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Abstract 
The estimation of the state of charge (SOC) and state of energy (SOE) of lithium-ion batteries is very important for the battery 
management system (BMS) and the analysis of the causes of equipment failures. Aiming at many problems such as the changes 
in the parameters of the lithium battery model and the accurate estimation of the SOC and SOE, this paper proposes a joint 
algorithm of forgetting factor recursive least square (FFRLS) and adaptive square root unscented Kalman filter (ASRUKF) 
based on the second-order RC equivalent circuit model. In this paper, the joint FFRLS-ASRUKF algorithm is used to perform 
simulation experiments under three different working conditions of HPPC, DST, and BBDST at different temperatures of 25, 
15, and 5 °C. And a current ± 1 A offset is added as a disturbance to verify the robustness of ASRUKF. The results show that 
under HPPC working condition, the RMSE, MAE, and MAPE estimated by ASRUKF for SOC and SOE of lithium-ion bat- 
teries at three temperatures do not exceed 0.0016, 0.0012, and 0.43%, respectively. Under DST working condition, ASRUKF 
estimates that RMSE, MAE, and MAPE of SOC and SOE of lithium-ion batteries at three different temperatures do not exceed 
0.0013, 0.0009, and 0.70% respectively. Under BBDST operating conditions, ASRUKF estimates that the RMSE, MAE, and 
MAPE of the SOC and SOE of lithium-ion batteries at three different temperatures do not exceed 0.0016, 0.0009, and 0.71% 
respectively. After adding the current offset, ASRUKF can still accurately estimate the SOC and SOE of lithium-ion batteries. 

Keywords Lithium-ion battery ; Second-order RC equivalent circuit model ; State of charge ; State of energy ; Adaptive 
square root unscented Kalman filter algorithm ; Forgetting factor recursive least squares 

Introduction 

The transportation sector and other industries view electric vehicles (EVs) as the primary form of transportation for future 
global warming due to the increased mining and consumption of fossil fuels including coal, oil, and natural gas as well as the 
growing demand to combat global warming [1]. At the same time, clean energies such as wind and solar power are being 
researched and developed in departments around the world [2]. Lithium-ion batteries are widely used in electric vehicles, solar 
power generation, wind power generation, and other fields because of their no memory, large energy storage capacity, less 
self-discharge, high energy density, long cycle life, and low maintenance costs [3–5]. 

The battery’s remaining capacity is referred to as the battery’s state of charge (SOC). Its value is the proportion of the 
battery’s rated capacity to its remaining capacity under specific discharge conditions [6]. SOE is the ratio of the energy that 
can be released by the battery under current conditions to the maximum available energy of the battery. By fully utilizing the 
SOC and SOE, the remaining energy and state of the battery can be determined [7–9]. Accurately estimating the SOC and 
SOE of a battery pack is therefore a key factor in effective battery management, safe driving, and normal use of instruments 
and equipment [10]. Due to aging and obvious nonlinear behavior, battery characteristics have changed considerably during 
its life [11]. Estimating SOC and SOE is therefore a challenging task. 

There are many SOC estimation methods, including the ampere–hour integration method, open circuit voltage method, 
discharge experiment method, load voltage method, internal resistance method, neural network algorithm, Kalman filter 
algorithm, and fuzzy logic algorithm [12–14]. Among them, Kalman filtering algorithms are more commonly used, such as 
extended Kalman filter algorithm (EKF) and unscented Kalman filter algorithm (UKF) [15]. EKF algorithm is a process of linearizing 
nonlinear systems through partial derivative and first-order Taylor expansion, which may lead to performance degradation. UKF 
algorithm solves the problem of filtering through traceless transformation [16–19]. It is a numerical sampling technique that  



deterministically finds the smallest sigma point set to estimate the mean and variance of state variables under nonlinear 
transformation. In engineering applications, the UKF algorithm is susceptible to anomalous disturbances, initial value errors, and 
Cholesky’s effect on non-semi-positive definite matrices, which leads to divergence of the system [20]. UKF and EKF have 
similar robustness, but the problem of parameter selection has not been completely solved, and the filtering effect is also affected 
by the initial value of filtering as well as the EKF algorithm [21–23]. Unlike the traditional unscented Kalman filter, the square 
root of the state covariance matrix is propagated directly in the square root unscented Kalman filter algorithm (SRUKF), avoiding 
the calculation of the square root of the state covariance in each iteration step [24–27]. SRUKF has better numerical properties, which 
not only solves the short-comings of EKF and UKF but also ensures the positive semi-determinism of the state covariance matrix 
[28–30]. All three filtering methods mentioned above can achieve good performance under certain assumptions. However, these 
assumptions are usually not fully satisfied. 

