example showing how the solution of a query case is transformed using the
nearest cases

We demonstrate how MATCH(cq, Lq) works using the example in Figure
4. The example shows the query case cq with three questions and the solu-
tion parts of three closest cases that have been retrieved from the case base. In
the first matching attempt (that is, i = 1) and Lq containing case 1 only, the
Gale-Shapley algorithm (match(cq, Lq)) is used to determine a stable matching
between cq and Lq based on their preference lists. The list of preferences for cq
shows that x1 prefers y1 over y2 because sim(x1, y1) > sim(x1, y2). The similar-
ity function sim(x, y) determines the similarity of x and y and in our case, we
used the cosine similarity of vector representations from SBERT. Using the simi-
larity function, the preference list for y1 shows that sim(y1, x1) > sim(y1, x3) >
sim(y1, x2). With the preference lists, x1 matches y1 to form the first pair of
match(cq, Lq) and x2 matches y5 as the second pair. When we attempt to match
x3, we find that its first preference y1 is already paired with x1. We consult the
list of preferences of y1 which shows that y1 prefers x1 over x3. Consequently, the
pair (x1, y1) remains unchanged. Continuing the attempt to pair x3, we check
the next entry in its preference list, which is y5. As y5 is already paired with x2

and y5 prefers x2 over x3, x3 remains unpaired in this round. At this point, we

Failure-Driven Case Reuse 9

determine score of the pairs as:

score =
sim(x1, y1) + sim(x2, y5)

|cq| = 3
.

Assuming score is below the acceptance threshold α, we increase i which
expands Lq to include the next closest neighbour. match(cq, Lq) is repeated
which can undo previously matched pairs. For example, at i = 2 in Figure 4, y2
was found to be a better match for x2 than its previous pairing. This results in
an update of the pair from (x2, y5) to (x2, y2). When the algorithm ends (that
is, when score ≥ α or all retrieved cases have been considered), we construct the
BT solution (explanation strategy) with the final pairs using the relevant parts
of the matched cases.

3.3 Solution construction and execution

A constructively adapted explanation strategy is executed as part of a conversa-
tional interaction, which is also modelled as a BT. While the complete interaction
model is not within the scope of this paper, Figure 5 shows how an explanation
strategy is incorporated into the interaction model. The interaction model is
designed to be generalisable to any explanation strategy. Accordingly, at run-
time, the explanation strategy dynamically replaces the Explanation Strategy
placeholder Node. The immediate parent sub-tree is a “Repeat-until-success”

Fig. 5. Dynamic adaptation of the interaction model to execute the Explanation Strat-
egy

node that iteratively interacts with the user to get their intent question (Get
explanation need Node) and executes the respective sub-tree in the explanation
strategy. This is repeated until a failure occurs. There are two cases which we
consider as failures to exit the iteration: when the user indicates that they have
no other questions, or when the explanation strategy is not able to answer user

10 Nkisi-Orji I et al.

questions. The latter is recorded as feedback for future improvements to the
explanation strategy.

3.4 CloodCBR enhancements for the reuse operation

Fig. 6. CloodCBR Changes to Support Sentence Transformers

As CloodCBR is the CBR framework for iSee, we briefly discuss the changes
to CloodCBR to support the reuse operation. CloodCBR’s microservices ar-
chitecture and extensibility facilitates the seamless integration of new similar-
ity metrics. To incorporate state-of-the-art text embedding models (such as
SBERT [10]), we first developed an independent semantic-sim service with API
endpoints /vectorise and /similarity. The vectorise endpoint returns the text-
embedding for a given string while the similarity endpoint vectorises and returns
the cosine similarity between the embeddings of a pair of texts. The service was
then integrated in CloodCBR as follows.

1. Case Creation - When a new case is added to the case base, CloodCBR
undergoes a pre-processing step that can include various similarity metrics,
such as ontology retrieval or text embedding. For attributes that have been
configured to use Sentence-BERT for word embedding similarity, the word
embeddings are generated via an API call to the semantic-sim service.

2. Query/Retrieval - When searching the case base for similar cases, the query
case undergoes pre-processing according to the chosen similarity metrics.
For an attribute that requires word embedding similarity, a request is sent
to semantic-sim service to retrieve the word embedding. The vectorised query
attribute value is then compared with the corresponding case embeddings
using a cosine similarity script in the case base [8].

3. Post-retrieval/Reuse - When we need to compare texts using word embed-
ding after case retrieval, e.g., determining the similarity of a pair of question
texts in the Gale-Shapley implementation for reuse, we use a call to similar-
ity.

Failure-Driven Case Reuse 11

The reuse operation is implemented as a Python function and forms part of
the core service for managing the phases of the CBR cycle. We have open-sourced
the integration and API service for semantic-sim on GitHub2.

4 Evaluation

We conducted an experiment to evaluate the effectiveness of the reuse oper-
ation with CloodCBR by measuring the alignment between the intent of the
constructed solution and the intent of the query.

