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Abstract. The penicillin fermentation process is a fed-batch system to
generate industrial-scale penicillin for antibiotic production. Any fault in
the fermentation tank can lead to low-quality penicillin products, which
may cause a severe impact on final antibiotic production. In this paper, we
have developed a Gated Recurrent Unit-based Autoencoder deep learning
model to detect faults in the batch data of the penicillin fermentation pro-
cess. In particular, we have used the data shuffling strategy to minimize
distribution discrepancy from different batches generated under various
controlling conditions for training the deep learning model. We have also
compared the model with the Feedforward Autoencoder and Long short-
term memory Autoencoder model for fault detection. Experimental results
show that ourmodel trained on shuffleddata fromdifferent batches outper-
formed the Feedforward and Long short-term memory Autoencoder model
with an avergae fault detection rate of 94.74%.
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1 Introduction

Penicillin produced from penicillin fungi is an effective antibiotic to treat various 
contagious diseases. This antibiotic is one of the earliest discoveries in clinical 
history by Alexander Flemming in 1928 [11]. It is the secondary metabolite of 
penicillin fungi used to cure infectious diseases from the early days [1]. The fer-
mentation process of penicillin is a non-linear dynamic fed-batch process that 
involves three stages of antibiotic production [1,12]. The first stage is known as the 
growth stage of penicillin fungi cells, where the nutrients of the feeding materials 
are continuously smashed, and new cells are synthesized. In the second stage, 
penicillin synthesis starts, and the production of penicillin antibiotics begins. In 
the final autolysis stage, the pH of the fermentation broth increases, which reduces 
the capability of penicillin synthesis [1]. The complete fermentation process is 
controlled through numerous process variables, for instance, pH, temperature, 
substrate concentration, oxygen or nitrogen concentration, etc [11,12]. Any 
deviation or faults in process variables can significantly affect the quality of the
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antibiotic generated from the penicillin fermentation tank [1]. Moreover, the low-
quality product can directly affect the intended disease treatment procedure. 
Therefore, detecting and preventing faults in the fermentation process is highly 
required for enhancing quality and reliability of the penicillin product.

Fault detection methods can be categorized as mechanism-driven and data-
driven approaches [14,17]. The efficacy of data driven approaches over the 
mechanism based models is that the data driven models do not require prior 
knowledge of the underlying examining system [17]. On the contrary, mechanisms 
or mathematical models require domain knowledge, and acquiring domain 
knowledge is critical for a non-linear dynamic process like the penicillin 
fermentation process. However, IoT or sensor networks integrated with 
distributed control systems can provide data samples related to control variables 
to build data-driven models [5,17]. Data-driven approaches can be further 
classified as statistical and neural network-based deep learning methods [18]. 
Statistical models like principal component analysis (PCA), independent 
component analysis (ICA), partial least square regression (PLS), or support 
vector machines are suitable for the dataset with linear patterns [17,18]. 
However, penicillin fermentation is a complex, non-linear, and time-varying 
system. Due to the dynamic nature of the system, statistical approaches will fail 
to model the control parameters and detect faults. On the contrary, the 
advancements in deep learning can help model non-linear and dynamic control 
variables of the deep tank penicillin fermentation process [6]. Deep learning 
models can be supervised and unsupervised based on the data pattern.

Although supervised deep learning models are superior to statistical models to 
classify normal and faulty conditions for a highly non-linear system like the 
penicillin fermentation process, these supervised deep learning models require a 
large dataset comprising normal and faulty samples to learn the patterns [16]. 
However, abnormal operating conditions are rare in a real industrial environment, 
and generating anomalous samples is not cost-effective. Therefore, unsupervised 
modeling techniques trained on only normal data are suitable for detecting and 
alerting faults in complex non-linear industrial plants. Moreover, due to the 
varying operating conditions of the penicillin fed-batch fermentation process, the 
batches of dataset from different conditions vary in the probability distribution. 
The dynamic distribution nature of the batches creates difficulty in training a 
deep learning model since a deep learning model assumes that the data samples of 
a training dataset come from a single source with certain distribution parameters 
[6,14]. Therefore, it is required to minimize the distribution discrepancy among 
the data samples of different batches before preparing the training data for a deep 
learning model [14]. In this work, we have used the data shuffling strategy to 
shuffle the data samples from different batches of varying distribution to prepare 
the training data, which minimizes the distribution discrepancy among the 
samples of the training dataset. The shuffled training data is then used to train a 
Gated Recurrent Unit (GRU) based deep Autoencoder(AE)(GRU-AE) for fault 
detection.



