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A B S T R A C T

A predictive model with high accuracy and stability of the state of charge (SOC) estimation for lithium-ion batteries plays a significant role in electric vehicles. An 
improved random drift particle swarm optimization- feed forward backpropagation neural network (IRDPSO-FFBPNN) is established in this paper. Basically, a three-
layer FFBPNN is established, and its learning process is analyzed in detail. Then, to avoid the particle out- of-control, inducting weight parameter σ to achieve dynamic 
control weight convergence. What’s more, the cross-reorganization of data is proposed to enhance the utilization. Finally, a further performance comparison with other 
networks is made under different working conditions to prove the effectiveness of the IRDPSO- FFBPNN. The experimental results showed that the maximum SOC error 
of the IRDPSO-FFBPNN is 0.1021% in 45s, 0.1237% in 116s under BBDST and DST with different temperatures, respectively, which performed better both in terms of time-
consumption and accuracy.   
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1. Introduction

With the increase of awareness about environmental protection, sustainable and efficient applications have become a common goal in the
world [1], lithium batteries are widely used in common facilities as a specific representative with their many advantages including fast charge 
[2], long lifespan, no memory effect, lightweight, etc. [3], and electric vehicles play a major role in applications with lithium-ion batteries. 
Thus, a system of battery management to monitor the status in real-time is significant [4], and the SOC is the basis of the safe and stable operation 
of lithium-ion batteries [5], while it cannot be measured directly [6]. Parameters and methods will help to achieve the estimation for its 
nonlinear system [7]. 

For SOC estimation, the methods of direct estimation, filter models, and data-driven are more developed [8]. Direct methods include the 
Open-circuit voltage (OCV) method and the Ampere-hour (Ah) integral method [9], in which many assumptions and empirical parameters are 
applied, and the solution of equation system is complicated [10], so a combination of OCV and coulomb counting methods (OCV-CC) is proposed 
to measure the variable temperatures of batteries [11]. As for the filtering model, a new adaptive extended Kalman filter (AEKF) algorithm 

* Corresponding author - mail address: wangshunli@swust.edu.cn (S. Wang).

is designed [12], and it has superior performance than the conventional extended Kalman Filter (CEKF) under dynamic load conditions. Data-driven 
becomes mainstream with their simple structures [13] as deep learning evolves, and they can close to random complex nonlinear mapping with good 
performance to establish a high accuracy system [14]. An improved long short-term memory recurrent neural network (LSTM-RNN) with extended input 
(EI) and constrained output (CO) [15], which performed high stability of the system.

Different optimization algorithms have different focuses and different effects [16]. In the 1970s, the GA is first proposed by John Holland in the 
USA with the process of selection, cross, and mutation, which imitated from the adaptive change mechanisms of genes in nature to generate a new 
population [17–19]. Different from the GA, the differential evolution (DE) algorithm implements population perturbations by selecting particle differential 
information randomly, which is currently one of the most powerful swarm intelligence optimization algorithms [20–22]. The PSO algorithm synthesizes 
self-experience and group information when foraging by simulating the ability of birds so that the particles in the algorithm can show similar search 
behavior to birds foraging [23]. In 2013, Sun et al. proposed the RDPSO algorithm [24], which was designed from the motion model of free electrons in metal 
conductors. The movement of particles attracted by the individual best (ibest) position they found and attracted by the global best (gbest) location found 
by the entire population [25]. Other common neural networks used for SOC prediction of lithium-ion batteries include con-volutional neural networks 
(CNN), fully connected neural networks (FCNN), and backpropagation neural network (BPNN). 

Fig. 1. The structure of FFBPNN and its     uron.ne



Table 1 
Specific steps of error backpropagation.  

Step 
1. 

Confirming the output of the hidden layer and the output layer nodes, as shown in Eq. (5). 
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Step 
2. 

Calculating the Err by the Eq. (6). According to the neural network model established in Fig. 1, the values of m can be determined as 1 and 2, representing the 
input layer to the hidden layer and the hidden layer to the output layer, respectively. 
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Step 
3. 

ej = ŷjk −  yjk 

Calculation of the error function and the partial derivatives of the output layer and the hidden layer nodes are shown in Eq. (7). 
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Step 
4. 