4.1 Experiment setup

In the experiment, we generate cases using a bank of intents with associated
questions as shown in Figure 3. We randomly assign a name and an intent to
each case. Using the intent-question bank, we randomly sample questions for the
selected intent based a Poisson distribution (lambda = 2). As shown in Figure
7, there are instances where no questions are sampled because the Poisson value
is 0. In such situation, we repeatedly generate a new Poisson value until it is
greater than 0. We ensure that every case in the case base is unique and that
there is one intent per case for simplicity.

Fig. 7. Poisson distribution for sampling intent questions for the generation of cases
and queries

2 https://github.com/RGU-Computing/clood/tree/master/other-services/
semantic-sim

12 Nkisi-Orji I et al.

Using the CloodCBR framework, we create and configure a CBR applica-
tion with the case-base structure as described in Section 3.1. We investigate
the reuse of cases for different case base sizes (20, 30, 40, 60, 80, and 100) and
acceptance thresholds (0.5 to 0.9) using the introduced Gale-Shapley match-
ing technique (GSA). We analyse the impact of deferred acceptance between
iterations of MATCH(cq, Lq) (see Equation 1) by including a variant with non-
deferred acceptance (NDA). In the NDA approach, any question-pair similarity
that reaches α is not unpaired when Lq is increased in subsequent iterations.
Reuse of closest-neighbour best match (BM) forms the baseline approach. Both
GSA and NDA approaches can be viewed as transformations of BM by reusing
solutions from multiple cases.

The queries are generated in a manner similar to the cases but have no
solutions. We used a set of 50 queries for the experiments and retrieved the
five nearest neighbours for each query (K = 5). The case solutions are the
explanation strategies that are associated with the questions.

In the evaluation, we estimate the level of satisfaction with the intent of the
query by assessing how well the intent of the constructed solution aligns with the
intent of the query. Specifically, we analyse the extent to which the intent of the
questions of the cases that were matched with the query aligns with the intent
of the query. Recall that the algorithm of the GSA reuse operation returns a set
of question pairs, P with each pair < x, y > consisting of x ∈ cq and y ∈ Lq as
described in Section 3.2. Let Ix represent the intent of cq and Iy represent the
intent of the case to which y belongs. We define an intent satisfaction metric as
a real number between 0 and 1 as shown in Equation 2.

Intent Satisfaction =

|P |∑
i=1

(Iq = Ici)

|cq|
(2)

Intent Satisfaction = 0 shows a complete mismatch between the intent of
the question and the intent of the cases that were used to construction a pro-
posed explanation strategy. At the other extreme, Intent Satisfaction = 1 show
a complete alignment between the query intent and the reused cases.

4.2 Results and Discussion

The evaluation results in Figure 8 show the degree of satisfaction with the intent
of the query after the reuse operation. The performance of BM, which always
reuses the solution of the best-matched case, is represented as a line because it
is not affected by α.

As expected, it was better to reuse the solutions of more cases than the
best-matched case alone. GSA tends to outperform NDA at low α value (0.5).
This is also expected since GSA uses the average similarity of pairings to check
for failure, while NDA identifies failure per question. The impact is that NDA
reuses more cases than GSA for constructing a solution. At α = 0.5, GSA reuses
2 closest-neighbours cases, while NDA reuses 2.5 cases. GSA has the better

Failure-Driven Case Reuse 13

0.5 0.6 0.7 0.8 0.9
0.75

0.80

0.85

0.90

0.95

1.00

In
te

nt
 S

at
isf

ac
tio

n

Case Base Size = 20
BM
GSA
NDA

0.5 0.6 0.7 0.8 0.9
0.75

0.80

0.85

0.90

0.95

1.00
Case Base Size = 30

0.5 0.6 0.7 0.8 0.9
0.75

0.80

0.85

0.90

0.95

1.00
Case Base Size = 40

0.5 0.6 0.7 0.8 0.9
0.75

0.80

0.85

0.90

0.95

1.00

In
te

nt
 S

at
isf

ac
tio

n

Case Base Size = 60

0.5 0.6 0.7 0.8 0.9
0.75

0.80

0.85

0.90

0.95

1.00
Case Base Size = 80

0.5 0.6 0.7 0.8 0.9
0.75

0.80

0.85

0.90

0.95

1.00
Case Base Size = 100

Fig. 8. Results showing the level of satisfaction with the query intent using different
reuse methods for different case base sizes and acceptance thresholds (α).

performance when the case base is sparse (i.e., 30 and 40) while NDA was better
for case base sizes 60 and 80. When the case base is relatively large (i.e. 100)

20 30 40 60 80 100
Case Base Size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ca
se

s R
eu

se
d

20 30 40 60 80 100
Case Base Size

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

In
te

nt
 S

at
isf

ac
tio

n

GSA
NDA

Fig. 9. Average number of nearest cases used for the reuse operation with the corre-
sponding intent satisfaction for different case base sizes.

both GSA and NDA have identical intent satisfaction measures except that NDA
continues to reuse more case than GSA as shown in Figure 9. In general, the
GSA approach uses fewer cases to achieve solutions with relatively high intent

14 Nkisi-Orji I et al.

satisfaction compared to NDA for all case base sizes. The ability to reuse a
smaller number of cases to construct a good solution is crucial in situations
where the sparsity of the case base is a significant concern.