In addition, the accuracy of estimation greatly depends on how well the equivalent model characterizes the dynamic 
properties of the cell [31–33]. The common types of battery modeling available today are electrochemical models, machine 
learning models, equivalent circuit models, and neural network models [34]. The complexity of electro-chemical models 
is high, and practical applications may not meet the theoretical requirements [35]. Neural network models require more data 
compared to traditional models. The equivalent circuit model uses circuit elements such as resistors and capacitors to form a 
circuit network to simulate the dynamic voltage response characteristics of the battery. The commonly used equivalent circuit 
models include the Rint model, Thevenin model, PNGV model, and second- order RC equivalent model [36–38]. 

And how to accurately identify the parameters in the lithium-ion battery model is also the focus of the whole SOC estimation 
process. Recursive least square (RLS) identifies the parameters of the system model by minimizing the sum of squares of the 
generalized errors based on least square (LS) [39]. However, as the number of iterations of the algorithm data increases, the values 
of the gains K and P become smaller and smaller, which makes the error of parameter identification larger and larger. The forgetting 
factor can be added to the RLS discrimination to improve the online estimation capability of the RLS algorithm [40]. The effect of 
the forgetting factor is to give less weight to the older data with longer running time and more weight to the latest observed data 
during the discrimination process [41]. 

To overcome these drawbacks, a joint algorithm of forgetting factor recursive least squares and adaptive square root 
unscented Kalman filter is proposed in this paper for the estimation of SOC and SOE. Among them, FFRLS introduces a 
genetic factor to make the identification of internal parameters of lithium batteries more accurate. Adaptive square root 
unscented Kalman filter algorithm is improved based on unscented Kalman filter algorithm to solve the low stability problem 
of unscented Kalman filter and extended Kalman filter algorithms and to improve accuracy and convergence time. 

Mathematical analysis 

Definition of SOC and SOE of lithium‑ion battery 

The SOC of a lithium-ion battery refers to the state of charge, also known as residual charge, which is the ratio of the 
remaining capacity of the battery after a period of use or long-term storage to its fully charged capacity. The state of energy 
(SOE) of a lithium battery is the ratio of the energy that can be released under current conditions to the maximum available 
energy of the battery. It is an important indicator that reflects the energy consumption of the battery. The method of 
estimating battery SOE is different from SOC, which is affected not only by the battery load current but also by the 
battery terminal voltage. The formula for calculating the SOC and SOE of lithium-ion batteries using the time 
integration method is as follows: 

where SOC and SOC0 refer to the SOC at the current moment and the previous moment, respectively, i(t) and u(t) 
refer to the current and voltage, and Q0 refers to the nameplate capacity. 
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Second‑order RC equivalent circuit model 

Considering that the equivalent circuit model can effectively reflect the internal mechanism of the battery, the calculation is simple, 
and the accuracy of the equivalent circuit model above the second order is not significantly improved, but the calculation amount is 
greatly increased; the second-order RC model in the equivalent circuit model is finally selected to estimate 

SOC and SOE. 

The second-order RC model is composed of the Thevenin model and an RC circuit. Two resistance capacitance parallel circuits 
are used to simulate concentration polarization and electrochemical polarization, respectively. Its basic idea is to use two RC 
networks to describe the polarization effect of the battery in use, which to some extent makes up for the shortcomings that the 
internal resistance model cannot characterize the dynamic characteristics of lithium-ion batteries and the Thevenin model has 
a large error. The second-order RC model is shown in Fig. 1. 

