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Abstract: Remaining Useful Life (RUL) of Lithium-ion batteries is an important indicator for battery 

health management, and accurate prediction can promote reliable battery system design, as well as safety 

and effectiveness of practical use. Therefore, we extract the health factor during charging and an improved 

multi-kernel support vector regression (MKSVR) RUL prediction model to achieve high accuracy 

estimation of the RUL of Lithium-ion batteries. Firstly, based on the current, voltage, and temperature data 

during charging, seven characteristic parameters that can reflect the battery capacity decay are extracted, 

and then, three health factors (HF) that are highly correlated with the capacity decay are screened out using 

Pearson coefficients. Secondly, the improved Gray Wolf Cuckoo Search Optimization (GWOCS) model is 

used to realize the intelligent optimization search of the kernel function parameter combinations of the 

multi-kernel support vector regression, and then the improved RUL prediction model of the multi-kernel 

support vector regression is established. Finally, the validation analysis is performed based on the NASA 

battery aging dataset. The results show that the improved multi-kernel support vector regression has higher 

prediction accuracy compared with the single-kernel support vector regression, and its RUL prediction 

errors are all less than 5 cycles, and the maximum root mean square error is all less than 0.028. 

Keywords: Lithium-ion battery, health factor, gray wolf cuckoo search model, multi-kernel support vector 

regression 
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1. Introduction

With the advantages of high energy density and high output power, lithium-ion batteries have an

important position in the field of renewable energy[1]. As the application of lithium-ion batteries in the new 

energy vehicle industry becomes more and more widespread, their health status is getting more and more 

attention[2]. The wide application of lithium-ion batteries also brings corresponding safety problems. As 

the number of charge and discharge cycles of the battery increases, a series of aging reactions will occur 

inside it, such as capacity reduction and impedance increase[3, 4]. When the lithium-ion battery reaches the 

failure threshold without the corresponding safety management measures, it may lead to serious safety 

accidents[5, 6]. Scientific lithium battery control strategy, accurate lithium battery health state (State of 

health, SOH), and remaining life detection play a vital role in the full play of lithium battery performance 

and safety control[7]. 

The current prediction methods for lithium-ion battery RUL can be mainly divided into mechanism-

based model prediction methods and data-driven prediction methods[8, 9]. The model approach builds the 

RUL prediction model by analyzing the internal mechanical structure of lithium-ion batteries[10]. Miao et 

al.[11] used an exponential growth type model to fit the capacity degradation curve of the battery to 

construct a lithium-ion battery degradation model and used a trace-free particle filtering algorithm for RUL 

prediction with a prediction error of less than 5%. Tian et al.[12] proposed an aging pattern identification 

method based on open-circuit voltage matching analysis, and established a mapping model of battery health 

status, ohmic resistance, and polarization resistance evolution. The results show that the model can achieve 

high accuracy RUL prediction and the prediction results can be maintained within the 95% confidence 

interval. To address the capacity regeneration phenomenon of Li-ion batteries and improve the accuracy of 

RUL prediction, Ma et al.[13] detected capacity regeneration points by particle filter with the Whitney U 

test method to update the degradation model parameters. The validation by the NASA battery dataset shows 

that the maximum RUL estimation error is 7 cycles and the detection rate reaches 83.3% for capacity 

regeneration data points. In the state estimation of particle filtering, the degradation and lack of diversity 

of particles can make the prediction results unreliable and inaccurate. Yang et al.[14] proposed a fused RUL 

prediction method with optimal combination strategy and traceless particle filter to track the degradation 

process of a cell with highly nonlinear characteristics and accurately predict its RUL, and OCS was used 

in the resampling process to improve the distribution of particle filtering and maintain diversity. The results 

show that the proposed method has good superiority and robustness, and the RUL prediction accuracy can 

be maintained above 95%. The RUL prediction method based on the machine model can improve the 
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prediction accuracy better under relatively stable external conditions, but the accuracy of the model is easily 

affected by the variable current and temperature, and it is difficult to obtain an accurate mechanism model 

under the influence of different external conditions[15]. 

