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A B S T R A C T

Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances
in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and
the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements
in terms of delivery reliability, attack resiliency, computational overhead, and energy efficiency. This paper
proposes 3R, a reliable multi agent reinforcement learning routing protocol for WMSN. 3R uses a novel
resource-conservative Reinforcement Learning (RL) model to reduce the computational overhead, along with
two updating methods to speed up the algorithm convergence. The reward function is re-defined as a
punishment, combining the proposed trust management system to defend against well-known dropping attacks.
Furthermore, an energy model is integrated with the reward function to enhance the network lifetime and
balance energy consumption across the network. The proposed energy model only uses local information
to avoid the resource burdens and the security concerns of exchanging energy information. Experimental
results prove the lightweightness, attacks resiliency and energy efficiency of 3R, making it a potential routing
candidate for WMSN.
1. Introduction

Wireless Medical Sensor Network (WMSN) offers innovative ap-
plications to the healthcare field ranging from providing monitoring
tools to sense the body’s physiological signs to drug delivery. This
revolutionized technology provides a potential solution to ease patients’
lives, meet aging population healthcare needs, and support overloaded
medical staff. However, despite the rapid development of this emerging
technology, security concerns are still holding back the wide adop-
tion [1]. Any security breach may disrupt the network operation and
threaten the patient’s life.

WMSN comprises a set of tiny bio-medical Sensor Nodes (SNs)
distributed on the body surface, inside the body, or in the vicinity of
the body where one of them acts as a sink. The wireless nature and the
critical applications provided by WMSN make it vulnerable to a variety
of security attacks and misconduct activities, the most important of
which are the packet dropping attacks. These kinds of attacks are
called internal attacks because they are launched by the Sensor Nodes
(SNs) themselves for different reasons. For instance, an attacker could
compromise a functioning SN and launch dropping attacks to disrupt
the overall network operations. Another example is when an SN acts
selfishly or gets overloaded and stops relaying packets for others with
a view to conserving energy or gaining extra resources unfairly [2]. In
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both cases, the consequences would be detrimental and could endanger
the patient’s life. Moreover, many dropping attacks discussed in the
literature have different characteristics and dropping patterns, such as
selective forwarding [3], blackhole [4], and sinkhole [5]. It is worth
mentioning that the proposed methods address various dropping pat-
terns regardless of the underlying reason, whether it is due to an attack
by malicious nodes or misbehavior of selfish or overloaded nodes.

In addition to the security concerns inherited from Wireless Sensor
Networks (WSNs), WMSN has additional unique characteristics, such
as resource constraints, critical applications, network topology, and
low traffic rates. While routing in WSN is still challenging, with much
research is being put forward constantly to produce an efficient routing
protocol [6], designing a suitable routing protocol for WMSN is even
more challenging, considering its unique characteristics. Reinforcement
Learning (RL) based routing protocols have been introduced in the
literature to address the routing problem in WSN [7–9]. Although this
approach allows SNs to learn the optimal path to the destination,
it has few limitations. To the best of our knowledge, the learning
agent in all these proposed schemes has to receive a reward for each
sent packet and then update its estimation to find the optimal path
for future packets. This mechanism is voracious in terms of resource
consumption and may not fit the resource-constrained SNs of WMSNs.
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Moreover, choosing the lowest cost path does not guarantee delivery
reliability as the chosen path may contain one or more malicious
nodes. Therefore, in our proposed 3R, a novel RL model is used to
produce a lightweight, efficient routing protocol. Moreover, an effective
Trust Management (TM) scheme is integrated with the 3R to ensure
high delivery reliability. The reward function has been redefined as a
punishment function based on the trustworthiness of potential routes.
Furthermore, a novel energy model that only uses local information has
been developed and integrated with the reward function to optimize the
network lifetime and load balance the energy consumption across the
network.

The main contribution of this paper is fourfold. First, the unique
requirements of designing an efficient and reliable routing protocol
for WMSN are specified. Second, proposing a resource-conservative RL
model to overcome the WMSN resource limitations. Third, an efficient,
lightweight, and reliable routing protocol based on the proposed RL
model and combined with an effective trust management scheme is
proposed. Fourth, a comprehensive analysis is carried out to prove the
merit of our routing protocol against well-known dropping attacks.

The remainder of this paper is organized into five sections as
follows. Related work is given in Section 2. The proposed routing
protocol for WMSN is presented in Section 3, followed by evaluation
and performance results in Section 4. Finally, Section 5 concludes the
paper and highlights future work.

2. Related work

Routing is quite a challenging task in WMSN. The main challenge is
to achieve reliable data delivery with minimum resource consumption
in order to ensure high longevity of network operation [10]. Various
routing protocols have been proposed in the literature to ensure reliable
data transfer in WSN using different metrics and algorithms. However,
only a few schemes targeted WMSN. Moreover, WMSN has unique char-
acteristics and requirements, making inherited routing protocols from
WSN not necessarily fit WMSN. Therefore, there is still an imperative
research gap to design a routing protocol that fits WMSN and meets its
requirements. Generally speaking, routing in WMSN could be classified
into non-learning-based and learning-based protocols.

2.1. Non-learning routing protocols

Non-learning routing protocols involve using various methods to
find the optimal path between the source and destination. Different
classifications are proposed in the literature for this kind of routing
methods [11,12]. Those methods could be classified into posture-based,
thermal-aware, cluster-based routing and other routing approaches.

2.1.1. Posture-based routing
The posture-based routing is built on the body movements regu-

larity assumption to analyze the network topology [13]. If the SN is
able to predict its neighbors in a given time slot, efficient routing
decision could be made to improve the data transmission rate and
reduce the end-to-end latency [11]. In [14], the authors proposed a
store-and-forward routing protocol for on-body SNs in Wireless Body
Area Networks (WBAN). It is a distance vector routing protocol with
a stochastic link cost. Although results showed an enhanced end-to-
end delay, it is still a delay tolerant protocol that does not fit the
critical application of WBAN. Moreover, the protocol is only proposed
for on-body SNs. In [15], the authors proposed Network Management
Cost Minimization for Dynamic Connectivity and Data Dissemination
(NCMD) routing protocol to deal with high network dynamicity and
reduce the network management cost. NCMD is proposed for on-body
SNs to reduce the topology management overhead due to postural
disconnections. However, the protocol complexity is high [11] and still
2

regarded as a scope-specific protocol.
2.1.2. Thermal-aware routing
In thermal-aware routing, the nodes’ temperatures are mainly used

to evaluate the paths with a view to reducing nodes’ temperature by
avoiding high-temperature nodes. Authors in [16] proposed TARA, one
of the early thermal aware routing protocols for implanted SNs to
balance temperature rise caused by relaying activities. Another example
is Reliability Enhanced-Adaptive Threshold based Thermal-unaware
Energy-efficient Multi-hop ProTocol (RE-ATTEMPT) [17] where the
authors propose a single-hop and multi-hop routing protocol to reduce
the delay and energy consumption. RE-ATTEMPT is designed to address
the main shortcomings of ATTEMPT routing protocol [18], such as
unbalanced energy consumption and the inability to avoid dead nodes
from the routing path. Although there are many routing proposals
adopted this approach [19,20], the interest in this routing approach has
decreased recently [11]. It is worth mentioning that both posture and
thermal-based routing are regarded as scope-specific routing protocols.

2.1.3. Cluster-based routing
Cluster-based routing is another routing approach to tailor a routing

protocol for WMSN. This method has been mainly proposed for WSN,
where hundreds of nodes may exist in the network to reduce com-
munication overhead. The Low Energy Adaptive Clustering Hierarchy
(LEACH) [21] is the benchmark for this approach of routing with
abundant proposed variants that have been surveyed in [22]. In this
routing approach, the network is divided into clusters of nodes. Each
cluster elects a cluster head to integrate and forward the information.
For instance, the authors in [23] proposed a Clustering based Routing
Protocol for wireless Body Area network (CRPBA) to enhance the
energy consumption rate and prolong the network lifetime. CRPBA
uses two methods to forward frames to the sink, direct forwarding
and cluster based forwarding depending on the distance from the sink
node and the frame data type. However, the energy of cluster head,
which are close to the sink, is depleted fast causing network disruption.
Although cluster-based routing approach is widely investigated in WSN
for large networks, it may not fit WMSN where the maximum number
of SNs is set to 64 [24].