1. We have proposed a GRU-AE for fault detection in penicillin fermentation 
process by shuffling the data samples from different batches. The GRU-AE is 
compared with Long short term memory based Autoencoder (LSTM-AE) and 
Feedforward Autoencoder (FF-AE) to detect faults.

2. We have randomly shuffled the data instances from multiple batches gener-
ated under different normal operating conditions to reduce the distribution 
discrepancy of the training dataset.

3. The trained GRU-AE on the shuffled training dataset is tested on ten different 
faulty batches.

4. Experimental findings show that the GRU-AE model performed better than 
conventional GRU-AE (trained without data shuffling), LSTM-AE and FF-
AE with randomly sampled data samples from different batches of varying 
operating conditions.

Section 2 discusses recent literature on fault detection based on domain adaptation. 
Section 4 presents the GRU based AE model and fault detection system. In Sect. 
5, we have described the experimental settings and outcomes of the experiments 
and finally, Sect. 6 concludes the paper.
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Fig. 1. (a)– illustrates a GRU cell with internal architecture. (b)– shows the data 
shuffling process and the architecture of an AE model.

2 Literature Review

A novel deep adversarial perceptual domain adaptation method is proposed in 
[19] for bearing fault detection and diagnosis in the industrial manufacturing 
system. This novel method overcomes the equilibrium issues of adversarial 
domain adaptation of the deep learning model training process. A novel 
perceptual loss function is proposed to force the source and target domain to 
have the same probability distribution. Maximum mean discrepancy loss is 
used to build a deep learning-based domain adaptation method in the 
semiconductor industry [6]. A deep Convolutional Neural network (CNN) is 
used to extract features and classify the fault conditions. On the contrary, 
maximum mean discrepancy loss is used to optimize data distributions among



different sets. A new deep trans-fer learning-based adaptive joint distribution 
adaptation method is proposed for domain adaptive fault detection and diagnosis 
in several application scenarios [13]. A CNN-based feature extractor is built to 
extract discriminative features from the process data. A gradient penalty factor is 
used to make the model converge easily. The experimental findings show that the 
model can easily adapt to varying work conditions.

3 Domain Adaptation

The performance of the fault detection models based on machine learning depends 
on the training dataset. If the datasets are imperfect, then the performance of the 
models degrades. Domain shift is a problem in machine learning, where a model 
trained on one dataset may not perform well on a slightly different (like change in 
a probability distribution) dataset. Domain adaptation is a technique to make the 
models capable to perform well in different datasets [7]. In this work, data 
shuffling is used to overcome the domain shift problem in various batches of 
penicillin fermentation dataset.

4 Deep Learning Models

4.1 Gated Recurrent Unit

Gated Recurrent Unit (GRU) [2] is an enhanced variant of Recurrent Neural 
Network (RNN), which comprises a reset gate and an update gate (Fig. 1). These 
two gates control the flow of information throughout the unit using a sigmoid 
activation function. The reset gate controls how much information from the 
previous state needs to be remembered in the current state. On the contrary, the 
update gate controls how much information about the new state is a copy of the 
old state. The two gates are formed using fully connected layers with sigmoid 
activation. For timestamp t, lets consider the input is xt ∈ Rn×m (n = number of 
data samples, m = number of features) and the hidden state from previous time 
step is ht−1 ∈ Rn×h (h = number of hidden features). Then, we can compute the 
reset gate (rt ∈ Rn×h) and update gate (ut ∈ Rn×h) as follows-

rt = σ(xtWxr + ht−1Whr + br)
ut = σ(xtWxu + ht−1Whu + bu)

where Wxr,Wxu,Whr,Whu denote weights of the corresponding layers and 
br, bu are the biases to the reset and update gate respectively.
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Fig. 2. (e)–GRU-AE(s) training curve (log cosh against the epoch numbers). (a)–(d) 
demonstrates the kernel density plot for the four validation batches with the threshold 
(red dotted vertical line).

4.2 GRU Based Autoencoder

In this paper, we have developed a GRU based AE for fault detection in penicillin 
fermentation process. Also, the data samples from different dataset are shuffled 
to eliminate the distribution discrepancy. An AE is a deep learning model which 
can be trained to extract informative representations of the data by learning to 
reconstruct the input samples well enough [8]. The extracted information then 
can be used for other applications such as classification or regression. The basic 
structure of an AE consists of an encoder unit, bottleneck layer, and a decoder 
unit, where the encoders and the decoders are neural networks [3,4,15]. But the 
last layer of the encoder is called the bottleneck layer. Here, we have used the 
GRU layer to construct the encoder and decoder models so that the GRU based 
AE can extract time dependent latent information.