Using the gradient descent principle, let the connection weights be corrected 
according to the learning rate σ. The connection weights of the nodes in the output and hidden layers are updated into Eq. (8). 
{
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Step 
5. Let m = m + 1, until the error is less than the expected value, the neural network learning is finished.
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In terms of the topology of BPNN, it is highly dependent on initial weights and thresholds [26]. An artificial fish swarm algorithm-BPNN (AFSA-BPNN) 
can verify that it is more realistic than the EKF algorithm with a maximum error of 0.5 % [27]. What’s more, Levy’s flight strategy (LPSO) algorithm based on 
BPNN (LPSO-BPNN) is proposed to optimize the weights and thresholds [28], which is carried out by using NASA charging and discharging data, while the 
method is not verified under complex working conditions. Then, a fractional order model with the BPNN algorithm was adopted [29], and its experiments 
with the NCR18650B lithium-ion battery were made at different temperatures, which limits the maximum error to 10 %. Correspondingly, the combination 
of neural networks and filter models is often used to achieve SOC and state of health (SOH) estimation of lithium-ion batteries [30]. A novel BPNN-dual 
extended Kalman filter (BPNN-DEKF) method for SOC and SOH co-estimation based on limited memory recursive least square algorithm is proposed by 
establishing a second-order equivalent circuit model [31], which offered a high accuracy and robustness method in comparison with single DEKF 
algorithm at 2.03 % of maximum error [32]. An ant lion optimizer based on BPNN (ALO-BPNN) and UKF method is proposed to predict the SOC with high 
accuracy [33]. And the robustness and stability of neural networks need to be verified under complex operating conditions and at different temperatures 
[34]. In this paper, the IRDPSO-FFBPNN is established. Particularly, the weight error parameter is induced to control the step of the particle to achieve 
dynamic convergence with trajectory drift. Then, the method of cross-reorganization is established to improve dataset utilization. What’s more, the 
performance of the proposed methods is verified under the DST, and BBDST working conditions independently, then the accuracy and stability of the 
IRDPSO-FFBPNN are analyzed in detail using mean absolute error (MAE), and the goodness of fit (R2), root mean square error of prediction (RMSEP), 
comparing its performance with other existing algorithms. In conclusion, the paper conducts three parts: establishing an accurate RDPSO-FFBPNN model, 
proposing two methods to improve the accuracy and efficiency of the system, and verifying the performance of the IRDPSO-FFBPNN under different 
working conditions. 

2. Improved RDPSO-FFBPNN modeling and mathematical analysis

2.1. FFBPNN establishment 

The FFBPNN has two processes including feed forward propagation and error backpropagation [35]. In general, the forward propagation completes 

transmitting the sample data from the input layer to the output layer. If the output cannot meet the conditions, the erroneous value will be traversed back  
[36]. The typical multi-layer perception network is a three-layer hierarchical neural network, including the input layer, the hidden layer, and the output 
layer [37]. According to pre-diction content of lithium-ion batteries, the current and voltage are set as input layers, and the SOC is set as the output layer, in 
this way, a three-layer FFBPNN structure can be confirmed as 2–5-1 according to the Eq. (1). 

H =
̅̅̅̅̅̅̅̅̅̅̅̅
m + n

√
+α (1) 

      H represents the number of the hidden layer, n means the number of the input layer, m is the number of the output layer, α is an interval variable from 1 
to 10, when the value of α is 3, the request is satisfied with high matching. The network edges connect the processing units called neurons. Neurons 
mimic the principle and function of biological neurons to complete the weighting, summing, and transferring of data, and the structure of network and a 
certain neuron is shown in Fig. 1.  



(1) Feed-forward propagation

In Fig. 1, a random neuron N.[j 
m] is the jth neuron from mth layer with n inputs is selected to analyze. The input is (x1, x2, x3, x4, …xn)T , its 

corresponding variable weight matrix is (w1, w2, w3, w4, …wn)T and the b[
j 
m] represents the deviation, then the linear input in summation is z[

j
m] = w1x1 + 

w2x2 + w3x3 + … + wnxn + b[
j
m], and y[

j
m] = f (*), and the f(*) is an activation function [23]. The input z[

j 
m] of the network can be analyzed as shown in 

Eq. (2). 
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Then the output of the system can be observed in Eq. (3) [38]. 
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The sigmoid function and tanh function are two common S-type saturation functions that are widely used as activation functions in neural 
networks [39]. The sigmoid function is smooth and easy to derive, and its derivative function with respect to x can be expressed in terms of itself. 
The sigmoid function can meet the activation conditions and the expression is elucidated in Eq. (4). 