2.1.4. Other routing approaches
In addition to the aforementioned approaches, there are some rout-

ing methods that do not fall within the previous categorization. For
instance, in [25], the authors proposed independent multi-path routing
protocol for WBAN. Another example is mobile sink routing proto-
cols [11]. However, these approaches still do not meet the tough
resource constraints and do not ensure reliable data delivery.

2.2. Learning-based routing protocols

Learning-based routing protocols mainly use Reinforcement Learn-
ing (RL) methods, especially Q-learning, to learn routing paths in
WSN [26–29]; however, a few have targeted WMSN [30–32]. The
reason could be attributed to the computational overhead incurred
when adopting the traditional RL model to learn the network environ-
ment, which will be discussed further in Section 3 when proposing our
RL model for routing applications. Researchers use different metrics
to estimate routing decision cost, such as delivery latency, residual
energy, and geographical distance [33]. However, this kind of metrics
cannot deal with the free will of the other nodes. Relay nodes could
get compromised or act selfishly and hence stop relaying packets for
other nodes, which results in detrimental consequences. Therefore,
there is a need to incorporate a security measure to avoid malicious
paths. TMS provides an effective and robust measure to evaluate the
trustworthiness of other nodes. To the best of our knowledge, only
two schemes [29,32] are proposed in the literature that combine a TM
scheme with a Q-learning routing model. Authors in [29] proposed
ESRQ, a secure, lightweight routing scheme for WSN. However, it

is unclear how the trust relationship is evaluated, which makes this
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scheme not reproducible due to missing details. Authors in [32] pro-
posed QRT, a routing protocol designed for non-cooperative biomedical
mobile wireless sensor networks. It has been proposed as an extension
to RL-QRP [31] to deal with various kinds of misbehaving activities.
The authors adopted the beta distribution trust scheme and integrated
it with the Q-learning routing engine to produce a reliable routing
protocol. However, proving its merit needs further investigation. Both
ESRQ and QRT have not been thoroughly evaluated under different
dropping attacks, especially on-off attacks. Moreover, all the proposed
RL-based routing protocols in the literature use the same traditional
RL model, which is a resource-consuming model and is not suitable for
deployment on resource constrained SNs.

3. Protocol design

In this section, the proposed routing protocol for WMSN is discussed
in detail. The design starts by presenting the network and threat
models, which leads to specifying the protocol designing requirements.
Our novel RL model to produce a lightweight routing protocol is then
discussed. The delivery reliability is achieved by integrating our pro-
posed TM scheme into the routing decision engine [34]. Moreover, two
updating mechanisms have been proposed to accelerate the algorithm
convergence as well as conserve resources.

3.1. Network model

WMSN consists of a set of bio-sensor nodes that could be placed on
the body surface, inside the body, or off the body. These SNs have the
ability to sense the body’s physiological signals, such as body tempera-
ture, glucose levels, Electrocardiogram (ECG), and pulse rate. However,
SNs have strict resource limitations that impose further constraints in
adopting security countermeasures. For example, the lithium iodide cell
battery of the pacemaker is meant to last for seven years before it gets
replaced via surgery [35]. Therefore, lightweight countermeasures and
protocols are essential to extend the battery life and avoid unnecessary
surgical complications. All sensed information is forwarded to the sink
node, which in turn forwards them to the remote medical server where
physicians can monitor, analyze and even intervene when necessary.

Field hospitals are temporary hospitals set up due to civil emer-
gencies, such as battlefields, disease outbreaks, and pandemics. For
example, many field hospitals have been established in many parts
of the world during the ongoing COVID-19 pandemic, especially in
developing countries. In our experiments, the topology of a wireless
medical sensor network of a field hospital ward is adopted. Fig. 1,
shows the simulated ward in our experiments, which is 50 m × 10 m
where patient beds are distributed in an efficient way to save physical
space and provide an adequate space to care at the same time. A
maximum number of 64 SNs can be accommodated in this medical unit
in compliance with IEEE 802.15.6 standard [24]. The network topology
is a multi-hop star topology where SNs sense various bio-signals and
forward them to the sink node. The communication range of the SNs
is 5 m; hence, SNs relay frames for other adjacent nodes. Therefore,
an efficient, lightweight, and reliable routing protocol is required to
forward the frames from the sensing units to the sink node, which in
turn forwards them to the medical server.

3.2. Threat model

Due to the sensitive nature of the WMSN applications and the
broadcast nature of the wireless communication, many potential threats
may disrupt the network operation and endanger the patients’ lives.
Threats can be classified into internal and external. External threats
could be defeated by deploying cryptographic security measures, such
as authentication and encryption. Our proposed ecosystem assumes
that secure mutual authentication is achieved and security keys are
established. On the other hand, internal threats are difficult to defeat as
3

they could be launched by legitimate nodes that have successfully got
authenticated and may have a copy of the security keys. Therefore, this
work aims to demonstrate the effectiveness of our 3R against packet
dropping attacks, one of the devastating internal threats on WMSN.

Packet-dropping attacks are regarded as one of the most devastating
internal attacks because of their consequences on the patient’s life. For
instance, a malicious node could drop a command sent by a physician
to an insulin pump to release the insulin dose into the bloodstream. In
addition, dropping could occur due to malicious activities like when a
node got compromised, selfish behavior when a node acts selfishly with
a view to saving resources, or when packets pass through overloaded
nodes. Adversaries could launch different kinds of dropping attacks or
may change the dropping patterns with a view to keeping themselves
undetected. 3R protocol is evaluated for various kinds of dropping
attacks with different parameter settings, such as blackhole, sinkhole,
selective forwarding, and on-off attacks, which will be discussed in
detail in Section 4.

3.3. 3R design requirements

Various objectives have been considered when designing 3R.
These objectives include efficiency, lightweightness, scalability, and
resiliency.

Efficiency is the first objective of designing a routing protocol.
Ensuring a high packet delivery ratio is a must for any routing pro-
tocol. However, choosing the optimal path between the sender and
receiver determines the routing protocol’s efficiency, which is a crucial
requirement for resource-constrained devices, such as SNs. The lowest
cost path must always be chosen to ensure high efficient routing
protocol. Radio Frequency (RF) activities, especially transmission (TX),
constitute around 80% of the consumed energy [36]. In order to reduce
the consumed energy, SNs must always choose the shortest path in
order to reduce the number of transmissions. Therefore, 3R has been
designed to always choose the shortest reliable path regardless of the
network size, nodes deployment, or traffic rate.

Lightweightness is a key requirement to fit the strict resource con-
straints of SNs. All proposed Q-learning-based routing protocols in the
literature consider transmitting one packet as a complete action, which
calls for updating the Q-table for each sent or forwarded packet [9,31,
32,37]. This method is a resource-consuming process, particularly when
more packets are generated or forwarded. Therefore, in 3R, the RL
model has been reformulated to consume less memory and processing
resources.

Scalability is another requirement. In a multi-agent environment,
each agent has to consider the actions of other agents, which causes
a scalability problem when the number of agents increases as the
action space grows exponentially [38]. Moreover, agents in a net-
worked environment suffer from the partial observability problem as
they do not have a full view of the network. Therefore, decentralized
learning with a networked agent approach [39] was adopted in 3R
to enable the learning agents to collaborate with their neighbors by
sharing information. This approach is regarded as a solution to the
poor scalability of fully centralized learning, and centralized training
with decentralized execution approaches [38]. In addition, 3R has been
evaluated for variable traffic rates and the maximum number of SNs in
the network as defined in IEEE 802.15.6 [24].

Attack resilience is the most challenging task in designing a reliable
routing protocol for WMSN. Dropping attacks could be catastrophic
not only for the network operation but also for the patients. Authors
in [40], investigated the performance of Routing Protocol for Low-
Power and Lossy Networks (RPL), which is one of the candidate routing
protocols for low-power and lossy networks, under blackhole attacks.
The results indicated a significant data loss. Therefore, 3R has been
designed to resist all kinds of known dropping attacks. Moreover, it is
also resilient to route poisoning attacks.
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Fig. 1. Network model.
Fig. 2. Traditional RL model.

3.4. Multi agent reinforcement learning

Reinforcement Learning (RL) is an area of machine learning that
focuses on how intelligent agents interact with an environment through
a series of state–action pairs to maximize the cumulative rewards.
In Multi-Agent Reinforcement Learning (MARL), many agents interact
with a mutual environment and with each other to achieve a particular
goal [38]. This interaction could be a collaboration to accomplish a
common task, a competition to accomplish a self-goal, or a mix of both,
like when members of two teams of a game collaborate with each other
and at the same time compete with the other team.