Data-driven methods aim to map the relationship between the input data and output data of the above 

mechanistic models through some approximate models built adaptively based on available data[16], such 

as statistical models, Neural Networks (NN)[17], Gaussian process regression[18, 19], support vector 

regression[20], fuzzy inference, etc. These data-driven approximate models can be broadly classified into 

statistical, stochastic and intelligent techniques according to the techniques used[21]. Li et al.[22] proposed 

a data-driven RUL prediction technique based on smoothing the capacity increment curves using a filtering 

algorithm and extracting the battery health features from the capacity increment curves as a training data 

set. Based on training datasets of different sizes, three SVR-based battery degradation models were 

developed. The experimental results show that the average absolute error and root mean square error of the 

three models are lower than 2%, in addition. The accuracy of the three models is improved by 30% in both 

MAE and RMSE. Xue et al.[23] proposed an integrated algorithm combining adaptive traceless Kalman 

filtering and genetic algorithm to optimize support vector regression (GA-SVR). The AUKF algorithm was 

used to adaptively update process noise and observation noise, and then the GA algorithm was used to 

optimize the parameter selection process of SVR to achieve multi-step prediction of RUL. The results show 

that the proposed AUKF-GA-SVR algorithm has high RUL prediction accuracy and the prediction error 

can be controlled within 6 cycles. Wang et al.[24] proposed a transferable method for predicting the lifetime 

of lithium-ion batteries to solve the current error accumulation problem and the inapplicability of the 

remaining battery life model under different operating conditions. The battery degradation data is mapped 

into a subspace by building an encoding net that can extract the global battery degradation information. 

And a novel RUL prediction method is constructed by using a cyclic consistency learning method to train 

the coding net. The experimental results show that the method can achieve high prediction accuracy and 

also provide a new direction for RUL prediction. 

Although all these papers achieved good prediction results on RUL prediction, they all used single 

kernel SVR models or RVM models, which failed to fully exploit the advantages of these models. Some 

scholars have started to study regression models with multi-kernel functions. Lyu et al.[25] proposed an 

indirect hybrid model for online battery prediction and health management (PHM) using GWO to optimize 

a multi-kernel correlation vector machine (MKRVM) to determine the weights and kernel parameters of 

different kernel functions. The results show that the indirect hybrid model has high flexibility and strong 
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robustness for battery PHM. The above studies have achieved accurate prediction of RUL by different 

aspects, but these studies still have some shortcomings in some aspects, so this study tries to establish a 

more effective method for extracting the health factor of lithium-ion batteries. 

To synthesize the above, to more accurately characterize the dynamic properties and aging phenomena 

of batteries, this study investigates and analyzes three aspects of health factors, multi-kernel support vector 

regression and GWOCS intelligent search algorithm to achieve high accuracy estimation of RUL of 

Lithium-ion batteries. 

2. Theoretical Analysis

2.1 Lithium-ion battery health factor extraction 

The lithium-ion battery aging dataset used in this study is from NASA PCoE Research Center, and this 

dataset contains experimental data on charge/discharge cycles of several rechargeable lithium-ion batteries. 

In this study, B0005 and B0006 batteries with a rated capacity of 2Ah and a cutoff voltage of 4.2V during 

charging were selected as the experimental subjects. 

The decay of capacity and the change of internal resistance data of lithium-ion batteries in practical 

applications are difficult to obtain directly, and it is difficult to extract stable indirect HF from the discharge 

data because of the interference received from various usage habits and external factors during the battery 

discharge process[26]. In contrast, the battery charging process is relatively stable, and it is easier to extract 

indirect health factors with characteristic representativeness to better predict the RUL of Lithium-ion 

batteries[27]. therefore, this study extracts seven sets of indirect HF data related to current, voltage and 

temperature based on the data sets of batteries B5 and B6, after analyzing numerous curve variation patterns. 

Taking the B5 battery as an example, the extracted health factors are as follows. 

1. For the same battery, the difference in current drop (Current Difference, CD) exists after the same

charging time t  due to the different rates of the current drop in different cycles, as shown in

Fig.1 (a). The formula for calculating CD is shown in Eq. (1).

( ) 1.5 tCD I I = − (1) 

2. As shown in Fig.1 (b), the rate of charge voltage rise is different for different cycles in the same

battery data set. Similarly, the voltage difference (VD) between the same charging time t  and

the rated voltage 4.2 V is also different. the formula for calculating VD is shown in Eq. (2).