f (x) =
1

1 + e− x (4)    

(2) Error backpropagation

Gradient descent is an implementation of backward propagation of error that cause the weight of each training sample to vary along a negative
gradient until E is minimized [26]. According to the network structure in Fig. 1, the nodes of the input layer, the implicit layer and the output layer are 
set as Xi(n), Hj(n), Yk(n), the connection weight of the ith neuron in the input layer to the jth neuron in the hidden layer is W1

ji, similarly, the connection 
weight of the jth neuron in the hidden layer to the kth neuron in the output layer is W2

kj. The specific steps of error backpropagation are in Table 1. 

2.2. RDPSO algorithm 

The RDPSO algorithm is a PSO variant inspired by the free election model in metal conductors placed in an external electric field [40], and the 
search of each particle is regarded as the same as the free electron in the metal inductors. Basically, each of the M particles is treated as a volume-

free individual in N-dimensional space, with the current position and velocity vector of the ith particle at the mth iterations elaborated as Xi
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N ), known as global best (gbest) position. Accordingly, the vector of position and velocity can be 
updated by Eq. (9). 
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Similarly, the position will be updated by Eq. (10). 
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For i = 1,2,3,…Q,j = 1,2,3…Z, and the parameter c1 and c2 are the acceleration factors, then the Pi,n+1 can be found by 
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where the f(*) means the target function of its corresponding position fitness. The convergence speed is limited for the search range is too large, 
the behavior of the particle is considered a superposition of thermal and drift motion in the RDPSO algorithm, and the velocity of each particle has 
two components including random and drift part as shown in Eq. (13). 

Vi,n− 1
k = VRi,n− 1

k +VDi,n− 1
k (13) 

In Eq. (13), VRi
k
,n−  1 and VDi

k
,n−  1 represent the random component and drift component of particle i in its j dimension of n-1th iterations. Before the 

analysis, the flow chart is shown in Fig. 2.  



(1) The analysis of the random component VRi
k
,n−  1.

The random component VRi
k
,n−  1 achieves the global search to replace the partial function of inertia weight in the traditional algorithm, and the 

probability density is shown in Eq. (14). 
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In Eq. (14), the δi
k
,n−  1 means the standard deviation of the Gaussian distribution [41], and the Maxwell is supposed to support the random 

component VRi
k
,n−  1, which obeys the Gaussian distribution. Then, the expression can be exchanged as shown in Eq. (15). 
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In Eq. (15), the parameter ε is the expansion coefficient, the Avek
n−  1 means the average of current optimal positions Pibest , and based on the 

definition of average. The N means the population size, it can be updated as shown in Eq. (16). 
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(2) The analysis of the drift component VDi
k
,n−  1.

The drift component VDi
k
,n−  1 aims at achieving local search of system, and the initial expression of traditional PSO algorithm can be inducted to 

the RDPSO algorithm that can be observed in Eq. (17). 
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And the as definition, the coefficient c1ri
k
,n− 1 and c2Ri

k
,n−  1 is the com-bination of random value, and from the perspective of the definition of 

Pibest , it needs to induct a linear expression to limit the randomization of particle motion, which is shown in Eq. (18). 

VDi,n− 1
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(
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The λ is the drift coefficient, which is limited at interval [0,2], and the particles tend to close to the position of the Pibest . The expression is 
updated as shown in Eq. (19). 
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In the RDPSO algorithm, ε and λ are two significant user-specified parameters that can be adjusted to balance the local and global search of the 
particles [42]. The procedure of the algorithm is outlined below in Table 2. 

2.3. Improved RDPSO-FFBPNN estimation strategy 

The RDPSO algorithm uses the initialized particles to optimize the weights and thresholds of the BPNN and activates the error of the 
network as a fitness function of the RDPSO algorithm, which is continuously corrected through the FFBPNN error feedback mechanism to 
achieve the set target. Introducing directional parameters to control the scale of particle motion, while reinforcing network learning through 
cross-reorganization The flow chart of the IRDPSO-FFBPNN is shown in Fig. 3. 

In Fig. 3, the MSE is set as the fitness input to train the initial structure, which is like the backpropagation process in the FFBPNN, it sends 
the error of the system back to the hidden layer and the input layer, the parameter that chosen as the value to input the fitness can be various 

including MAE, MSE, R2, RMSEP, MAPE. 