In the traditional RL model, as illustrated in Fig. 2, at each time
step 𝑡, the RL agent in an environment’s state 𝑠𝑡 ∈ S chooses an action
𝑎𝑡 ∈ A, which causes the environment to move to state 𝑠𝑡+1 ∈ S and the
agent to receive a reward 𝑟𝑡+1 ∈ R.

In routing applications, the agent learns a routing policy that
chooses the optimal path to the destination by experimenting different
actions and gathering evidence from the environment. The learning
process in such a case must be online and continual due to the dynam-
icity of the network. The learned routing policy specifies the optimal
4

adjacent node for each agent to forward its frames to. This routing
policy is constantly updated to reflect any change in the network.

Q-learning is an off-policy, value-based, model-free reinforcement
learning algorithm to evaluate the value of an action in a particular
state [8]. Each agent maintains a Q-values table of |S| × |A| represents
the expected long-term rewards if the agent takes the action 𝑎𝑡 at the
state 𝑠𝑡.

3.5. The proposed synchronous RL model

With the aforementioned design requirements in mind, 3R is built
using the Q-learning algorithm, incorporating the proposed trust man-
agement scheme in Section 3.7 to ensure reliable data delivery. The
learning agent is modeled as 3-tuple (S,A,R). WMSN network repre-
sents the environment E, which includes SNs that exchange messages
where one of them acts as a sink 𝑆. Each state 𝑠 ∈ S represents an SN.
The action 𝑎 ∈ A is defined as selecting the next forwarder to relay
packets to a destination. The learning agent receives a reward 𝑟𝑡+1 ∈ R
for each action 𝑎𝑡.

3R defines 𝑄𝑖𝑡+1(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡), which is the updated Q value of node 𝑖, given

the state 𝑠𝑖𝑡 and the action 𝑎𝑖𝑡, as the estimated future reward. Each
learning agent maintains a Q-table, which gets updated once the agent
performs an action 𝑎𝑡 and observes the reward 𝑟𝑡+1 as in Eq. (1).

𝑄𝑖𝑡+1(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡) ← (1 − 𝜂)𝑄𝑖𝑡(𝑠

𝑖
𝑡, 𝑎

𝑖
𝑡) + 𝜂[𝑟

𝑖
𝑡+1(𝑠

𝑖
𝑡+1) + 𝛾𝑚𝑎𝑥𝑎∈𝐴

𝑄𝑖𝑡(𝑠
𝑖
𝑡+1, 𝑎

𝑖
𝑡)] (1)

where 𝜂 ∈ [0, 1] is the learning rate where small values of it cause long
learning time and large values may cause oscillations, 𝛾 ∈ [0, 1] is the
discount factor for the future rewards where small values of it make
the agent myopic and cares more about the immediate rewards. In
order to ensure reliable forwarding, trust is incorporated in estimating
the reward. This makes the learning agent chooses the optimal reliable
path. Moreover, the reward calculation is defined as a punishment to
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Fig. 3. Graphical representation of the proposed RL model.

force the learning agent to choose the shortest path to the destination,
as shown in Eq. (2).

𝑟𝑖𝑡+1(𝑠
𝑖
𝑡+1, 𝑗) =

⎧

⎪

⎨

⎪

⎩

−(1 − 𝑇 𝑖𝑗𝑡 ).𝐹 (𝑖)
𝑡 𝑖𝑓 𝑂𝑖𝑗𝑡 ≠ {𝜙}

−(1 − 𝑇 𝑖𝑗𝑡−𝛿).𝐹
(𝑖)
𝑡 𝑖𝑓 𝑂𝑖𝑗𝑡 = {𝜙} ∧ |𝑂𝑖𝑗 | > 𝜖

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

here 𝑟𝑖𝑡+1(𝑠
𝑖
𝑡+1, 𝑗) is the new reward received by node 𝑖 which chose

ode 𝑗 as a forwarder at the end of the time unit 𝑡, 𝑇 𝑖𝑗𝑡 is the trust
alue maintained by node 𝑖 for node 𝑗 at time unit 𝑡, 𝛿 is a time

lag used to get the last evaluated trust value, 𝑂𝑖𝑗𝑡 is the observations
maintained by node 𝑖 for node 𝑗 at time unit 𝑡, 𝜖 is the threshold to
pecify the minimum required evidence and 𝐹 (𝑖)

𝑡 is the computed energy
arameter as detailed in Section 3.8. The trust value 𝑇 𝑖𝑗𝑡 is computed
sing Algorithm 4 as detailed in Section 3.7.

To the best of our knowledge, 3R is the first RL model using the
ime window technique to reduce the computational overhead of the
raditional RL model, depicted in Fig. 2. 3R reformulated the RL model,
ssuming that the network will be static for a short period, which is an
cceptable assumption as nodes could be regarded as stationary for a
hort interval. This assumption allows the learning agent to perform
he same action multiple times during a short period of time before
eceiving the corresponding reward. Adopting this method significantly
educes the computational overhead by periodically updating the Q
ables. The actions and rewards are re-defined in the proposed RL
odel in which the agent performs the same action 𝑎𝑡 during the

ime unit 𝑡 and gets its reward 𝑟𝑡+𝜏 at the end of the time unit at
+ 𝜏 as illustrated in Fig. 3. In the traditional RL model, the learning
gent needs to observe the reward and update its Q-table for each
acket, while 3R evaluates the reward and updates the Q-table after a
efined time unit 𝜏 in order to reduce the computational overhead. This
roposed method is referred to as synchronous updating. Moreover,
synchronous updating is also used in 3R to help the algorithm to
onverge swiftly, which will be elaborated further in Section 3.6.

The routing task must be achieved in a distributed manner as
o agent has a full view of the network states. Therefore, 3R uses
ecentralized learning where the RL agents exchange their best Q
alues with their neighbors as detailed in Algorithm 1. The exchanged
alues are then used to update the Q-table and determine the best
orwarder to the destination. Once the following action is taken, it
hanges the environment states, requiring periodic updates. Actions
hould not be greedily selected all the time for two reasons. First,
outing is an online continual learning task. Second, exploiting the best
ction prevent the algorithm from converging to the global optimum.
herefore, 𝜀−greedy strategy [41] is used to explore the environment
ith a probability of 𝜃 and exploit the best action with a probability
f (1 − 𝜃). During the exploration phase, a random action 𝑎𝑖𝑡 ∈ A is
elected to search for possible alternative paths. At the beginning, 3R
as no knowledge about the environment; hence the future rewards are
nitialized to zero for each neighbor 𝑛𝑖 ∈ 𝑁 𝑖

𝑡 , which is more realistic
nd requires no additional hardware or pre-configuration like those
5

ntroduced in [31,32], where the authors used positioning information. n
Algorithm 1: 3R protocol for making routing decisions
1 Input:
2 The reward: 𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1, 𝑗)

3 The Q table: 𝑄𝑡
4 The trust table: 𝑇𝑡
5 Output: The optimal next hop
6 initialization:

7 𝑄𝑖0(𝑛
𝑖 ∈ 𝑁 𝑖

𝑡 ) =

{

0 𝑖𝑓 𝑛𝑖 ≠ 𝑆
1 𝑖𝑓 𝑛𝑖 = 𝑆

8 𝑇 𝑖0(𝑛
𝑖 ∈ 𝑁 𝑖

𝑡 ) = 0.5
9

𝑎𝑖1 =

{

𝑆 𝑖𝑓 𝑆 ∈ 𝑁 𝑖

𝑛𝑖 | 𝑛𝑖 ∈ 𝑁 𝑖

while TRUE do
10 𝑊 𝑎𝑖𝑡 𝜏
11 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑚𝑎𝑥(𝑄𝑖𝑡)
12 ∀𝑗 ∈ 𝑁 𝑖 , 𝑢𝑝𝑑𝑎𝑡𝑒(𝑄𝑖𝑗𝑡 ) using Eq. (1)
13 if 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 > 𝜃 then
14 𝑎𝑖𝑡+1 ← 𝑛𝑖𝑡 | 𝑛

𝑖
𝑡 ∈ 𝑁 𝑖

𝑡
15 else
16 𝑎𝑖𝑡+1 ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑛𝑖𝑡∈𝑁
𝑖
𝑡

𝑄𝑖𝑡(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡)

17 end
18 end

3.6. Updating methods

In the 3R routing protocol, two types of Q-table updating methods
are employed to decrease resource consumption and improve algorithm
convergence, as demonstrated in Algorithm 2. Synchronous updating
is utilized to update the Q table at the end of each time unit with a
view to reducing the processing overhead. As the action in our model
consists of multiple sub-actions on a predefined time unit, the learning
agent performs the same sub-action multiple times during a period
𝜏, which means all packets will be forwarded to the same next hop.
Meanwhile, the agent is observing the behavior of its next hop to
evaluate its trustworthiness. By the end of the time unit, the agent is
able to evaluate the trust value at time 𝑡 and gets its reward 𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1).