Fig. 1 Second-order RC equivalent circuit model 

UOC represents open circuit voltage, UL represents terminal voltage, R0 represents ohmic internal resistance, R1 represents 
electrochemical polarization internal resistance, C1 represents electrochemical polarization capacitance, R2  is the internal 
resistance of concentration electrode, and C2 is the capacitance of concentration electrode. The RC circuit composed of R1 and 
C1 represents the stage when the voltage changes rapidly during the chemical reaction inside the battery. The RC circuit 
composed of R2 and C2 represents the stage where the voltage changes slowly during the chemical reaction inside the battery. 

Forgetting factor recursive least square method 

To increase the feedback effect of new data, the forgetting fac- tor λ (0 < λ < 1) is introduced and added as a coefficient to the observed 
data matrix and the system output vector. The closer the value of λ is to 1, the better the simulation. The smaller the value of λ, the 
better the tracking, as old records disappear quickly. However, fast tracking can lead to unstable estimation results. The FFRLS 
algorithm is combined with the second-order battery model. The FFRLS algorithm is combined with the second-order battery model 
to update each parameter of the battery in a timely and accurate manner. 

Among them, 

The least squares mathematical form of discretization can be substituted into the recursive least squares method, using θ = [k1 
k2 k3 k4 k5]T as a direct identification parameter, and then deriving the circuit model parameters R0, R1, R2, C1, C2, from the 
identification results of these parameters, as follows. Let k0 = T2 + bT + a, then the value of each parameter can be obtained 
from Eq. 2 as shown in Eq. 3. 
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Then, let a = τ1τ2 and b = τ1 + τ2, then from τ2 − bτ + a = 0,  solve for τ1 and τ2 as shown in Eq. 4. 

Then, c = R1 + R2 + R0, d = R1τ2 + R2τ1 + R0(τ1 + τ2), the values of the remaining parameters can be obtained by 
combining Eq. 3 as shown in Eq. 5. 

Therefore, Eqs. 4 and 5 are the values of each parameter in the equivalent circuit model. 

Adaptive square root unscented Kalman algorithm 

The adaptive square root unscented Kalman filter algorithm is based on the unscented Kalman filter algorithm and 
introduces the idea of an adaptive algorithm and square root filter. It can correct the errors caused by time-varying 
noise, in addition to improving the numerical instability of the unscented Kalman filter algorithm. 

ASRUKF utilizes three linear algebra techniques for square root covariance updating and propagation: QR 
decomposition (QR), Cholesky factor updating (cholupdate), and effective least squares. The specific calculation process is 
as follows. 

Step 1. Initialize the vector x; the covariance Po is obtained from the initial value x0. The initial value of the square 
root S0 is obtained from P0. The square root of the covariance Sk is used in the UT transform instead of Pk. The 
unscented Kalman filter algorithm steps are involved in the recursive computation. 

Step 2. The UT transform is then used to find the Sigma point. 

Step 3. Time update after obtaining Sigma points. 
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The updated state estimate Xk + 1|k for each Sigma point, the output estimate Yk + 1|k, the weighted k + 1 moment’s state 

estimate x− , and output estimate y− , and the root of the covariance S-   , are obtained. Since 𝜔𝜔∁
0 may be negative during

the recursion, the matrix is also ensured to be nonnegative after the QR decomposition. The added equation is shown in Eq. 
9. 

Step 4. Update the square root of the covariance of the output residuals S yk+1, the mutual covariance of the state 
estimate and the output estimate Pxk+1 yk+1 

, the Kalman gain matrix Kk + 1, the posterior estimate of the state 
quantities xk + 1, and the square root of the co-defense of the state estimate errors Sk + 1. 

Step 5. Adaptive noise estimation. q̂ k and Q̂ k are the average matrix and variance matrix of process noise, 
respectively; r̂k and Rk are the average matrix and variance matrix of measurement noise, respectively. 
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Fig. 2 The structure diagram of the FFRLS-ASRUKF joint algorithm 
 
 

FFRLS‑ASRUKF algorithm 
 

The structure diagram of the FFRLS-ASRUKF joint algorithm is shown in Fig. 2. The least squares parameter identification 
method with forgetting factor is applied to the parameter identification of the lithium battery equivalent model to identify 
the parameters in the second-order RC equivalent circuit model. The identified complete parameters are substituted into the 
adaptive square root unscented Kalman filter algorithm to establish a nonlinear system. 