(1) Induct the weight error σ——achieve the dynamic convergence of weights

The parameter σ is inducted to control the inertia weight randomization, which can avoid the particle miss the Pgbest in the
process of closing. The particle is stable to tend to the individual optimal position, but it cannot be proved that the process tends to 
converge in the process. The definition of particle motion convergence and the random optimization algorithm is different, for the 
process of update from the individual particle is random, and it is difficult to analyze all particles when they transmit the information 
about the position and velocity to each other, and it is corresponding with the Pibest and Pgbest . The randomness of the RDPSO algorithm will 
help particles escape the local optimization, but in the process of iterations, the phenomenon appeared that the particle tends to cross the global 
optimal (x2, y2) to reach another local optimal position Pibest and it is marked as point (x3,y3) which illustrates the particle misses the metrics to 
close to the global optimal Pgbest , especially the Pibest and the Pgbest are on the same slope of the directive motion of a certain particle. The 
illustration with figure format is shown in Fig. 4. 



Fig. 2. The flow chart of RDPSO.  

Table 2 
The pseudocode of RDPSO algorithm. 



Fig. 3. The flow chart of the IRDPSO-FFBPNN.  

Fig. 4. The random motion deviant trajectory of a certain particle.  Fig. 5. Adjust motion with σ at the interval.in

Table 3 
Pseudocode for cross-reorganization. 



Table 4 
The specification of the 3.7 V/100 Ah lithium-ion battery.  

Parameter Value Parameter Value 

Cell nominal capacity 
(Ah) 

100 Peak discharge current 3C 

Cell nominal capacity (V) 3.7 Maximum load current 2C 
4.5 ± 0.05 0.5–1 Charge cut-off voltage 

(V) 
Discharge cut-off voltage 

(V) 
2.75 ±
0.05 

Internal resistance (mΩ) 

Working temperature 
(◦C) 

20–60 

Standard charge current 1C Dimension: 1 * w * h 
(mm) 

148 * 27 * 
93  

Table 5 
IRDPSO-FFBPNN parameter settings.  

Experiment parameters Setting 

30 
Take the random values at the interval 
[− 100,100] 
[− 100,100] 
Reach the maximum value of iterations 
51 

Dimension 
Out-of-scope processing 
Particle velocity dimension 
Particle position dimension 
Algorithm abort conditions 
Numbers of runs 
Number of iterations 
c1 

c2 

50 
1.6 
1.8  

Fig. 6. The experimental platform establishment.  



Fig. 7. The process of particles closes to the Pgbest.

As analyzed in the transformation from the traditional PSO algorithm to the RDPSO algorithm, the vocality is divided into random parts 
VRi

k
,n−  1 and drift part VDi

k
,n−  1, and the partial function of the initial weight wP in the PSO algorithm is replaced by the random search 

component VRi
k
,n−  1, which means the linear decrement of wP is dis-integrated, and then another part function of wP needs to continue to 

achieve the local search in the later iterations. The phenomenon of deviant trajectory is obvious from Eq. (20). 

Vi,n
k = wpVi,n− 1

k + c1ri,n− 1
k( Pibest,n− 1

k − Xi,n− 1
k)+ c2Ri,n− 1

k( Pgbest,n− 1
k − Xi,n− 1

k) (20) 

The wr represents the weight in the RDPSO algorithm, which needs to complete the search and guide the particle to close to the Pgbest , and the 
parameter β including the content of maximum and minimum value of wr to limit the interval of the particle movement. The parameter σ is 
induced to mark the error in the process of closing to the Pgbest , and the value is recorded to guide the step and the direction to the next move of 
a certain particle. The expression with the σ of ultimate velocity is shown in Eq. (21). 

{
wr(σ) = βi,n− 1

kri,n− 1
k + wrmin + σ*ri,n− 1

kni,n− 1
k

βi,n− 1
k = wrmax − wrmin

(21) 

      The ri
k
,n−  1 is a random value that obeys the uniform distribution, the ni

k
,n−  1 is the random value that obeys the normal distribution, the σ takes 

the value at the interval [0.2,0.5], which can describe the w deviation of a certain particle from its corresponding expectations. Parameter σ with 
directional components including x and y can guide the particle close to the Pgbest at an appropriate increment in its interval. And the illustration is 
shown in Fig. 5. 