( ) 4.2 tVD V V = − (2) 
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(a) Charging current at different cycle times
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(b) Charging voltage at different cycle times

Fig. 1 Current-voltage curve of B5 battery at different cycle times 

3. As shown in Fig.2, the maximum temperature reached by the battery during charging is different

in different cycles and the time to reach the maximum temperature is also different, so it is

reasonable to use the time to reach the maximum temperature (Max temperature Time, MT) to

reflect the battery aging phenomenon.
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Fig. 2 Temperature change during charging 

The HF extracted at this time includes a total of 6 groups of CD and VD of t  = 500, 1000, 

1500, and a set of MT. where the extracted CD and VD scatter plots are shown in Fig. 3. 
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Fig. 3 Trends in CD and VD at different time intervals 

As can be seen from Fig.3, as the number of cycles of the Lithium-ion battery increases, the 

available capacity of the battery decreases and both CD and VD show a decreasing trend. Fig.4 

shows the time required for the battery to reach the maximum temperature during the charging 

process. 
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Fig. 4 Time required to reach maximum temperature 

Due to the battery data set, the charging data of the initial 25 cycles did not contain the 

maximum temperature value, so the initial 25 MT values were all 0. It can be seen from Fig. 4 that 

the trend of MT is in high agreement with the trend of battery capacity decay. The above results 

tentatively indicate that it is feasible to use HF to indirectly characterize the capacity decay process 

of Lithium-ion batteries. 

2.2 Health factor correlation analysis 

To investigate the correlation between the lithium-ion battery capacity decay and the HF extracted 

above, the data with a higher correlation is further screened to reduce the cost of model training. Pearson 

correlation coefficient is used for correlation analysis. The formula of the Pearson coefficient is shown in 

Eq. (3). 

2 2 2 2

cov( , ) ( ) ( ) ( )

( ) ( ) ( ) ( )
XY

X Y

X Y E XY E X E Y
P

E X E X E Y E X 

−
= =

− −
(3) 

In Eq. (3), X  denotes the extracted HF data and Y  denotes the lithium-ion battery capacity decay 

data. ( ),cov X Y denotes the covariance of X , Y . X and Y denotes the standard deviation. From

the principle of the Pearson coefficient, it is known that when the Pearson coefficient is greater than 0.9, it 

is proved that the HF is extremely correlated with the battery capacity decay. Tab.1 shows the Pearson 

coefficients obtained by calculating the seven sets of HF data extracted from the B5 battery data set with 

the battery capacity. 

Tab. 1 Pearson correlation coefficient 

Battery Health factors Pearson coefficient 

B5 

CD (500s) 0.8823 

CD (1000s) 0.9184 
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CD (1500s) 0.9579 

VD (500s) 0.8763 

VD (1000s) 0.8940 

VD (1500s) 0.9466 

MT 0.9578 

From Tab.1, we can see that all seven HF data sets have a high correlation with the battery capacity, 

which proves that the previous method of selecting HF has high feasibility. To ensure that the extracted HF 

can have stronger generalization, we select HF data sets with Pearson correlation coefficients above 0.94 

as the input of the model. Therefore, the three data sets CD (1500S), VD (1500S) and MT will be used as 

the input training data sets for the GWOCS-MKSVR model. 

2.3 Analysis of the Gray Wolf Optimization Search Algorithm 

Gray Wolf Optimizer (GWO) algorithm is better for complex constraints and searching unknown 

spaces commonly found in practical engineering[28], but it is easy to fall into local optimum when facing 

high dimensional problems[29]. The Cuckoo Search (CS) algorithm is an optimization algorithm proposed 

in combination with Lévy Flights[30], which has a better global search performance. The above 2 

algorithms are combined to form the GWOCS algorithm, which perturbatively updates the population 

position during the iteration process, which can effectively increase the population diversity and balance 

the global and local search ability of the algorithm. 

The gray wolves in a wolf pack follow a pyramidal social dominance hierarchical relationship, and 

their hierarchical distribution is shown in Fig.5. According to this relationship, the gray wolf pack can be 

divided into four classes: α wolves, β wolves, δ wolves and ω wolves[31]. In the wolf pack, the lower 

wolves need to obey the higher wolves, and the pack balances the internal relationship accordingly. GWO 

algorithm uses the hierarchical relationship of the wolf pack, constructs a model, calculates the fitness of 

each wolf, and ranks the wolves according to the size of the fitness, and selects the top 3 wolves in the 

fitness as α wolves, β wolves, δ wolves, and the rest as ω wolves. GWO optimization can be described as 

the process of prey tracking and siege by ω wolves following α, β, and δ wolves, the location of the prey is 

the optimal solution[32]. 