At the same time, according to the current voltage data under three working conditions at different temperatures, the fitting 
curve of open circuit voltage with SOC and SOE was established, and the fitting curve was input into the adaptive square root 
unscented Kalman filter algorithm to characterize the current-voltage relationship. All parameters in the ASRUKF algorithm 
are either calculated based on a second-order circuit model or are rated constant like the battery capacity. Through the above 
five steps, the adaptive square root unscented Kalman filter derives the SOC and SOE estimates. After the QR decomposition, 
it also ensures the nonnegativity of the matrix, as it can be negative in the recursive process. 
 
Experimental analysis 

Experimental equipment and data sources 
 

An experimental platform is used by the authors to obtain the information of current and voltage of lithium-ion battery under 
three different working conditions as well as temperatures, as shown in Fig. 3. 
 

 
 
 

 
 



Fig. 3 Schematic of the experimental setup 

As shown in Fig. 3, the PC terminal is responsible for set- ting various complex working conditions and recording voltage, 
current, and other information. The charge/discharge tester controls the charge/discharge detection of the battery, and data 
is transmitted between the two via TCP/IP protocol. The constant temperature box is connected to the lithium-ion battery and 
the charge/discharge tester via the power cable and is used to ensure that the temperature of the lithium-ion battery 
test environment is kept constant at 25, 15, and 5 °C. 

The lithium-ion battery used for all the experiments was a single lithium ternary battery manufactured by CATL 
(Contemporary Amperex Technology Co., Limited) with a model number of 3.7v70Ah. It has a rated voltage of 3.7 V, a 
rated capacity of 70 Ah, and an internal resistance of 0.7 mΩ. The lithium ternary battery used in this experiment is nickel–
cobalt–manganese lithium ternary battery, specifically NCM811, which is composed of nickel (Ni), cobalt (Co), and manganese 
(Mn). The number indicates the ratio of nickel, cobalt, and manganese; NCM811 means the ratio of nickel, cobalt, and 
manganese is 8 : 1 : 1. We completed the capacity calibration of the NCM811 battery and measured the initial capacity, 
i.e., the actual capacity, to be 69.286247 Ah. 

The three working conditions are HPPC (hybrid pulse power characteristic), DST (dynamic stress test), and 
BBDST (Beijing bus dynamic stress test). 

HPPC test 

(1) Charge the battery with constant current and constant voltage (4.2 V/1C) until it is fully charged.
(2) Let the battery stand for 40 min, and measure and record the terminal voltage of the battery.
(3) Perform current pulse experiments. First, the battery is discharged at a constant current of 1C for 10 s, next left for 40

s, then charged at a constant current of 1 C for 10 s to recover the battery power.
(4) Decrease the battery power by 10% with a constant dis- charge current of 1 C for 6 min, then left for 40 min, and record

the terminal voltage as the OCV at this time.
(5) Repeat steps (3) and (4) 10 times until the battery power is 0.

DST test 

(1) Charging the battery with a constant current-constant voltage method using a 1 C current, the cut-off voltage and current
are 4.2 V and 0.05 C, respectively.



(2) The battery is relaxed for 30 min.
(3) The battery is discharged with a constant current of 0.5 C for 4 min and then relaxed for 30 s.
(4) Charging the battery with a 0.5 C constant current for 2 min and then relaxing for 30 s.
(5) The battery is discharged with a constant current of 1 C for 4 min.
(6) Steps (4) to (5) are repeated until the battery terminal voltage is 2.75 V.

BBDST 

The ternary lithium battery is tested by setting up the operating condition experiment by referring to the Beijing bus dynamic stress 
test. The working condition of the BBDST includes starting, acceleration, sliding, braking, and rapid acceleration. The working time 
of a complete BBDST is 300 s, which is a small cycle, and its detailed process is shown in Table 1 in Reference [42]. In this 
paper, many small cycles are performed on the battery to form a BBDST working condition. 

Table 1 Error indicators for estimating SOC using various algorithms under HPPC working condition at different temperatures 

FFRLS under different working conditions 

Taking 25°C as an example, the voltage and error plots for FFRLS parameter identification under three working conditions 
are shown in Fig. 4. 