Each agent broadcasts its best estimation to adjacent nodes period-
cally. These broadcasted estimations are then used to update the Q
able using the gained reward as in Eq. (1). However, as each agent
nly forward packets to one node during the time unit, it will not
et rewards for other adjacent nodes, but it could receive an updated
stimation from them. For instance, node 𝑖 has 𝑎𝑖𝑡 = 𝑗 at time 𝑡 and

receives updates from nodes 𝑗 and 𝑘.
There are two cases for updating the Q-values of all adjacent nodes

as shown in the synchronous part of Algorithm 2. The first case arises
when 𝑗 == 𝑎𝑖𝑡, indicating that node 𝑗 was the selected node for
forwarding the traffic during the previous time unit. Consequently, 𝑄𝑖𝑗𝑡

ill be updated using the received reward 𝑟𝑖𝑡+1(𝑠
𝑖
𝑡+1) using Eq. (1). The

econd case involves updating the Q-values for other nodes, such as
ode 𝑘. In this case, the routing agent does not receive any reward
rom the network environment and relies solely on its most recently
eceived reward to update the Q-values. In this case, 3R checks how
ertain it is about node 𝑘 by checking the number of recent observa-
ions. If node 𝑖 has adequate observations about node 𝑘, it will use
he most recent reward 𝑟𝑖𝑡−𝛿(𝑠

𝑖
𝑡−𝛿 , 𝑘) to update the 𝑄𝑖𝑘𝑡 . Otherwise, it

ill ignore the received estimation and keep the Q value unchanged
𝑖𝑗
𝑡+1 ← 𝑄𝑖𝑗𝑡 . This technique immunizes 3R from adopting fake second-
and information without being certain enough about the sender’s
rustworthiness. Moreover, it allows the protocol to respond quickly to

etwork dynamicity.
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Algorithm 2: Synchronous and asynchronous Q table updating
1 Input:
2 The Q table: 𝑄𝑖𝑡
3 The reward: 𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1, 𝑗)

4 The trust table: 𝑇𝑡
5 Output: Updated Q Table: 𝑄𝑖𝑡+1
6 if Synchronous Update then
7 foreach 𝑗 ∈ 𝑁 𝑖

𝑡 do
8 if 𝑗 == 𝑎𝑖𝑡 then
9 update 𝑄𝑖𝑗𝑡 using 𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1, 𝑗)

10 else
11 if |𝑂𝑖𝑗 | > 𝜖 then
12 update 𝑄𝑖𝑗𝑡 using recent 𝑟𝑖𝑡−𝛿(𝑠

𝑖
𝑡−𝛿 , 𝑗)

13 else
14 𝑄𝑖𝑗𝑡+1 ← 𝑄𝑖𝑗𝑡
15 end
16 end
17 end
18 end
19 if Asynchronous Update then
20 if 𝜂 == 1 then
21 𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1, 𝑗) = −𝑒𝜂(1 − 𝑇 𝑖𝑗𝑡 )

22 else
23 𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1, 𝑗) = −(1 − 𝑇 𝑖𝑗𝑡 )

24 end
25 if 𝑅𝑄𝑖𝑡−1(𝑠

𝑖
𝑡−1, 𝑗) then

26 update 𝑄𝑖𝑗𝑡 using 𝑟𝑖𝑡+1 and 𝑅𝑄𝑖𝑡−1(𝑠
𝑖
𝑡−1, 𝑗)

27 else
28 𝑄𝑖𝑡+1(𝑠

𝑖
𝑡, 𝑎

𝑖
𝑡 = 𝑛𝑗 ) ← 𝑄𝑖𝑗𝑡 − 𝜁

29 end
30 𝑎𝑖𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑛𝑖𝑡∈𝑁
𝑖
𝑡

𝑄𝑖𝑡(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡)

31 end

On the other hand, although the proposed synchronous updating
s very resource-efficient, as presented in the next section, it could be
low to converge and may need more learning time as the learning
gent could keep forwarding packets to the wrong path for the whole
ime unit. This usually happens if loops occur when the learning agent
s exploring the network. Unlike traditional learning model where the
earning agent risks losing one packet for each exploring step, the
ynchronous updating model could lose more packets because it keeps
orwarding packets to one next-hop during one time unit. Therefore,
R introduces a loop detection and avoiding algorithm as shown in
lgorithm 3. When a loop is detected, such as when node 𝑖 receives

ts own transmitted packet 𝑃 𝑖𝑑𝑡+𝛿 after a time lag of 𝛿, or when there is
potential for a loop to occur, such as when a node receives a packet
𝑗𝑑
𝑡 to forward from its designated forwarder 𝑎𝑖𝑡 = 𝑗 at time unit 𝑡,

the asynchronous update is triggered, as illustrated in the asynchronous
section of Algorithm 2. During this update, the corresponding Q-value
is penalized either by updating 𝑄𝑖𝑗𝑡 using 𝑟𝑖𝑡+1 and 𝑅𝑄𝑖𝑡−1(𝑠

𝑖
𝑡−1, 𝑗) or by

subtracting the loop penalizing parameters 𝜁 from 𝑄𝑖𝑡+1(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡 = 𝑛𝑗 ). This

adjustment allows the protocol to choose an alternative, promising next
hop. Through this technique, 3R gains the ability to operate efficiently
and achieve rapid convergence. For the definitions of all symbols used
in this paper, please refer to Table 1.

3.7. Trust evaluation

3R incorporates a trust management scheme as a security coun-
termeasure to ensure reliable data transfer. Several TM schemes have
been evaluated to choose the best candidate. LTMS [34] has been
6

m

Algorithm 3: Loop processing
1 Input: A packet to forward: 𝑃 𝑠𝑑𝑡
2 Output: Updated Routing
3 while TRUE do
4 if ∀ 𝑖 ∈ N receives 𝑃 𝑖𝑑𝑡+𝛿 then
5 Asynchronous Q table update as in Algorithm 2
6 𝑎𝑖𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑛𝑖𝑡∈𝑁
𝑖
𝑡

𝑄𝑖𝑡(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡)

7 Update 𝑃 𝑖𝑑𝑡
8 Send 𝑃 𝑖𝑑𝑡
9 end
10 if ∀ 𝑖 ∈ N receives 𝑃 𝑗𝑑𝑡 ∧ 𝑎𝑖𝑡 = 𝑗 then
11 Asynchronous Q table update as in Algorithm 2
12 𝑎𝑖𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑛𝑖𝑡∈𝑁
𝑖
𝑡

𝑄𝑖𝑡(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡)

13 Forward 𝑃 𝑗𝑑𝑡
14 end
15 end

Table 1
Symbols used in this paper.