′ can be updated as shown in Eq. (22). Accordingly, the expression of the VRi
k
,n−  1 

Vi,n− 1
k’ = VRi,n− 1

k +VDi,n− 1
k +wr(σ) (22)    

(2) Cross-reorganization—achieve data regeneration and enhance the utilization

In contrast to the GA algorithm, RDPSO cannot generate new pop-ulations through genetic manipulation of selection, crossover, and mu-
tation, which results in the limitation of the data utilization and the learning depth of the network. A method of data that updates the 
augment in each of three steps, and re-estimates each cross to traverse all test data, sets 75 %, and 25 % as training and testing data, respectively, 
and sets the cross-validate fold as 3, the max iteration is 50 to improve the data utilization. During the process, each data will complete two 
parts including being trained and being tested. In this way, the data volume will be three times greater than before, which improves the data 
utilization and learning depth, providing a mutual benefit to both the RDSPO algorithm and the FFBPNN. The code implementation of the 

cross-reorganization is shown in Table 3. 



7

Fig. 8. Verification results of weight error σ under BBDST working condition.  



The step data is taken as the independent variable, and the cross value is passed on as the predicted data, which is based on the 
reading of the total amount of data. 

3. Experimental testing and analysis

3.1. Test platform establishment

In the experiment, the 3.7 V/100 Ah ternary battery is set as the test object, and the Netware battery test equipment is 
the CT-4016-5V100A-NTFA, the constant temperature box is the DGBELL BTT–331C, the parameters of the battery is shown 

in Table 4，and the parameter setting of the IRDPSO-FFBPNN is collected in Table 5. The experimental platform of the target 
lithium-ion battery test equipment is observed in Fig. 6. 

3.2. Experimental analysis 

The X-axis and the Y-axis represent the position of each particle, and the Z-axis means the iterations. The position of the Pgbest is set at (9,9,9) 
and particles are closing to the Pgbest . Specifically, it unveils a clustering phenomenon to make the search space get smaller, which can speed 
up the process of interacting with the particles and reduce the time needed to train. The convergence process in the RDPSO algorithm showed 
in Fig. 7. 

3.3. Verification analysis under BBDST working condition 

The clustering phenomenon is converted to the test time reduction and the accuracy improvement in the data results, the efficiency of 
proposed methods are verified independently, and the results under BBDST working condition are shown in Fig. 8. 

    Fig. 8(a) and (b) presents the process of constant correction towards the SOC_Ref curve for different values of w(σ) from IRDPSO-
FFBPNN, in which the peaks are decreasing, and the curve is smoothing. The  ultimate adjustment result SOC Pre is almost overlapped with 
SOC Ref. In Fig. 8(c) and (d), the cross-reorganization was verified based on continuous correction of w(σ). In Fig. 8(e) and (f), training and 
test are compared with other algorithms based on FFBPNN, includes GA, PSO, and traditional RDPSO. The results show that all networks 
were able to maintain stability and high accuracy during the training process. In the testing phase, as the amount of data increased, all 
algorithms showed significant errors except IRDPSO, with the maximum errors reaching at 1.0879 %, 0.8179 %, 0.2167 % as Err_GA - BP, 
Err_PSO - BP Err_RDPSO - BP showed in Fig. 8(g) respectively, in comparison, the IRDPSO exhibits high stability and accuracy with a maximum 
error at 0.1021 %. In Fig. 8(h), the σ normal distribution value of training and test are recorded, they are 0.2563 and 0.2625, respectively, which 
represent the system results deviate little from their corresponding ex-pected values SOC_Ref. In addition to the above analysis, further 
information regarding the errors of the different algorithms and the time taken is given in Table 6. 
In Table 6, the maximum error of the IRDPSO algorithm reached 0.1021 %, compared to GA 1.0879 %, PSO 0.8179 %, traditional RDPSO 0.2167 
%, it achieved a high precision with the value at 0.9997 of R2. The iterations and time-consumption under DST are shown in Fig. 9. 
In Fig. 9(a), the fitness F of the system satisfies the relation F = 1 Fit, the smaller the Fit value, the better the performance. Learning stops when 
the system reaches the conditional number of iterations, at which point the value of Fit is closed to 0.00003, which represents the IRDPSO- 
FFBPNN fitness reached 0.99997. The IRDPSO-FFBPNN performed a better in time-consumption as descripted in Fig. 9(b). With training data up 
to 300,000 in 631 s, the time is reduced by more than 36.8 % compared to other algorithms, and with test data over 40,000 in 45 s, the time is 
reduced by more than 49.4 % compared to other algorithms.  