AE uses unlabeled data to train itself. If we have an unlabeled training 
dataset D with N number of samples xi from i = 1, ..., N . Mathematically, 
the unlabeled training data can be represented as, D = {xi|i = 1, ..., N}; xi ∈ 
R

n; n ∈ N. The encoder function can be written as hi = g(xi), where the hi is 
the latent representation layer with the dimension of q, i.e. hi ∈ Rq. Then the goal 
of the encoder is to reduce the dimension of the input data from dimension n to q, 
i.e. g : Rn → Rq. On the contrary, the decoder with a function say f(.) 
reconstructs the input data from hi. Mathematically it can be denoted as x̄ = 
f(hi) =  f(g(xi)). A loss function representing the reconstructed samples x̄ and 
original samples x is minimized through a learning algorithm by the AE to learn 
the latent representation of the data. Typically, a deterministic AE follows



N
N
i

mean square error (MSE) [15], as a loss function, i.e. Loss = 1 ∑ |xi − x̄i|2.
However, in this work, we have used log hyperbolic cosine function [9] to 
minimize the error instead of MSE.

L =
n∑

i

log(cosh(yp − yt))

where yp denotes the predicted value and yt denotes the ground truth value.

4.3 GRU-AE Based Fault Detection

An under-complete AE extracts the features by learning to reconstruct the input 
data. Therefore, an AE is a highly data-specific deep learning algorithm. If a 
trained AE is given a new dataset outside its training data domain, then the 
trained AE will not be able to reconstruct the new dataset. The high 
reconstruction error for the new dataset indicates that the features comprise 
faulty samples. Moreover, from the training data, a threshold can be inferred 
and can be used to determine faulty data samples.

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Fig. 3. (a)–(j) demonstrates the kernel density plot for the ten validation batches with
the threshold (red dotted vertical line) identified from the first validation batch.



5 Experiments and Results

5.1 Dataset

The dataset comes from an industrial-scale penicillin simulator called IndPenSim 
[10]. The entire database comprises 90 batches (a batch can be understood as a 
dataset of particular operating conditions) of normal operating conditions and 
10 batches of faulty conditions. Each batch has 38 features, including manually 
and automatically controllable variables. Also, each batch contains around 1000 
data instances and is set to run for 230 h.

5.2 Data Preprocessing

To improve the data quality before applying the GRU-based Autoencoder, we 
have applied the data preprocessing step. First, we imputed the missing values. 
Then feature selection is performed to eliminate unnecessary features which 
reduces model complexity. The features named Time (h), Agitator RPM (RPM: 
RPM), Ammonia shots(NH3 shots: kgs), Fault reference(Fault ref: Fault ref), 0 
- Recipe driven 1 Operator controlled(Control ref: Control ref), 1- No Raman 
spec, 1-Raman spec recorded, Batch reference(Batch ref: Batch ref), 2-PAT 
control(PAT ref:PAT ref), Batch ID and Fault flag are discarded from each of the 
batch. The data samples from the 86 out of 90 normal batches are shuffled to 
make one single large dataset for training the GRU-AE deep learning model. 
The combined and shuffled dataset is then normalized using the Python Sci-
kit learns StandardScaler() library. The StandardScaler() method transforms 
the features into the range about the mean 0 and standard deviation 1, that is 
each value from a feature is normalized by subtracting the mean of the 
corresponding feature and divided by the standard deviation. However, the 
normalized dataset is not directly applicable to train the GRU-AE deep learning 
model since the GRU layer requires the training dataset to be structured as 
(batch size, time step, number of features). Therefore, the normalized training 
data is then reshaped to fit the GRU layers.

5.3 Model Training

Since the GRU-AE deep learning model is a one-class learning model, only the 
batches of normal operating conditions are used for the training process, and 
the faulty samples are used for testing the model. From the 90 normal batches 
86 batches are used for the training, and the remaining 4 batches are used for 
validation. The first validation batch is used to determine the threshold for 
detecting faults in the test faulty batches.

In this work, we have used the GRU layers in the encoder and decoder part of 
an Autoencoder to learn the time-varying nature of the penicillin fermentation 
dataset. The bottleneck layer of the Autoencoder is responsible for extracting 
meaningful features from the high-dimensional dataset. However, selecting the 
size of a bottleneck layer is a crucial task for an Autoencoder. Therefore, we



have tried several GRU-based Autoencoders with 3 different bottleneck sizes, 
including 16, 8, and 4. The first hidden layer of the GRU-Autoencoder consists of 
32 neurons with the return sequences True, sigmoid recurrent activation function, 
glorot uniform kernel initializer, orthogonal recurrent initializer, and regularizer 
0.001. The second and the third hidden layer follows the first hidden layer for 
setting the parameters. However, the second and the third hidden layer consists 
of 16 and 8 neurons, respectively. After the third hidden layer i.e. the bottleneck 
layer, we have added the Repeat Vector layer to reshape the compressed data 
to feed into the decoder. The hidden layers in the decoder only comprise the 
neurons (in reverse order of encoder hidden layers), activation function, and 
return sequences. All the layers use tanh as the activation function.