Page 7 of 20

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



α 

β 

δ 

ω 

Fig. 5 Gray Wolf Hierarchy Mechanism 

The specific steps of the GWO algorithm are as follows: 

Step 1: Search for Prey. 

| ( ) ( ) |pD CX t X t= − (4) 

( 1) ( )pX t X t AD+ = − (5) 

In Eq. (4), D  is the distance of the prey, ( )pX t is the position of the prey in the t th generation,

( )X t is the position of the gray wolf in the t th generation, 2 iC r= denotes the coefficient vector, which 

controls the wolf pack activity, and ir is a random number within 0 to 1. In Eq. (5), ( )1X t + denotes the 

updated position of the 1t + th generation of gray wolves; A is the convergence vector, which controls 

the wolves' actions[33]. 

2 iA ar a= − (6) 

In Eq. (6), the initial value of a  is 2, which decreases linearly with the number of iterations until it 

decreases to 0. 

Step: Surrounding the prey. 

At the beginning of the hunt, it is assumed that α wolf position is optimal, and the prey is pursued by 

leading β and δ. The distances of α, β, and δ from the prey are determined according to Eq. (7). 

| ( ) ( ) |k i kD C X t X t= − (7) 

1 1

2 2

3 3

X X A D

X X A D

X X A D

 

 

 

= −


= −
 = −

(8) 

In Eq. (7), k  denotes α, β, δ, i = 1, 2, 3. In Eq. (8), 1X , 2X , 3X denotes the distance and direction

of ω wolves advancing toward α, β, δ wolves. 1A , 2A , 3A denotes the coefficient vectors.

( 1)
3

w w wX X X
X t

  + +
+ = (9) 
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Eq. (9) indicates that ω wolves update their positions according to the positions of α, β, and δ wolves. 

Step 3: Attacking the prey. 

The gray wolf pack attacks the prey when the prey stops moving, giving the algorithm a good local 

fine search capability. The construction of the attack model needs to be completed by decreasing the value 

of a [34]. In Eq. (6), because a  is decreasing during the iteration, A  fluctuates in the interval -a to a, 

and when A  is between -1 to 1, the next position of the gray wolf is between the current position and the 

prey position. When A >1, the search for the prey continues.

2.4 Analysis of the Gray Wolf-Cuckoo Search Algorithm 

In the iterative process of the GWO algorithm, the wolves always update their positions according to 

the position information of α wolves, β wolves and δ wolves, which easily leads the wolves into the local 

optimal position and the global search ability is weak. In contrast, the Lévy flight mechanism in the CS 

algorithm is a typical random wandering way, and the algorithm searches for steps with almost equal 

probability of length and has high selectivity of moving direction, which can update the nest position 

randomly and complete the global search[35]. The Lévy flight process is shown in Eq. (10). 

1 ( )t t

i ix x L + = +  (10) 

In Eq. (10), t

iX is the position of the t th generation of the i th cuckoo; 1t

iX + is the position of the 

new generation of cuckoo; α is the step scaling factor;   is the Lévy index; ( )L   is the random search

step satisfying the Lévy flight distribution. The calculation formula is shown in Eq. (11). 

1
( )L

v 


 =

(11) 

In Eq. (11),   and   represent two random numbers obeying normal distribution. According to the 

above equation, the CS algorithm decides that some individuals obey the random wandering of Lévy flight 

according to the discovery probability, and completes the population update in the way shown in Eq. (12). 

( 1) ( ) ( )g gX t X t L + = +  (12) 

In Eq. (12), ( )1gX t + and ( )gX t denote the updated position of the g th nest as well as the current 

position;   denotes the random number of individual positions. Therefore, the two can be combined to 

build the gray wolf-cuckoo fusion search algorithm. The flow chart of the fusion algorithm is shown in Fig. 