Symbol Meaning

𝑆 The sink node
N The set of all sensor nodes in the network
𝜂 ∈ [0, 1] The learning rate parameter
𝛾 ∈ [0, 1] The discount factor

𝑄𝑖
𝑡+1(𝑠

𝑖
𝑡 , 𝑎

𝑖
𝑡) The updated Q values of node 𝑖, given the state 𝑠𝑖𝑡 and the

action 𝑎𝑖𝑡
𝑟𝑖𝑡+1(𝑠

𝑖
𝑡+1) The new reward received at the end of the time unit

𝑇 𝑖𝑗𝑡 The trust value maintained by 𝑖 of node 𝑗 at time 𝑡
𝜖 A threshold to specify the minimum required evidence
𝜏 The time window [s]
𝑁 𝑖
𝑡 The neighbors of node [𝑖] at time 𝑡

𝑛𝑖 ∈ 𝑁 𝑖
𝑡 A neighbor of node 𝑖

𝑠𝑖𝑡 ∈ S The state of node 𝑖 at time window 𝑡
𝑎𝑖𝑡 ∈ A The taken action by node 𝑖 at the time window 𝑡

𝑄𝑖𝑗
𝑡 The Q value maintained by node 𝑖 for node 𝑗 at the time

window 𝑡

𝜃 The exploration rate
𝑂𝑖𝑗 The observations maintained by node 𝑖 for node 𝑗
𝑅𝑄𝑖

𝑡−1(𝑠
𝑖
𝑡−1 , 𝑗) The last expected future reward received from node 𝑗

𝜇 The traffic rate
𝛿 A time lag
𝜁 ∈ ] 0, 1] A loop penalizing parameter
𝛼, 𝛽 ∈ [ 0, 1] The beta distribution levels
𝑏𝑡 , 𝑑𝑡 The slopes at time 𝑡
𝜆 The longevity factor

adopted for mainly two reasons. First, it has been developed to fit
WMSN requirements. Second, it is an attack-resistant TM scheme.
LTMS is a distributed trust evaluation scheme where each node has
its trust evaluation engine as shown in algorithm 4. LTMS evaluates
the forwarding service of adjacent nodes with a view to differentiate
between trustworthy and untrustworthy ones. LTMS encompasses
two algorithms aimed at ensuring a secure trust evaluation process.
The initial algorithm, LTMS(1), is employed to assess the direct trust
relationships among SNs. In contrast, the second algorithm, LTMS(2),
offers an additional layer of defense against on-off attacks. Both of these
algorithms are combined in Algorithm 4. In this algorithm, 𝛼 and 𝛽
stand for the levels of the beta probability distribution, while 𝑏𝑡 and
𝑑𝑡 represent the slopes at the specific time unit, 𝑡. Moreover, 𝑅𝑒𝑝𝑖𝑗 (𝑡)
signifies the trustor 𝑖’s upheld reputation value for trustee 𝑗, and 𝑡ℎ𝑟1
s the designated threshold to distinguish between trustworthy and
ntrustworthy SNs. It is noteworthy that this threshold is commonly
et at 0.5 in relevant literature [34]. Furthermore, 𝑡ℎ𝑟2 denotes the
inimum level of trustworthiness expected from SNs during regular
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operation, and it is established at 0.85 according to [34]. The notation
𝑆ℎ𝑅𝑒𝑝𝑖𝑗 (𝑡) is the short-term reputation value at the time unit 𝑡, while
the parameters 𝑐𝑦𝑐𝑙𝑒 and 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 play a pivotal role in detecting
instances of on-off attacks.

LTMS promptly detect any changes in forwarding behavior
through integrating the slopes 𝑏𝑡 and 𝑑𝑡 with beta distribution levels.
This technique allows 𝛼𝑡 to decrease and may accumulate negative
values during the attack. At the same time, 𝛽𝑡 develops a positive value,
giving more weight to any misbehavior and making it harder to forget.
As trust management schemes are vulnerable to on-off attacks where
smart adversaries change their behavior between good and bad with a
view to keeping themselves undetected. LTMS uses an on-off protection
module designed to detect on-off attacks after evaluating 𝑅𝑒𝑝𝑖𝑗𝑡 . The on-
off module in LTMS is designed to detect repeated attack patterns. It
incorporates the short-term reputation value and long-term trust values
along with the novel updating mechanism to defeat on-off attacks.
This on-ff protection module is only triggered when an on-off attack
is detected.

Algorithm 4: Secure Trust Evaluation
1 Input: Observations & beta shape parameters
2 Output: Trust value
3 initialization;
4 while TRUE do
5 if 𝑏𝑡−1 ≤ 0 && 𝑑𝑡−1 > 0 then
6 𝛼𝑡 = 𝜆(𝛼𝑡−1 + 𝑏𝑡−1) + 𝑠𝑡;
7 𝛽𝑡 = 𝜆(𝛽𝑡−1 + 𝑑𝑡−1) + 𝑢𝑡;
8 𝑏𝑡 = 𝛼𝑡 − 𝛼𝑡−1;
9 𝑑𝑡 = 𝛽𝑡 − 𝛽𝑡−1;
10 else
11 𝛼𝑡 = 𝜆.𝛼𝑡−1 + 𝑠𝑡;
12 𝛽𝑡 = 𝜆.𝛽𝑡−1 + 𝑢𝑡;
13 𝑏𝑡 = 𝛼𝑡 − 𝛼𝑡−1;
14 𝑑𝑡 = 𝛽𝑡 − 𝛽𝑡−1;
15 end
16 if 𝛼𝑡 ≤ 0 then
17 𝑅𝑒𝑝𝑖𝑗𝑡 = 0;
18 else
19 𝑅𝑒𝑝𝑖𝑗𝑡 = 𝛼𝑡

𝛼𝑡+𝛽𝑡
;

20 end
21 if 𝑇 𝑖𝑗𝑡−1 ≥ 𝑡ℎ𝑟1 && 𝑅𝑒𝑝𝑖𝑗𝑡 < 𝑡ℎ𝑟1 then
22 if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 > 0 then
23 𝑐𝑦𝑐𝑙𝑒 = 𝑡 − 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠;
24 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 = 0;
25 else
26 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 = 𝑡;
27 end
28 end
29 if 𝑐𝑦𝑐𝑙𝑒 > 0 && 𝑇 𝑟𝑢𝑠𝑡(𝑡 − 1) < 𝑡ℎ𝑟2 then
30 𝑆ℎ𝑅𝑒𝑝𝑖𝑗𝑡 = 𝑚𝑒𝑎𝑛(𝑇 𝑖𝑗𝑡−𝑐𝑦𝑐𝑙𝑒∶𝑡);

31 𝑇 𝑖𝑗𝑡 = 𝑚𝑖𝑛(𝑆ℎ𝑅𝑒𝑝𝑖𝑗𝑡 , 𝑅𝑒𝑝
𝑖𝑗
𝑡 );

32 else
33 𝑇 𝑖𝑗𝑡 = 𝑅𝑒𝑝𝑖𝑗𝑡 ;
34 𝑐𝑦𝑐𝑙𝑒 = 0;
35 end
36 end

3.8. Energy model

Optimizing the network lifetime is still a challenging concern in
WSN and WMSN in particular. Due to the critical applications of
WMSN, dead nodes may have catastrophic consequences. Moreover,
in some cases, replacing the battery may need surgical intervention.
Considering the residual energy of the adjacent nodes is widely used to
maximize the overall network lifetime [42,43]. However, exchanging
energy information between adjacent nodes is neither energy nor com-
putational efficient. In contrast, 3R only uses local energy information
with a view to reducing the computational overhead and avoiding
filtering out false second-hand information. Moreover, it uses two
sources of energy information with a view to load balancing energy
consumption across the network. When the residual energy percentage
7

is greater than a threshold 𝜗, this parameter does not contribute in
evaluating the consumed energy ratio 𝐸(𝑖)

𝑡 ∈ [0, 1] as shown in Eq. (3).
In that case, SNs choose the most reliable shortest path, which in
turn makes some nodes overloaded due to their trustworthiness and
positions. Therefore, 3R defines the energy consumption ratio 𝐶 (𝑖)

𝑡 to
evaluate the extra burden incurred by nodes due to relaying activities,
as shown in Eq. (4). The weighted average of 𝐸(𝑖)

𝑡 and 𝐶 (𝑖)
𝑡 is calculated

in Eq. (5). As integrating the energy into the reward function may
influence the nodes routing decision to choose a malicious path, the
energy factor is bounded by 𝜆 ∈ [0, 1] as shown in Eq. (6).

𝐸(𝑖)
𝑡 =

⎧

⎪

⎨

⎪

⎩

0 𝑖𝑓 𝑒𝑟𝑒𝑠(𝑡)
𝑒𝑖𝑛𝑖𝑡

> 𝜗

1 − 𝑒𝑟𝑒𝑠(𝑡)
𝑒𝑖𝑛𝑖𝑡

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

𝐶 (𝑖)
𝑡 = 1 −

𝑐𝑛(𝑡)
𝑐𝑎(𝑡)

(4)

𝜓 (𝑖)
𝑡 = 𝜔𝐸(𝑖)

𝑡 + (1 − 𝜔)𝐶 (𝑖)
𝑡 (5)

𝐹 (𝑖)
𝑡 = 𝑒𝜆𝜓

(𝑖)
𝑡 (6)

where 𝑒𝑟𝑒𝑠(𝑡) is the remaining energy at time 𝑡, 𝑒𝑖𝑛𝑖𝑡 is the initial energy,
is the residual energy threshold, 𝑐𝑛(𝑡) is the node normal energy

onsumption rate, 𝑐𝑎(𝑡) is the overall energy consumption rate, 𝜔 is the
verage weight, 𝜆 is the bound parameter where 𝜆 = 0 is used to disable
he energy module.