The model is trained for 300 epochs with batch size 512, optimizer Adam, 
learning rate 0.001, and loss function log cosh. The  log cosh improves the AE 
training process by behaving as L2 loss for small values and L1 loss for large 
values [9]. Also, it keeps balance between reconstruction and generation.

5.4 Results

We have developed a GRU-based AE to detect faults in the penicillin 
fermentation process. The GRU-AE is first trained with the batches from normal 
operating conditions. Therefore, the GRU-AE has learned to reconstruct data 
samples coming from the fermentation process under a normal controlling 
environment. Moreover, the GRU-AE is trained on the normal batches without 
(GRU-AE) and with data shuffling (GRU-AE(s)). Figure 2(e) shows the learning 
curve of the GRU-AE(s) training process. The first of the four validation batches 
is used to determine the threshold using equation (1) for differentiating the 
normal data samples from the abnormal or faulty data samples. Figure 2(a), 2(b), 
2(c), 2(d), shows the kernel density plot of the GRU-AE(s) reconstruction error 
for the four validation batches with the threshold. It is evident from these figures 
that the kernel density of the reconstruction errors for the four validation batches 
are on the left side of the threshold, meaning the GRU-AE(s) identifies these 
batches as normal batches. After training, we tested the trained GRU based 
AE(s) on ten faulty batches to identify faults. Figure 3 depicts the kernel 
density plot of the reconstruction errors of the faulty batches against the 
thresholds and we can observe that noteworthy portion of all the faulty 
batches are on the right side of the threshold, meaning these batches are 
detected as faulty batch.

Table 1 shows the results of the fault detection rate (FDR) for ten faulty 
batches. We have also compared the GRU-based AE model with Feed Forward 
AE (FF-AE) and LSTM-AE models. From Table 1 we can observe that GRU-
AE(s) outperformed LSTM-AE and FF-AE for detecting faults. It is also evident 
from this table that the trained GRU-AE(s) on the shuffled data outperformed all 
the models including the conventional GRU-AE (trained without shuffling the 
data from different batches) model with average FDR 94.74%.

Threshold = median ± inter quartile range

1.35
(1)



Table 1. Fault detection rates of the deep learning models on penicillin fermentation
dataset

Faulty batches FF-AE FF-AE(S) LSTM-AE LSTM-AE(S) GRU-AE GRU-AE(S)

fault batch 0 34.48 41.87 60.59 76.35 76.85 100

fault batch 1 87.70 100 95.08 94.26 99.18 99.18

fault batch 2 67.33 75.24 74.26 74.25 78.22 87.12

fault batch 3 100.00 100 100.00 100.0 100.00 100

fault batch 4 30.32 31.38 62.77 79.25 76.60 97.87

fault batch 5 62.38 68.31 69.31 68.31 69.31 69.30

fault batch 6 25.12 10.34 15.76 48.27 52.71 95.56

fault batch 7 86.07 98.36 94.26 93.44 96.72 98.36

fault batch 8 100.00 100 100.00 100.0 100.00 100

fault batch 9 100.00 100 100.00 100.0 100.00 100

average 69.34 72.55 77.20 83.41 84.96 94.74

Legend: FF-AE– Feedforward Autoencoder, LSTM-AE–Long short term memory 
Autoencoder, GRU-AE– Gated recurrent unit Autoencoder, GRU-AE(s)– Gated recur-
rent unit Autoencoder on shuffled data

6 Conclusion

In this work, we have proposed a GRU-AE deep learning-based fault detection 
model to detect faults in the Penicillin Fermentation Process. Due to varying 
controlling conditions, the batches of the dataset generated from the fermentation 
tank vary in distribution. The distribution discrepancy creates difficulty in 
training a deep learning model. We have randomly shuffled the data instances 
from different batches of normal operating conditions to train the GRU-AE 
model. The GRU-AE model trained on shuffled data achieved 94.74% average 
FDR, whereas, the GRU-AE trained on unshuffled data from multiple batches 
achieved 84.96% FDR. Moreover, the GRU-AE model on shuffled data 
outperformed the LSTM-AE and FF-AE models. Code for this paper will be 
available at - https://github.com/ArifeenDipto/GRU-Autoencoder-
FaultDetection
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