6. 
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Fig. 6 Flowchart of GWOCS optimization search algorithm 

In the GWOCS optimization algorithm, after the prey is found, the position update method in the CS 

algorithm is used to update the position of the wolf pack in the next stage to avoid the wolf pack from 

falling into the local optimal solution. 

2.5 Multi-kernel support vector regression 

A multi-kernel model offers higher flexibility than a single-kernel function. In the context of multi- 

kernel mapping, the high-dimensional space becomes a combinatorial space made by combining multiple 

feature spaces. Since the combinatorial space gives full play to the different feature mapping capabilities 

of each basic kernel, it can solve the different feature components of heterogeneous data by the 

corresponding kernel functions respectively. At present, the mainstream multi-kernel learning methods 

include linear kernel, multi-scale kernel and infinite kernel. The linear combinations of kernel functions are 

usually relatively stable and can perform the basic functions of kernel functions. Through the linear 

combination of multiple kernel functions, the advantages of each kernel function can be combined to 

improve the prediction ability of the model. The expression of the combined kernel function model 

constructed in this paper is shown in Eq. (13). 

1 2 3( , ) ( , ) ( , ) ( , )combo i ploy i liner i RBF iK x x w K x x w K x x w K x x= + + (13) 

In Eq. (13), 1w , 2w and 3w denote the weight coefficients of each linear combination of kernel 

functions in the multi-kernel function. 1 2 3 1w w w+ + = , and 1 2 3, , 0w w w  .

( , )ploy iK x x denotes the polynomial kernel function, which serves to achieve global generalization.

( , )liner iK x x denotes the linear kernel function, which enables tracking of the global monotonic trend. 

( , )RBF iK x x denotes the Gaussian kernel function, also called the radial basis kernel function, which 
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achieves the capture of local nonlinear features. The expressions of these three different kernel functions 

are shown in Eq. (14). 

2

2

( , ) ( 1)

( , ) exp( )
2

( , )

T d

ploy i i

i

RBF i

T

liner i i

K x x x x

x x
K x x

K x x x x



 =  +

 −
 = −

 = 

(14) 

In Eq. (14),   represents the kernel parameter of the Gaussian kernel function and d  is the order 

of the polynomial kernel function. the detailed derivation formula of the SVR model has been derived in 

detail in the literature[23]. Based on this, the expression of MKSVR can be derived as shown in Eq. (15), 

where ia and ia  are Lagrange multipliers.

1

1 2 3

1

( ) ( ) ( , )

( )( ( , ) ( , ) ( , ))

n

i i combo i

i

n

i i ploy i liner i RBF i

i

f x a a K x x b

a a w K x x w K x x w K x x b



=



=

= − +

= − + + +




(15) 

In the NASA dataset, the overall trend of the lithium-ion battery capacity degradation curve is 

monotonically decreasing, so the choice of linear kernel function and Gaussian kernel function can 

effectively characterize the local nonlinearities in the degradation process. Secondly, it is necessary to 

include polynomial kernel functions to achieve global generalization because the historical data will have 

an impact on the current RUL estimation. In this paper, the MKSVR model is trained using the extracted 3 

sets of HF as the training data input to the model, and the combined coefficients of the fusion kernel function 

are optimized centrally using the GWOCS optimization-seeking algorithm. The flow chart of the GWOCS-

based multi-kernel SVR fusion model is shown in Fig.7. 
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Fig. 7 The flowchart of the multi-kernel SVR fusion model based on GWOCS optimization 

The steps of RUL prediction based on GWOCS with multi-kernel SVR are as follows: 
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1. Data pre-processing. To achieve higher accuracy in RUL prediction, health factors need to be

extracted from the aging data. After completing the correlation analysis, the health factor data set

with a higher correlation is selected as the model training input.

2. Multi-kernel SVR kernel function parameters are optimized. MKSVR takes Eq. (15) as the kernel

function, based on which the combination of kernel function coefficients is obtained with the

GWOCS optimization algorithm.

3. RUL prediction. The GWOCS-MKSVR model is constructed for training and achieves high-

accuracy RUL prediction.

3. Validation analysis of experimental results

In this section, the RUL prediction analysis is performed on the aging dataset of B5 and B6 batteries

from NASA PCoE Research Center based on the HF extraction mentioned in Section II and the GWOCS-

MKSVR model. To evaluate the performance of the algorithm, a comparative analysis is performed using 

the single-kernel SVR and MKSVR with the improved model. In addition, the mean absolute error (MAE) 

and root mean square error (RMSE) is introduced as the evaluation index of the algorithm performance. 