As shown in Fig. 4, the voltages identified by FFRLS for the three operating conditions are very close to the actual 
voltages, and this feature does not change with increasing time. It can be seen that the forgetting factor recursive least squares 
method can effectively simulate the internal model of lithium batteries, with a simulation error of only 0.0336 V or less 
for voltage. Meanwhile, the voltage error at the later stage of parameter identification is larger than that at the earlier stage 
of parameter identification, which is mainly due to the instability at the later stage of discharge caused by the nonlinearity 
of the lithium-ion battery, which is an uncontrollable factor. 

Algorithm Temperature 
(°C) 

RMSE 
(× 10−2) 

MAE 
(× 10−2) 

MAPE 
(%) 

ASRUKF 5 0.16 0.12 0.43 
15 0.078 0.003 0.008 
25 0.087 0.050 0.150 

SRUKF 5 0.43 0.40 1.46 
15 0.78 0.67 2.39 
25 0.33 0.27 0.94 

UKF 5 0.95 0.77 3.44 
15 0.95 0.82 2.56 
25 0.63 0.51 1.53 

EKF 5 1.22 0.97 4.29 
15 1.02 0.91 2.72 
25 0.71 0.58 1.83 



Fig. 4 Voltage and error diagrams of lithium-ion batteries under three operating conditions at 25 °C. a, c, e. The voltage simulation plots of 
HPPC, DST, and BBDST, respectively. b, d, f. The identification error plots for HPPC, DST, and BBDST, respectively. 

Parameter settings 

Before using each algorithm for the prediction of SOC and SOE, the parameters need to be set initially, including the setting of 
the covariance matrix P, process noise matrix Q, and measurement noise R. The smaller the Q value, the easier the system is to 
converge, and the higher our trust in the predicted values of the model. But if Q is too small, the system is prone to divergence. If 
Q is zero, then we only trust the predicted value. The higher the Q value, the lower our trust in predictions, and the higher our 
trust in measured values. If the Q value is infinite, then we only trust the measured value. The size of R is also important: if R 
is too large, the Kalman filter response will slow down because it reduces its trust in newly measured values. The smaller the 
R, the faster the system converges, but if it is too small, it is prone to oscillations. 

The test can be started by adjusting Q from small to large and R from large to small, fixing one value to adjust the other first. In this 
paper, the method used for parameter setting is to fix the value of R first and then adjust the value of Q. Since the error of the current 
sensor and voltage sensor can be determined as a smaller value through a large number of experiments and experience, R can be set 



as a smaller value first, which is set to 0.01 in this paper. And since all the experiments were conducted in the same equipment and 
the same model, and the batteries used were fully rested at the beginning of each start of the experiment, the internal dynamic and static 
responses of the batteries tend to be stabilized, so Q can also be set to a smaller value first. 

There is another key value in the system, P, which is the initial value of the error covariance, which indicates our 
confidence in the current prediction state; the smaller it is, the more we believe in the current prediction state. Since the 
prediction accuracy of the second-order circuit model is relatively high, the value of P can be initially set smaller. As the 
Kalman filtering iterates, the value of P will keep changing; when the system enters the steady state, the value of P will 
converge to a minimum estimate of the variance matrix, and the Kalman gain is also optimal at that time, so this value only 
affects the initial convergence speed. 

Fig. 5 SOC estimation results at different temperatures under HPPC working condition. a, c, e. The SOC estimation plots for 25, 15, and 5 °C, 
respectively. b, d, f. The plots of the SOC estimation errors for 25, 15, and 5 °C, respectively. 



Fig. 6 SOE estimation results at different temperatures under HPPC working condition. a, c, e. The SOE estimation plots for 25, 15, and 5 °C , 

respectively. b, d, f. The plots of the SOE estimation errors for 25, 15, and 5 °C, respectively. 