. Evaluation and performance results

This section simulates and analyzes the 3R routing protocol. Various
imulation scenarios have been considered using different parameters
etting and under different dropping attacks.

.1. Experimental setup

A WMSN of 64 SNs has been adopted to comply with IEEE 802.15.6
24]. The SNs have been distributed randomly in an area of 50 m × 10 m
imicking a ward in a field hospital as shown in Fig. 1. One SN acts

s a sink while other nodes have the ability to relay frames for other
Ns. The traffic is generated using the exponential probability density
unction as shown in Eq. (7).

(𝑥;𝜇) =

{

𝜇𝑒−𝜇𝑥 𝑥 ≥ 0
0 𝑥 < 0

(7)

where 𝜇 is the rate parameter and 𝑥 is the time gap between two
consecutive packets.

3R has been benchmarked with QRT [32], which is an extension to
RL-QRP routing protocol [31] where the authors integrated a reputa-
tion and trust scheme to deal with non-cooperative and misbehaving
nodes in biomedical sensor networks. QRT was the only available
RL-based routing protocol in the literature designed for WMSN that
incorporates the TM scheme to achieve reliable data delivery. In order
to ensure a fair comparison between the two protocols, the reported
parameters setting of QRT have been adopted. Table 2 shows the
simulation parameters setting. The learning rate 𝜂 and the discount
factor 𝛾 have been set to 0.5. The experiments were carried out using
a discrete event simulator based on Simpy [44]. The simulation time
is 500 s, where the first 50 s is regarded as a training period unless
otherwise indicated. This training period has been specified to allow
QRT to converge, followed by a relatively long simulation time to
study the stability of routing decisions of both protocols. During the
simulation, the agents adopt the 𝜀−greedy strategy to balance between
exploration and exploitation where 𝜀 is set to 0.1 as in QRT. Each
experiment has been repeated 30 times, and then the results have been
averaged out and reported with one standard deviation. It is worth
mentioning that when the sample size is 30, the sampling distribution
approximates the Gaussian distribution [45].
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Table 2
3R simulation parameters.

Parameter Value

Application Poisson random traffic
Exponential transmission interval 𝜇 1, 2, 4, 8
Radio range 5 m
Propagation loss model Range propagation loss
Number of SN 64
Time unit 1 s
Simulation time 500 s
Learning period 50 s
Learning rate 𝜂 0.5
Discount factor 0.5
𝜀−greedy 0.1

Fig. 4. The average delivery ratio and hop counts during normal operation for various
traffic rates.

4.2. Normal operation

In this experiment, the performance of 3R has been evaluated,
assuming that there are no malicious activities inside the network.
Benign nodes randomly drop around 1% of the received packets to relay
as WMSN is intolerant to higher rates of packet loss. This experiment
aims to ensure that 3R chooses the optimal path to the destination with
the highest delivery ratio. Some SNs generate low traffic rates around
1 packet/s, such as heart rate sensors [46]. Therefore, the experiment
has been run for four different traffic rates starting from 𝜇 = 1 p∕s
and doubling the traffic rate each time. Figs. 4(a) and 4(b) show the
average delivery ratio, and the average hop counts with one standard
deviation, respectively. The results show that 3R achieves the highest
delivery ratio with minimal variability, while QRT did not work well for
the lowest traffic rate with a delivery ratio of 75%. QRT’s performance
shows a slight improvement for traffic rates starting at 𝜇 = 2 p∕s
to achieve around 90%; however, the high variability of the delivery
ratio confirms that QRT struggles to converge. On the other hand,
Fig. 4(b) reveals that 3R chooses the shortest path to the destination
compared to QRT. This proves that although 3R updates the routing
decision periodically, it performs efficiently thanks to its asynchronous
updating methods to avoid bad routing decisions. It is worth noting that
the performance is slightly enhanced for higher traffic rates because
the learning agents can get more evidence from the environment to
enhance their routing decisions.

4.3. Blackhole attacks

The Blackhole attack is a well-known attack in WMSN where com-
promised nodes drop all the received frames instead of forwarding
them to the destination. This causes severe detrimental consequences,
especially for medical applications [4,47]. In this experiment, the de-
livery ratio and the hop counts are evaluated under different blackhole
attacks. The number of malicious nodes was doubled each time, starting
from one and up to 50% of the total number of the SNs. The experiment
was run for 30 times for each parameters setting, and then the results
are averaged out and reported with one standard deviation as shown in
8

Figs. 5(a) and 5(b). The results reveal a superior performance for 3R in
Fig. 5. The average delivery ratio and hop counts evaluated under blackhole attacks,
considering a range of varying percentages of malicious nodes.

contrast with QRT. Although QRT performed well when there is only
one malicious node, the delivery ratio sharply dropped by introducing
more malicious SNs to the network due to the inability to detect the
malicious paths. In contrast, 3R showed a steady superior performance
even when 50% of the SNs are malicious. It is worth mentioning that
the slight decrease in the delivery ratio of 3R when increasing the
number of malicious SNs is due to 𝜀-greedy strategy where 10% of the
actions are made randomly with a view to exploring the environment.
On the other hand, the hop count results explain how each protocol
responds to the hostile environment. Fig. 5(b) shows that 3R performs
better when there are up to 8 malicious SNs. When the number of
malicious nodes increases, 3R needs more hops to reach the destination
to avoid malicious SNs. However, in QRT, the number of hops needed
to get to the destination is decreased unexpectedly by increasing the
number of malicious nodes, which explains the poor delivery ratio.
These results indicate that QRT failed to build reliable paths that avoid
malicious nodes and confirm that 3R chooses the most reliable shortest
paths.

4.4. Selective forwarding attacks

In the selective forwarding attack, the malicious nodes forward
some frames and drop others selectively [48,49]. This behavior is
hard to detect as the same malicious node could be trustworthy for
some nodes and untrustworthy for others. In this experiment, 3R has
been evaluated under selective forwarding attack, where malicious
nodes randomly choose a list of neighbors not to relay their frames.
Two scenarios have been considered. In the first, the malicious node
randomly chooses a list of several neighbors 𝑥𝑖𝑡 to drop their frames as
in Eq. (8):

|𝑥𝑖𝑡| =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|𝑁 𝑖
𝑡 |

2 , 𝑖𝑓 |𝑁 𝑖
𝑡 | = 2𝑘

𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ W
|𝑁 𝑖

𝑡 |

2 + 1, 𝑖𝑓 |𝑁 𝑖
𝑡 | = 2𝑘 + 1

(8)

This means that 50% to 67% of the received frames to relay will be
dropped. In the second scenario, malicious nodes run volatile selective
forwarding attacks by randomly changing 𝑥𝑖𝑡 per 20% of the simulation
time. Figs. 6(a) and 6(b) show the delivery ratio and the hop counts
under both attack scenarios. Our proposed 3R protocol outperforms
QRT in both scenarios and provides a reliable delivery with minimal
variability. At the same time, QRT shows a high variability when the
number of malicious nodes is less than 25% of the total number of
SNs, indicating difficulty in converging. By increasing the number of
malicious nodes, the delivery ratio of QRT decreases significantly.

On the other hand, the hop counts results shown in Figs. 6(a) and
6(b) reveal how each protocol responds to the hostile environment.
3R performs better when the number of malicious nodes is less than
25%. Moreover, when the number of malicious nodes reaches 50%,
the hop count gradually increases to avoid any path through malicious
nodes. It worth noting that increasing the number of malicious nodes
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Fig. 6. The average delivery ratio and hop counts under two selective forwarding
attack scenarios.

resulted in a slight variability increase. This variability increase in the
hop counts indicates the ability to find redundant, reliable paths to the
destination, which could be seen in the stable delivery ratio. In contrast,
QRT needs more hop counts for the limited number of malicious nodes.
Furthermore, it fails to find reliable paths inferred from its low delivery
ratio and hop counts.