The formulas of MAE and RMSE are shown in Eq. (16) and Eq. (17). 

1

1
ˆ| |

N

i i

i

MAE x x
N =

= − (16) 

2

1

1
ˆ( ( ) )

N

i i

i

RMSE x x
N =

= − (17) 

3.1 Experimental verification at start cycle=60 

In the B5 and B6 battery data sets, there are 168 charge/discharge cycles of battery capacity data. We 

use the first 60 and first 70 cycles as the model offline training data set, and the last 108 and last 98 cycles 

as the model prediction data set, and the starting point of RUL prediction is start cycle (SC) = 60, 70. Since 

the starting capacity of the two batteries is 2Ah, the batteries are regarded as obsolete when the actual 

available capacity is 70% of the rated capacity, so the RUL In the prediction process, the failure threshold 

is set to 1.4Ah. 

Fig.8 represents the RUL prediction results for the B5 and B6 battery data sets at SC=60. In Fig.8(a), 

C1 represents the real capacity degradation curve of the battery, C2 represents the RUL prediction results 

obtained by the GWOCS-MKSVR optimization model, and C3 and C4 are used as comparison curves to 

verify the performance of the improved model, representing the prediction results of the single-kernel SVR 

algorithm and the prediction results of the MKSVR algorithm, respectively. 
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Fig. 8 RUL estimation results at SC=60 

Fig.8(a) shows the RUL prediction results for the B5 battery. The magnified plot shows that the true 

failure threshold of the battery is 124, the predicted failure threshold of the improved algorithm is 126, the 

predicted failure threshold of the SVR algorithm is 142 and the predicted failure threshold of MKSVR is 

116. the RUL prediction performance of the algorithm can be described more intuitively by Eq. (18) and

Eq. (19), in which preRUL denotes the RUL prediction value and realRUL denotes the true RUL value of 

the battery. In Eq. (19), eRUL denotes the relative error of the predicted value.

pre pre realError RUL RUL= − (18) 

100%
pre real

e

real

RUL RUL
RUL

RUL

−
=  (19) 

In the RUL prediction of B5 battery, the single-kernel SVR algorithm can simulate the capacity decay 

trend of the battery, but its prediction error is large, and the error between the predicted value and the real 

value is 18 cycles. MKSVR improves the shortcomings of the single-kernel SVR to a certain extent, and 

its simulation prediction error is 8 cycles. The GWOCS-MKSVR model can achieve the simulation of 

battery capacity decay trend well, and the prediction error is only 2 cycles. Fig.8(c) shows the RUL 

prediction results for battery B6, where the true battery failure threshold is 108, the single-kernel SVR 

prediction is 121, the MKSVR prediction is 95, and the MKSVR has better tracking than the SVR. the 

GWOCS-MKSVR prediction is 111, and the model has the best tracking among these three models, 

Page 13 of 20

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



indicating that for the GWOCS The search mechanism plays a positive role in the optimization of the 

parameter selection of the multi-kernel function. The specific error comparison results are shown in Tab. 2. 

Tab. 2 Comparison of RUL prediction results of different algorithms at SC=60 

Estimation algorithm SVR MKSVR GWOCS-SVR 

Battery B5 B6 B5 B6 B5 B6 

Errorpre 18 13 8 13 2 3 

RULe 14.516% 12.037% 6.451% 12.037% 1.612% 2.777% 

As can be seen from Tab. 2, the RUL prediction accuracy of the GWOCS-MKSVR model is greatly 

improved compared with both the SVR and MKSVR models when predicting for the B5 cell, and the RUL 

estimation error period is greatly reduced, and the estimation accuracy is improved by 12.904% and 4.839%, 

respectively. The estimation accuracy of the GWOCS-MKSVR model is improved by 9.26% when 

predicting the B6 cell. In Fig. 8(b) and Fig. 8(d), E1 represents the estimation error curve of the MKSVR 

model, E2 represents the estimation error curve of GWOCS-MKSVR, and E3 represents the estimation 

error curve of SVR. It can be seen that the maximum estimation errors of E2 are 0.07859 and 0.13366, the 

maximum errors of E1 are 0.12739 and 0.15171, and the maximum errors of E3 are -0.06446 and -0.12482, 

respectively. although the error of E3 is the smallest, the tracking is poor and it is difficult to simulate the 

real capacity decay trend of the battery. the error curve of E2 always fluctuates around The E2 error curve 

fluctuates around 0, which is more stable and convergent than the traditional algorithm. The specific 

performance index can be calculated by Eq. (18) and Eq. (19), and the calculation results are shown in 

Tab.3. 