Predictive validation under HPPC working condition 

To verify the feasibility of the forgetting factor recursive least square-adaptive square root unscented Kalman filter algorithm 
for SOC and SOE estimations of lithium-ion batteries, an estimation model for SOC and SOE of lithium-ion batteries is 
constructed. The prediction results of SOC and SOE of lithium-ion batteries under HPPC operating conditions at 25, 15, and 5 
°C are plotted in Figs. 5 and 6, which are compared with ASRUKF,  UKF, and EKF algorithms in order to analyze and compare 
the prediction performance of ASRUKF at different temperatures. 



Fig. 7 Error indicators for estimating SOE using various algorithms under HPPC working condition at different temperatures. a–c RMSE, MAE, 
and MAPE, respectively; C1~C4 represent ASRUKF, SRUKF, UKF, and EKF, respectively. 



Through the error indicators of the final result, including root mean square error (RMSE), mean absolute error (MAE), 
and mean absolute percentage error (MAPE), the predictive effect of SOC and SOE can be displayed more intuitively. 
The formula is as follows: 

Among them, ŷ represents the predicted value, and y rep- resents the true value. The MAE, MAPE, and RMSE of SOC 
estimation at different temperatures under HPPC condition are shown in Table 1. And The MAE, MAPE, and RMSE of 
SOE estimation at different temperatures under HPPC condition are shown in Fig. 7. 

From Figs. 5 and 6, it can be seen that ASRUKF can effectively estimate the SOC and SOE of lithium-ion batteries at 
different temperatures, and its effectiveness is significantly better than that of SRUKF, UKF, and EKF. ASRUKF has high 
accuracy and convergence, making it suitable for predicting SOC and SOE. Table 1 shows that the error index of 
ASRUKF for predicting SOC is superior to SRUKF, UKF, and EKF at all temperatures. 

Under HPPC condition, ASRUKF has the best estimation effect at 15 °C. At low temperatures of 5 °C, ASRUKF has 
a relatively weak estimation effect on SOC, but the RMSE, MAE, and MAPE do not exceed 0.0016, 0.0012, and 
0.43%. Figure 7 shows the error indicators of each algorithm at different temperatures under HPPC condition. All four 
algorithms can effectively estimate the SOE, with ASRUKF having the best performance, RMSE and MAE not exceeding 
0.002, MAPE not exceeding 0.35%, and its estimation performance at 25 °C being the best. 

Predictive validation under DST working condition 

To verify the performance of FFLRS-ASRUKF under different working conditions, the SOC and SOE estimation results at 
different temperatures under DST working condition are shown in Figs. 8 and 9. 
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Fig. 8 SOC estimation results at different temperatures under DST working condition. a, c, e. The SOC estimation plots for 25, 15, and 5 °C, 
respectively. b, d, f. The plots of the SOC estimation errors for 25, 15, and 5 °C, respectively. 



Fig. 9 SOE estimation results at different temperatures under DST working condition. a, c, e The SOE estimation plots for 25, 15, and 5 °C, 
respectively. b, d, f The plots of the SOE estimation errors for 25, 15, and 5 °C, respectively 



The MAE, MAPE, and RMSE of SOC estimation at different temperatures under DST working condition are shown in 
Table 2. And the MAE, MAPE, and RMSE of SOE estimation at different temperatures under DST working condition are 
shown in Fig. 10. 

As shown in Figs. 8 and 9, ASRUKF can accurately estimate the SOC and SOE of lithium-ion batteries at three different 
temperatures under DST working condition, similarly as under HPPC. Unlike UKF and EKF, ASRUKF can ensure 
convergence and stability on a more accurate basis than ASRUKF estimation. Table 2 shows the error indicators of the 
estimated SOC for each algorithm at different temperatures under DST conditions. Among them, ASRUKF is significantly 
superior to other algorithms at three temperatures, with RMSE, MAE, and MAPE not exceeding 0.0013, 0.0009, and 0.70%, 
respectively. From Fig. 10, it can be seen that all four algorithms can estimate the SOE of lithium-ion batteries under DST 
working condition to some extent, but ASRUKF has the best estimation effect and responds effectively to the SOE of lithium-
ion batteries at both low and ambient temperatures. 

Predictive validation under BBDST working condition 

Figures 11 and 12 show the results of different algorithms for estimating the SOC and SOE of lithium-ion batteries at 
different temperatures under BBDST working condition.  