Indexes Algorithm 

GA-FFBP PSO-FFBP RDPSO-FFBP IRDPSO-FFBP 

Maximum error (%)  1.0879  0.8179  0.2167  0.1021 
MAE (%)  2.2192  2.1265  2.2823  1.1319 
RMSEP (%)  2.5367  2.2876  1.9730  1.3291 
R2 0.9114  0.9451  0.9759  0.9997  

Table 6 
The tests value of the neural networks under BBDST.  



3.4. Verification analysis under DST working condition 

To verify the IRDPSO-FFBPNN matching and stability under DST conditions, the training under 25 ◦C and test under 35 ◦C are completed and 
analyzed as shown in Fig. 10. 

In Fig. 10(a) and (c), there are clear peaks and deviation from SOC_Ref of the first adjustment curve SOC_W1 and SOC_Cro_W1. With the action of the 
σ, the curves are continuously corrected towards until it reached to SOC_Pre and eventually becomes smooth, which can be observed about 
corresponding error curves in Fig. 10(b) and (d). The algorithms of BP, GA-BP, PSO-BP, and IRDPSO-BP are trained at 25 ◦C with high stability and 
accuracy in Fig. 10(e). Nevertheless, the results of test at 35 ◦C appeared obvious deviation from SOC_Ref, which maximum error reached 15 %, 6.6397 
%, 3.1429 % of BP, PSO-BP, RDPSO-BP, respectively. The error curve of IRDPSO floats around 0 in Fig. 9(f) and (g). In Fig. 10(h), the σ normal distribution 
value of training and test are recorded as 0.2083 and 0.2280, represent a good repressiveness of system. Further information regarding the errors of the 
different algorithms and the time taken is given in Table 7. 

From the above table, the optimization results of the FFBPNN using different algorithms show that the maximum error of the single BPNN is 
15.0571 %, and the maximum error values of GA-BP, traditional RDPSO-BP are reduced to different degrees, by 3.1429 % and 3.1429 %, 
respectively. Nevertheless, the maximum error and R2 of the IRDPSO- FFBPNN reached only 0.1237 % and 0.99996, reduced by 14.9334 %. The time-
consumption under DST is shown in Fig. 11. 

Learning stops at iteration 50 in Fig. 11(a), at which point the value of Fit is closed to 0.000063, and the fitness reached 0.99994 of system. In Fig. 
11(b), with training data up to 60,000 in 92 s, the time is reduced by more than 57.9 % compared to other algorithms, and with test data over 75,000 in 
116 s, the time is reduced by more than 33.3 % compared to other algorithms. 

Fig. 9. Iterations and time consumption under BBDST.  

4. Conclusion

In this research, to achieve a high-efficient state of charge estimation of lithium-ion batteries, a novel three-layer feed forward backpropagation neural 
network is established, using the random drift particle swarm optimization algorithm to solve the low convergence and to avoid the local optima of the 
system, which uses voltage, current as the input, uses the value of the state of charge as the output. To solve the problems of particle crossover and 
insufficient data utilization of traditional random drift particle swarm optimization algorithm, the weight error and cross-reorganization are proposed and 
verified independently to form the improved random drift particle swarm optimization-backpropagation neural network which can enhance the 
effectiveness the information interaction for particles. Compared with other neural networks under complex working conditions, the improved random 
drift particle swarm optimization-backpropagation neural network performed the maximum error 0.1021 % in 45 s, 0.1237 % in 116 s under BBDST and 
DST, respectively, with high precision estimation in short time-consumption, which provides a theoretical reference for state of charge estimation of 

lithium-ion batteries. 



Fig. 10. Verification results of weight error σ under DST working condition.  

Table 7 
The tests value of the neural networks under DST.  

Indexes Algorithm 

FFBP GA-FFBP RDPSO-FFBP IRDPSO-FFBP 

Maximum error (%)  15.0571  6.6397  3.1429  0.1237 
MAE (%)  9.2192  6.1265  4.2823  1.1779 
RMSEP (%)  11.5367  8.2876  5.0730  1.1368 
R2 0.53219  0.91878  0.924581  0.99996  
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