Tab. 3 RUL estimation error indicator at SC=60 

Battery Algorithm MAE RMSE 

B0005 

SVR 0.0365 0.0414 

MKSVR 0.0203 0.0256 

GWOCS-MKSVR 0.0107 0.0145 

B0006 

SVR 0.0550 0.0604 

MKSVR 0.0324 0.0452 

GWOCS-MKSVR 0.0133 0.0216 

As can be seen in Tab. 3, compared with SVR and MKSVR, GWOCS-MKSVR prediction error 

metrics are smaller and have better prediction performance, whether using B5 battery data or B6 battery 

data. Based on the B5 battery data set, for the MAE and RMSE of capacity prediction error, GWOCS-

MKSVR is reduced respectively. Based on the data in Tab. 3, a more intuitive performance comparison 
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graph can be obtained, as shown in Fig. 9. 

B0005 B0006
0.00

0.02

0.04

0.0133

0.0324

0.0550

0.0107

0.0203

M
A

E
(S

C
=

6
0

)

Battery number

 SVR

 MKSVR

 GWOCS-MKSVR

0.0365

(a) MAE Comparative Analysis

B0005 B0006
0.00

0.02

0.04

0.06

0.0216

0.0452

0.0604

0.0145

0.0256

0.0414

R
M

S
E

(S
C

=
6

0
)

Battery number

 SVR

 MKSVR

 GWOCS-MKSVR

(b) RMSE Comparative Analysis

Fig. 9 Comparison of MAE and RMSE of estimation results at SC=60 

From Fig. 9(a), the MAEs of the GWOCS-MKSVR model for the RUL prediction results of the B5 

and B6 cell data sets are 0.0107 and 0.0133 at SC=60. compared with the SVR model, the RMSEs are 

reduced by 0.0258 and 0.0417, respectively. compared with the MKSVR model, the RMSEs are reduced 

by 0.0096 and 0.0191, respectively. In Fig. 9(b), the RMSEs of the GWOCS-MKSVR model are only 

0.0145 and 0.0216, which are reduced by 0.0269 and 0.0388, respectively, compared with the SVR model, 

and 0.0111 and 0.0236, respectively, compared with the MKSVR model. the comparative analysis of MAE 

and RMSE performance indexes shows that GWOCS-MKSVR model has good prediction ability and 

stronger convergence, which proves that the algorithm has high reliability of prediction results and is more 

advantageous than the single-kernel SVR model. 

3.2 Experimental verification at start cycle=70 

Fig.10 shows the RUL prediction results for the B5 and B6 data sets when SC=70. In the RUL 

prediction results plot, C1 represents the real battery capacity degradation curve, C2 represents the RUL 

prediction results of the GWOCS-MKSVR model, and C3 and C4 represent the prediction results of SVR 

and MKSVR, respectively. 
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Fig. 10 RUL estimation results at SC=70 

Fig.10(a) shows the RUL prediction results for the B5 battery. As can be seen from the enlarged figure, 

the real RUL count of the battery is 124 cycles with 1.4Ah as the battery failure threshold, and the RUL 

predicted by the GWOCS-MKSVR model is 123 cycles. In contrast, the predictions of SVR and MKSVR 

are worse. the predicted RUL count of SVR is 146, which differs from the true value by 22, and the predicted 

RUL count of MKSVR is 114, with an error of 10 cycles. Fig.10(c) shows the RUL prediction results for 

the B6 battery. The true number of cycles available for the battery is 108, while the GWOCS-MKSVR 

model predicts 113. 125 for SVR and 95 for MKSVR. a more intuitive comparison of the results is shown 

in Tab. 4. 