5 Conclusion

In conclusion, this paper proposed a novel approach to enhance problem-solving
efficiency through the reuse of case solutions. Our approach called failure-driven
transformational case reuse of explanation strategies involves transforming sub-
optimal solutions by utilising relevant components from nearest neighbours in
sparse case bases. Our approach uses failures as a starting point for generat-
ing new solutions, resulting in solutions that address the failure. We compared
different approaches for reusing solutions of the nearest neighbours and empir-
ically evaluated whether the transformed solutions meet the required explana-
tion intents. The proposed approach has the potential to improve the effective
reuse of relevant cases and facilitate the identification of appropriate adaptation
strategies for new problems, especially in case bases that exhibit sparsity and
complexity in case solutions.

The proposed reuse technique is not limited to its current domain of applica-
tion and can be extended to other domains that use similar complex structures,
such as game development and robotics, where behaviour trees are widely used.
Our future work will focus on developing a generalised version of the reuse tech-
nique in CloodCBR to enable its broader application. This will include incorpo-
rating options for different use cases, such as allowing duplicates in the second
element of the matching pairs (i.e., different explanation needs are satisfied by
the same explainer), to enhance its flexibility and adaptability to a wider range
of scenarios. Also, the intent satisfaction index used in the experiments measures
one of the desirable features of the explanations, but it may not be sufficient to
measure the quality of the solutions. We will explore methods to measure the
quality of solutions such as conducting a study with real cases and users.

References

1. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: An introduction.
CRC Press (2018)

2. Dubins, L.E., Freedman, D.A.: Machiavelli and the gale-shapley algorithm. The
American Mathematical Monthly 88(7), 485–494 (1981)

3. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Ad-
vances in Case-Based Reasoning: Third European Workshop EWCBR-96 Lau-
sanne, Switzerland, November 14–16, 1996 Proceedings 3. pp. 179–192. Springer
(1996)

4. Jalali, V., Leake, D., Forouzandehmehr, N.: Learning and applying case adaptation
rules for classification: An ensemble approach. In: IJCAI. pp. 4874–4878 (2017)

5. Liao, C.K., Liu, A., Chao, Y.S.: A machine learning approach to case adapta-
tion. In: 2018 IEEE First International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE). pp. 106–109. IEEE (2018)

Failure-Driven Case Reuse 15

6. Lowe, D.G.: Similarity metric learning for a variable-kernel classifier. Neural com-
putation 7(1), 72–85 (1995)

7. McSherry, D.: An adaptation heuristic for case-based estimation. In: Advances
in Case-Based Reasoning: 4th European Workshop, EWCBR-98 Dublin, Ireland,
September 23–25, 1998 Proceedings 4. pp. 184–195. Springer (1998)

8. Nkisi-Orji, I., Palihawadana, C., Wiratunga, N., Corsar, D., Wijekoon, A.: Adapt-
ing semantic similarity methods for case-based reasoning in the cloud. In: Case-
Based Reasoning Research and Development: 30th International Conference, IC-
CBR 2022, Nancy, France, September 12–15, 2022, Proceedings. pp. 125–139.
Springer (2022)

9. Nkisi-Orji, I., Wiratunga, N., Palihawadana, C., Recio-Garćıa, J.A., Corsar, D.:
Clood cbr: Towards microservices oriented case-based reasoning. In: International
Conference on Case-Based Reasoning. pp. 129–143. Springer (2020)

10. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

11. Schoonderwoerd, T.A., Jorritsma, W., Neerincx, M.A., Van Den Bosch, K.:
Human-centered xai: Developing design patterns for explanations of clinical de-
cision support systems. International Journal of Human-Computer Studies 154,
102684 (2021)

12. Sokol, K., Flach, P.: One explanation does not fit all: The promise of interactive
explanations for machine learning transparency. KI-Künstliche Intelligenz 34(2),
235–250 (2020)

13. Wettschereck, D., Aha, D.W.: Weighting features. In: Case-Based Reasoning Re-
search and Development: First International Conference, ICCBR-95 Sesimbra, Por-
tugal, October 23–26, 1995 Proceedings. pp. 347–358. Springer (2005)

14. Wijekoon, A., Corsar, D., Wiratunga, N.: Behaviour trees for conversational ex-
planation experiences. arXiv preprint arXiv:2211.06402 (2022)

15. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning
adaptation knowledge based on knowledge light approaches. In: Proceedings of the
fifth german workshop on case-based reasoning. pp. 235–242 (1997)

16. Ye, X., Leake, D., Jalali, V., Crandall, D.J.: Learning adaptations for case-based
classification: A neural network approach. In: Case-Based Reasoning Research
and Development: 29th International Conference, ICCBR 2021, Salamanca, Spain,
September 13–16, 2021, Proceedings 29. pp. 279–293. Springer (2021)

	coversheet_template
	Pages from NKISI-ORJI 2023 Failure-driven transformational (AAM).pdf