The MAE, MAPE, and RMSE of SOC estimation at different temperatures under BBDST working condition are shown 
in Table 3. And the MAE, MAPE, and RMSE of SOE estimation at different temperatures under BBDST working condition are 
shown in Fig. 13. 

From Figs. 11 and 12, it can be seen that ASRUKF still has significant advantages under BBDST working condition, as it 
can fit the original curves of SOC and SOE almost perfectly, with small errors and convergence. As can be seen from Table 3 
and Fig. 13, the algorithms perform best at 15 °C and are relatively weak at low temperatures of 5 °C under BBDST working 
condition. Similarly, ASRUKF outperforms the other algorithms regardless of temperature, keeping the RMSE, MAE, and 
MAPE within 0.0016, 0.0009, and 0.71%, respectively. 

Table 2 Error indicators for estimating SOC using various algorithms under DST working condition at different temperatures 

Algorithm Temperature 
(°C) 

RMSE 
(× 10−2) 

MAE 
(× 10−2) 

MAPE (%) 

ASRUKF 5 0.13 0.09 0.41 
15 0.09 0.05 0.70 
25 0.08 0.05 0.28 

SRUKF 5 0.54 0.50 2.88 
15 0.49 0.45 3.01 
25 0.40 0.33 2.72 

UKF 5 0.91 0.72 5.18 
15 1.08 0.91 8.52 
25 0.92 0.83 3.54 

EKF 5 1.07 0.67 7.94 
15 1.28 1.12 9.43 
25 1.102 0.85 4.31 



Fig. 10 Error indicators for estimating SOE using various algorithms under DST working condition at different temperatures. a–c RMSE, MAE, 
and MAPE, respectively; C1~C4 represent ASRUKF, SRUKF, UKF, and EKF, respectively. 



Fig. 11 SOC estimation results at different temperatures under BBDST working condition. a, c, e The SOC estimation plots for 25, 15, and 5 °C, 
respectively. b, d, f The plots of the SOC estimation errors for 25, 15, and 5 °C, respectively 



Fig. 12 SOE estimation results at different temperatures under BBDST working condition. a, c, e The SOE estimation plots for 25, 15, and 5 °C, 
respectively. b, d, f The plots of the SOE estimation errors for 25, 15, and 5 °C, respectively 



Fig. 13 Error indicators for estimating SOE using various algorithms under BBDST working condition at different temperatures. a–c RMSE, 
MAE, and MAPE, respectively; C1~C4 represent ASRUKF, SRUKF, UKF, and EKF, respectively. 

Table 3 Error indicators for estimating SOC using various algorithms under BBDST working condition at different temperatures 

25 0.12 0.05 0.31 
SRUKF 5 0.63 0.57 2.01 

15 0.39 0.33 1.83 
25 0.42 0.38 0.93 

UKF 5 1.05 0.86 6.825 
15 0.95 0.66 3.4 
25 0.96 0.68 3.59 

EKF 5 1.27 1.12 9.41 
15 1.07 0.94 6.49 
25 1.11 1.02 7.58 

Algorithm Temperature 
(°C) 

RMSE 
(× 10−2) 

MAE 
(× 10−2) 

MAPE 
(%) 

ASRUKF 5 0.16 0.09 0.71 
15 0.10 0.02 0.26 



Predictive validation after adding current offset 

In order to verify the robustness of the FFRLS-ASRUKF algorithm, current offsets of + 1 A and – 1 A were added to the 
battery measurement data to treat them as disturbances. From the above, it can be seen that both SOC and SOE predictions 
of ASRUKF are relatively worst under BBDST working condition at 5 °C. To test the robustness of the algorithm, a current 
offset is added in the worst case environment. The prediction results of SOC and SOE are plotted in Figs. 14 and 15 for the 
BBDST condition at 5 °C. 

Fig. 14 SOC and SOE prediction results for current offset + 1 A. a, c. Plots of prediction results for SOC and SOE, respectively. b, d. Plots of 
prediction errors for SOC and SOE, respectively. 

Fig. 15 SOC and SOE prediction results for current offset – 1 A. a, c. Plots of prediction results for SOC and SOE, respectively. b, d. Plots of 
prediction errors for SOC and SOE, respectively. 