Tab. 4 Comparison of RUL prediction results of different algorithms at SC=70 

Estimation algorithm SVR MKSVR GWOCS-SVR 

Battery B5 B6 B5 B6 B5 B6 

Errorpre 22 17 10 13 1 5 

RULe 17.741% 15.740% 8.064% 12.037% 0.806% 4.629% 

As can be seen from Tab. 4, although the SVR model can achieve the prediction of battery RUL, the 

number of errors is large and it is difficult to achieve accurate prediction. although MKSVR has improved 

based on the SVR model and the prediction accuracy has been improved, the prediction error is still large, 

and the minimum prediction error has 10 cycles. And GWOCS-MKSVR model overcomes the 

shortcomings of SVR and MKSVR generalization ability and global search ability. Using the prediction 

accuracy of SVR and MKSVR as a comparison, the prediction accuracy of the improved model was 

improved by 16.935% and 7.258%, respectively, when predicting the B5 battery. When the prediction is 

performed for B6 cells, the improved algorithm prediction accuracy is improved by 11.111% and 7.408%, 

respectively. The effectiveness of the GWOCS-MKSVR model is demonstrated with higher accuracy in 

predicting RUL. The error analysis of Fig.10(b) and Fig.10(d) can be more visually represented by Fig. 11. 
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Fig. 11 Comparison of MAE and RMSE of estimation results at SC=70 

As can be seen in Fig. 11(a), the MAE of the GWOCS-MKSVR model for the RUL prediction results 

for the B5 and B6 datasets is 0.0093 and 0.0162, respectively, when SC=70. compared to the SVR model, 

it is reduced by 0.0434 and 0.0447, respectively. compared to the MKSVR model, it is reduced by 0.0165 

and 0.0352, respectively. while in Fig. 11(b), the RMSEs of the GWOCS-MKSVR model are only 0.0134 

and 0.0228, which are both reduced to a larger extent compared with the SVR model and the MKSVR 

model, proving that increasing the number of training data can improve the accuracy of the prediction 

results to some extent, and further proving that the improvement of the GWOCS-MKSVR model is 

effective in terms of accuracy and convergence. 

According to the above comparative analysis, the GWOCS-MKSVR model has stronger adaptability 

and generalization ability than the SVR model and the MKSVR model through the mixture of multiple 

kernel functions and the use of the GWOCS optimization algorithm to optimize the kernel function 

parameters, which can achieve better tracking results for strongly nonlinear data and further improve the 

accuracy of RUL prediction. The model is also able to achieve good prediction results with different sets 

of training data, further demonstrating the strong adaptability of the model. 

4. Conclusion

The safe and efficient use of Lithium-ion batteries relies heavily on the accurate prediction of RUL.

To achieve more accurate RUL prediction results, this paper provides an in-depth analysis of the current 

status of RUL research in recent years and proposes a GWOCS-MKSVR-based RUL prediction model, 

which improves the single-kernel SVR model into a multi-kernel SVR model, thus increasing the 

adaptability and generalization of the SVR model. The GWOCS optimization-seeking algorithm is also 

proposed to solve the problem that the GWO algorithm easily falls into the local optimal solution by using 

the Levy flight mechanism in the CS algorithm, and achieves the optimal parameter combination selection 

of the multi- kernel function, which overcomes the problem of insufficient generalization ability in the 

multi-kernel SVR due to the fixed parameters of the kernel function. The problems of fewer input features 
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for RUL prediction and poor nonlinear tracking ability and inaccurate prediction of single-kernel SVR 

models are solved. Finally, the prediction ability of the improved model is verified using the NASA battery 

aging experimental data set. Based on the experimental results as well as the analysis, it can be seen that 

the GWOCS-MKSVR model can achieve high accuracy RUL prediction, and the prediction accuracy can 

be achieved above 95.4% in all cases. The model also has smaller MAE and RMSE, better prediction 

stability and adaptability, and stronger prediction ability for strongly nonlinear data. This study provides a 

solid theoretical basis for the accurate prediction of RUL of lithium-ion batteries, which has a positive 

significance for the safe and efficient use of batteries. 

Although the proposed GWOCS-MKSVR model can achieve high accuracy in RUL prediction, it is 

difficult to accurately characterize the capacity mutation caused by the capacity regeneration phenomenon 

during the battery aging process. This part will be investigated in depth in subsequent studies. 
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