4.5. Sinkhole attacks

The sinkhole attack is one of the most destructive attacks on routing
protocols in which the malicious node attracts the network traffic by
advertising false routing information [5]. This route poisoning attack is
an easy to launch and extremely hazardous attack. In RL-based routing
protocols, the learning agents exchange routing information to update
the Q table and re-evaluate the optimal paths. When the adversary
advertises false overestimated information to a specific destination, it
can poison the Q tables of other nodes and attract all the traffic in
order to drop it. In this experiment, the robustness of 3R is evaluated
under different poisoning levels. Four scenarios have been considered
in this experiment. The malicious nodes advertise the actual Q values
increased by 25%, 50%, 75% and 100%. In the last scenario, when
the Q values are increased by 100%, the malicious nodes will advertise
the value zero to the network, which is the highest Q value that could
be achieved as the reward function is designed to penalize dropping
activities to ensure that the learning agents will always choose the most
reliable shortest path. Figs. 7(a)–7(d) show the delivery ratio and the
hop counts for the four scenarios. What stands out in these figures is the
stable delivery ratio of 3R for different route poisoning levels, which
reveals a high resiliency to sinkhole attacks. Moreover, they reveal how
3R finds the optimal paths through a hostile environment. 3R shows the
same behavior as previous experiments when the number of malicious
SNs increases. It avoids malicious nodes by choosing the most reliable
path with minimal achievable hop counts. It is worth noting that when
the malicious nodes advertise zeros as their best estimation, 3R shows
a slight increase in hop counts even for a low number of malicious
nodes, but with a high delivery ratio. The reason behind this behavior
is that advertising this level of fake information affects the Q tables of
the surrounding nodes, making the learning agent even tries to avoid
the neighbors of malicious nodes.
9

Fig. 7. The average delivery ratio and hop counts under various poisoning levels of
sinkhole attacks.

On the other hand, QRT shows a good delivery ratio when only one
malicious node exists. However, by increasing the number of malicious
nodes, the delivery ratio drops significantly to levels below 50% for 32
malicious nodes. This failure in avoiding malicious nodes can be clearly
seen in the hop counts results, where QRT experiences a steep drop in
contrast to what is expected, which explains the meager delivery ratio
as packets would be ended up in a sinkhole.

4.6. On-off attacks

Although trust management schemes detect malicious activities,
they are vulnerable to on-off attacks, where smart adversaries can
change their behavior alternately to cheat the TMS and keep themselves
undetected [50]. The failure to detect on-off attacks negatively impacts
the performance of trust-based routing protocols by making them to
make wrong routing decisions. The on-off attack cycle consists of one
on and one off periods. During the on period, the adversary drops
packets intentionally, while during the off period, it behaves well to
rebuild its trust score and keep itself undetected. In this experiment,
three simulation scenarios have been considered, variable traffic rates,
variable on-off cycles, and non-identical periods.
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4.6.1. Variable traffic rates
Experiments in our previous work [34] shows that some TM schemes

failed to operate properly under low traffic rates. Thus, our first
simulation scenario is designed to evaluate the routing performance
under on-off attacks for different traffic rates starting from a low traffic
rate 𝜇 = 1 and doubling it each time. Figs. 8(a)–8(d) show the delivery
ratio and the hop counts for the traffic rates 𝜇 = 1, 𝜇 = 2, 𝜇 = 4
and 𝜇 = 8, respectively. The on-off attack cycle is set to 40 s. The
results show that QRT does not work properly for low traffic rates.
Moreover, by increasing the number of malicious nodes, the delivery
ratio decreased significantly, which could be attributed to the inability
to avoid malicious nodes from the routing path. On the other hand, 3R
shows superior performance for all traffic rates. It achieved a delivery
ratio between around 90% to 97% for all malicious nodes ratios. The
hop counts results show that 3R can find alternative paths to avoid
malicious nodes, which obviously appears when having 25% − 50% of
nodes behaving maliciously. It is worth noting that by increasing the
traffic rate, 3R can find more optimal paths, which could be attributed
to having more evidence from the environment.

4.6.2. Variable on-off cycles
This experiment evaluates the performance under different on-

off attack cycles. The on-off attack’s cycle varies from 10 s to 40 s.
Figs. 9(a)–9(d) show the delivery ratio and hop counts results for
various on-off attacks’ cycles. 3R shows superior and stable perfor-
mance for all on-off cycles. It achieved the same delivery ratio of the
previous scenario, coupled with the same behavior of selecting paths to
destinations, which again indicates its robustness against different on-
off attacks. On the other hand, QRT shows lower delivery ratios with
high variability for a low number of malicious nodes. By increasing
the number of malicious nodes, the delivery ratio decreased signif-
icantly, which explains the rationale behind decreasing hop counts
when having more malicious nodes.

4.6.3. Non-identical periods
Smart adversaries can execute more intricate on-off attacks by

shortening the on period compared to the off period. This strategy
aims to deceive the TMS and adds complexity to the detection of the
attack. In this experiment, non-identical on-off attacks are launched by
making the on period less than the off period. Four scenarios have been
considered by varying the on period from 25% of the off period and up
to 100%. The on-off cycle is set to 40 s and the traffic rate is set to 4 p∕s.
igs. 10(a)–10(d) show the delivery ratio and hop counts for various on
eriod’s ratios. 3R shows a stable, superior performance, indicating its
bility to detect attacks and isolate the malicious nodes. On the other
and, QRT shows low delivery ratios when increasing the number of
alicious nodes with high variability for the low number of malicious
odes, which indicates difficulty in converging to the global optimum.

.7. Network dynamicity and convergence

The convergence time is a crucial factor in routing applications
s slow convergence results in more packets to lose, which could
ndanger the patient’s life. Moreover, nodes’ mobility could change
he environment and require the algorithm to re-converge again. In
his experiment, the convergence has been studied for the stationary
nd non-stationary environment under blackhole attacks where 50%
f the nodes are malicious. First, stationary SNs have been considered
o compare the convergence time of both protocols. Fig. 11 shows the
onvergence time of both protocols. 3R is able to converge with less
han 20 s thanks to its asynchronous updating method in which the
gent updates its routing decision engine once evidence obtained from
he environment. This method makes 3R an adaptive protocol that can
eflect any environment change. In contrast, QRT needs around double
his time to converge. It is worth noting that QRT shows a bit better
erformance at the start because it uses positional information to make
10

p

Fig. 8. The average delivery ratio and hop counts under On-Off attacks across varying
traffic rate.

routing decisions, whereas 3R only depends on its trial/error process
to learn the optimal routing decisions.

In the second scenario, mobility has been introduced to study
how algorithms re-converge in a dynamic environment. For example,
patients can change their locations within the hospital ward. Therefore,
in this experiment, two different patients will change their locations at
time 50 s and 100 s. The patient could have up to 3 SNs. Thus, three
simulations have been run for 1, 2, and 3 randomly chosen SNs for each
atient. The results show a fast re-convergence in all cases for 3R, as
hown in Fig. 12(a). Once the environment change happens, 3R updates
ts routing engine asynchronously to reflect the new environment. This
ould be seen as a slight decrease in the delivery ratio at the time
f movements, followed by fast re-convergence. On the other hand,
RT experienced a noticeable decrease with difficulty in re-converging,
specially after the second movement, as shown in Fig. 12(b). The
eason behind this poor performance could be attributed to considering

ositional information, which influences the routing decision.
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Fig. 9. The average delivery ratio and hop counts across various cycles of On-Off
attacks.

4.8. Energy efficiency

The energy efficiency has been evaluated in two experiments, by
modeling the energy consumption as explained in Section 3.8 in our
simulations. In the first, the network lifetime has been compared be-
tween both protocols. The second scenario shows the average consumed
energy by a node for different traffic rates. Network lifetime could be
defined as the running time until a node dies [33]. Both simulation
scenarios have been carried out under normal operation without in-
troducing any attack. Fig. 13(a) shows the percentage of alive nodes
during the simulation. QRT has a very short network lifetime com-
pared to 3R. The first node dies after around 12 s on average. This
deficiency could be attributed to two reasons. First, QRT does not take
any energy-related factors into account to choose the optimal path,
and most importantly, the excessive information exchanging increases
the RF activities significantly, which is responsible for 80% of the
consumed energy. On the other hand, 3R shows superior performance
11

because of its resource-conservative design, which is clearly reflected n
Fig. 10. The average delivery ratio and hop counts under non-identical periods of
on-off attacks.

in consuming less energy for all traffic rates, as obviously seen in
Fig. 13(b).

4.9. Computational overhead

In this subsection, we compare the average processing time and
memory consumption of both protocols, 3R and QRT. The experiment
was carried out on an Intel Core i5-8500T processor at 2.1 GHz and
8 GB RAM. The simulation has been run for 30 times, and then the
results have been averaged out and reported with one standard devia-
tion. The network is in normal operation, and no attacks are launched
during the simulation. The traffic rate is set to 𝜇 = 4 p∕s as QRT does
ot perform properly for lower traffic rates.