The error metrics for each algorithm after current offsets of + 1 A and – 1 A are shown in Table 4. 

Table 4 Error metrics for each 
algorithm after current offsets 
of + 1 A and – 1 A 

Algorithm Current offset 
(A) 

Projected 
projects 

RMSE (× 10−2) MAE (× 10−2) MAPE (%) 

ASRUKF + 1 SOC 0.55 0.46 1.19 
SOE 0.61 0.53 0.91 

− 1 SOC 0.58 0.50 1.62 
SOE 0.57 0.48 1.43 

SRUKF + 1 SOC 1.56 1.53 5.05 
SOE 1.63 1.32 6.01 

− 1 SOC 1.65 1.61 5.43 
SOE 1.77 1.43 6.53 

UKF + 1 SOC 2.40 2.22 5.34 
SOE 2.28 2.08 4.79 

− 1 SOC 2.31 2.11 4.90 
SOE 2.43 2.25 5.44 

EKF + 1 SOC 2.64 2.09 9.97 
SOE 2.42 1.97 9.04 

− 1 SOC 2.55 2.04 9.60 
SOE 2.73 2.14 10.35 

According to Figs. 14 and 15 and Table 4, and in combination with the above, it can be seen that ASRUKF can still 
accurately estimate SOC and SOE after being affected by the current offset, and although the values of RMSE, MAE, and 
MAPE have increased to a certain extent, the prediction effect of ASRUKF can still satisfy the needs of normal operation of 
lithium-ion batteries. 

Conclusion 

State of charge and state of energy are important battery health parameters which have a bearing on whether the battery 
management system can control the battery effectively. This study proposes an FFRLS-ASRUKF method for collaborative 
estimation of state of charge and state of energy of lithium-ion batteries based on the ASRUKF algorithm through the 
construction of a second-order equivalent circuit model. FFRLS is used for online identification of parameters in battery model, 
and an adaptive link is added to SRUKF to improve the convergence and prediction accuracy of the algorithm to compensate 
for the shortcomings of EKF and UKF. Experimental results show that FFRLS can effectively simulate lithium-ion battery 
internal changes. At 25 °C, the maximum voltage identification error in HPPC, DST, and BBDST working conditions does 
not exceed 0.0336, 0.0297, and 0.0225 V, respectively. After FFRLS identification, each parameter is input to each algorithm 
to estimate the SOC and SOE of lithium-ion batteries. To verify the superiority of FFRLS-ASRUKF, experimental 
verification was performed at different temperatures of HPPC, DST, and BBDST. And the robustness of ASRUKF has been 
verified by adding current offsets at temperatures and operating conditions where ASRUKF performs the worst. The 
experimental results show that under HPPC working condition, ASRUKF has the best estimation effect of SOC at 15 °C, 
with RMSE, MAE, and MAPE not exceeding 0.0008, 0.0003, and 0.08%, respectively. The estimation effect of SOE is the 
best at 25 °C, with RMSE, MAE, and MAPE not exceeding 0.0009, 0.0004, and 0.12%, respectively. Under DST working 
condition, ASRUKF has the best estimation of SOC at 25 °C, with RMSE, MAE, and MAPE not exceeding 0.0008, 0.0005, 
and 0.28%, respectively. SOE estimation is the best at 25°C, with RMSE, MAE, and MAPE not exceeding 0.001, 0.0003, 
and 0.18%, respectively. Under BBDST working condition, ASRUKF has the best estimation of SOC at 15 °C, with RMSE, 
MAE, and MAPE not exceeding 0.0010, 0.0002, and 0.26%, respectively. Estimation of SOE is the best at 15°C with RMSE, 
MAE, and MAPE not exceeding 0.0013, 0.0007, and 0.28%, respectively. After adding the current offset, ASRUKF is still 
able to effectively predict the SOC and SOE, and the RMSE, MAE, and MAPE do not exceed 0.0058, 0.0053, and 1.62%, 
respectively. In summary, the method proposed in this article has high accuracy and good robustness, providing reliable 
guarantees for the normal operation of electric vehicles and factory equipment. 
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