Fig. 14(a) shows the average processing time of 3R and QRT. The
esults show that QRT consumes more processing time than 3R. More-
ver, the results show high variability of around 25%. This variability
ndicates that the algorithm sometimes takes longer to converge; hence,
ore packets will loop inside the network before reaching their desti-
ation. On the other hand, 3R consumes less processing time and saves



Computer Networks 237 (2023) 110073M.S. Hajar et al.
Fig. 11. The average convergence time for static SNs.

Fig. 12. The average delivery ratio under various mobility scenarios for 3R and QRT,
respectively.

Fig. 13. The energy efficiency results.

around 40% of the processing time of QRT. Moreover, 3R shows almost
no variability, indicating the stability of performance and the ability
to converge at approximately the same time for different simulation
runs. This lightweight processing overhead is attributed to the proposed
resource-efficient RL model, where the learning agent receives one
reward for multiple actions and hence updates the routing engine less
than the traditional RL model.

The second important performance metric is memory consumption.
Average memory consumption was calculated and reported with one
standard deviation in Fig. 14(b). The memory allocation has been
traced during the simulation using tracemalloc [51], a trace memory
allocation module. The results show that QRT consumes a considerable
amount of memory, around 107MB, with a high variability of around
39%. This high memory consumption is attributed to having more
packets looping in the network, while the high variability indicate
difficulty in converging to the global optimum. For each simulation
run, QRT converges to a local optimum, which causes inconsistent
memory consumption between different simulation runs. On the other
hand, 3R is a memory-conservative protocol. It consumes a decent
amount of memory, around 26MB, which saves around 75% of the
memory consumed by QRT. Moreover, 3R shows almost no variability,
indicating that 3R did not experience any converging difficulties thanks
to its novel updating mechanisms.
12
Fig. 14. The average processing time and memory consumption.

Fig. 15. Hyperparameters optimization heatmap.

4.10. Hyperparameters tuning

Optimizing the used hyperparameters lead to faster convergence
and overall better performance. In previous experiments, the bench-
mark parameters setting has been adopted to ensure fair compression
between both protocols. In this experiment, the learning rate 𝜂 and
the discount factor 𝛾 are tuned using the grid search approach. As
both parameters are continuous in the domain [0, 1], a step of 0.1
has been used for each parameter. This involves a combination of 121
simulation parameter settings. Each one of them has been run for 30
times. The simulation has been run for blackhole attacks where 50% of
the nodes are malicious and the traffic rate is set to 1 p∕s. Fig. 15 shows
the heatmap of the average delivery ratio of these simulations. Closer
inspection of the figure shows poor delivery ratio for 𝜂 = 0 and 𝛾 = 0.
When 𝜂 = 0, the algorithm only uses its current observation and does
not learn from previous experience, which causes poor performance.
The values between [0.2, 0.4] show the highest performance, although
the heatmap also shows good performance for 𝜂 = 0.8; however,
consulting the hop counts results shows that the algorithms take slightly
more hops to reach the destination, indicating that the algorithm did
not converge to the global optimum.

On the other hand, the discount factor plays a significant role also.
What stands out in the figure is myopic learning agent performs poorly.
For instance, when the discount factor 𝛾 = 0, the learning agent only
considers its direct observations from the observable environment to
choose the optimal path, which likely leads to losing the packet due to
existing a malicious node in the in-observable path. Interestingly, the
maximum value of 𝛾 also shows poor performance as the learning agent
weighs current and expected future rewards equally, which influences
the routing decision negatively based on in-observable future rewards.
Thus, the optimal value for the discount factor is around 0.8, which
could efficiently balance the current and future expected rewards.
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Fig. 16. Optimizing 𝜀-greedy exploration algorithm.

.11. Exploration exploitation optimization

Exploration exploitation trade-off is a critical component in RL
odel. The learning agent needs to explore the stochastic environment

n order to maximize the long-term reward. During the exploration
hase, the learning agent tries to discover the most rewardable actions.
owever, taking an action at a state 𝑠 may affect the immediate reward
s well as the subsequent rewards, while insufficient exploration may
ead to converging to a sub-optimal solution. 𝜀-greedy and Softmax
xploration methods are the most used algorithms in the literature to
alance exploration-exploitation. 𝜀-greedy has been used in previous
xperiments. However, the reported values in our benchmark have
een adopted to ensure a fair comparison. In this experiment, we
ptimize the value 𝜀 under blackhole attacks where 50% of the nodes
re malicious. 𝜀 is a continuous value in the range [0, 1]. Therefore, a
tep of 0.01 has been chosen. The simulation has been run for values
n the range [0, 0.2] as higher values over-explore the environment and
hows poor performance. Fig. 16 shows the results of only some 𝜀
alues for clarity. The value 𝜀 = 0.06 achieves the highest reward and is
ble to converge faster than other values. This means that the learning
gent randomly explores the environment with a probability of 6%.

Softmax exploration algorithm is a value-based approach to ex-
loring the environment in which the learning agents make informed
outing decisions based on its Q table. Softmax algorithm is modeled
sing Gibbs distribution as shown in Eq. (9)

(𝑎|𝑠) = 𝑃𝑟{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠} = 𝑒
𝑄(𝑠,𝑎)
𝜏

∑𝑛
1 𝑒

𝑄(𝑠,𝑎)
𝜏

(9)

where 𝜏 is called the temperature parameter, which is used to control
the probability of choosing the greedy action. Decreasing the value of
𝜏, increases the probability of choosing the greedy action. Moreover,
𝜀-greedy could be derived from Softmax algorithm when 𝜏 ←←→ ∞ as
all possible actions will have the same probability. Optimizing the
temperature value of the Gibbs distribution is not straightforward [52]
as any change in reward function can influence the probabilities of
available actions. In this experiment, the temperature parameter will
be optimized under the same conditions. As 𝜏 ∈ R+, we start at 𝜏 = 0.01
and then increase the value up to 𝜏 = 1. Fig. 17 shows the results of
some temperature values for clarity. The performance starts poorly at
𝜏 = 0.01 and enhanced gradually to reach the peak at 𝜏 = 0.05, and
urther increase beyond 0.05 decreases the delivery ratio.

In the third experiment, we compare both algorithms using opti-
ized values for stationary and non-stationary environments. Fig. 18(a)

hows the results for a stationary environment. Softmax shows superior
erformance. The algorithm converges fast to the global optimum,
hile 𝜀-greedy needs more time to converge. This could be attributed to

he mechanism of making routing decisions. 𝜀-greedy exploration could
e regarded as blind exploration as actions are chosen randomly during
13
Fig. 17. Optimizing softmax exploration algorithm.

Fig. 18. Comparing 𝜀-greedy and softmax exploration algorithms for stationary and
non-stationary environment.

the exploration, while the Softmax algorithm takes informative actions
based on the current estimations. On the other hand, the results of the
non-stationary environment in Fig. 18(b) show that both algorithms are
able to re-converge fast after movement detection.

5. Conclusion

There is still a persistent need for a lightweight and secure routing
protocol for WMSN. Although RL is regarded as a promising approach
to building a routing protocol for WMSN, the widely used RL model is
a resource-consuming model. Moreover, reliable data delivery cannot
be achieved using only routing metrics as this information cannot deal
with the free will of other relay nodes inside the network. Realizing
the aforementioned problems open the way to re-design a lightweight
RL model and integrate a security tool with the routing decision en-
gine to ensure lightweight and reliable data transfer for WMSN. The
proposed RL model does not necessitate updating the Q table after
each sent/forwarded packet, but rather it updates it periodically after
receiving a reward for a set of actions within one time unit. The
performance results show that the proposed RL model can significantly
reduce the computational overhead. Furthermore, integrating TMS with
the routing engine enables reliable data delivery and avoids malicious
paths that cannot be achieved using traditional routing metrics. Finally,
the experimental results prove the robustness of our proposed method
in defeating well-known dropping attacks. In the future, hyperparam-
eters optimization will be further investigated to determine if there
is a relation between the hyperparameters and other environment
parameters. Moreover, exploration-exploitation trade-off dilemma will
be further studied to design a well-tailored exploration strategy for
routing applications as poor exploration strategy may affect the overall
network performance negatively.
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