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A B S T R A C T

Power lithium-ion batteries are widely used in various fields, the battery management system (BMS) is the main object of battery energy management and safety 
monitoring, so the accurate collaboration of state of charge (SoC) and state of energy (SoE) is estimated to be essential for the BMS system. In this work, a novel 
genetic marginal particle filter (GMPF) algorithm to estimate SoC and SoE accurately. The forgetting factor recursive least square (FFRLS) algorithm is used to 
identify the second-order Thevenin equivalent model parameter, and the genetic algorithm is used to improve the re-sampling process of the traditional particle 
filtering (PF) algorithm, according to the Rao-Blackwell theory in statistical science, the marginalization of part of the linear state variables during the calculation 
of particle filtering, the distribution of the post-test is similar to a single Gaussian distribution. The GMPF algorithm is verified under the conditions of the 
hybrid pulse power characteristic (HPPC) and the Beijing bus dynamic stress test (BBDST) with 15 ◦C, 25 ◦C, and 35 ◦C respectively, and experimental results 
show that the improved GMPF algorithm can effectively realize the collaborative estimation of the SoC and SoE of power lithium-ion batteries. The mean absolute 
error of SoC and SoE estimation is always less than 1.56 %, the root-mean-square error is always less than 1.58 %. And the GMPF algorithm is suitable for 
temperature environments of 15 ◦C to 35 ◦C.   

1. Introduction

* Corresponding author: Shunli Wang Email address: 497420789@qq.com

With the development of society, the energy demand has continued to increase, energy is continuously enriched by consumption scenes, and the 
demand for energy storage in the world has become stronger [1]. Lithium-ion batteries have become the main components of the application of 
energy storage systems with their long life, high stability, high energy density, and moderate advantages [2]. Lithium-ion battery types are divided 
into power batteries, energy storage batteries, and consumer batteries. Power lithium-ion batteries usually refer to lithium-ion batteries that 
provide power sources for high-power devices [3]. They have the characteristics of large energy density, small volume, and high single voltage. 
Therefore, power lithium-ion batteries are not only used in the field of new energy vehicles but also the fields of robots and drones [4]. 

Compared with the use of traditional energy, drones and robots with power lithium-ion batteries as power sources have the characteristics of 
lightness and flexibility [5]. 

Currently, commonly used cathode materials for lithium-ion batteries in the market include lithium cobalt oxide, lithium iron phosphate, and 
ternary compounds [6]. Among them, the structure of lithium cobalt oxide batteries is unstable, so lithium iron phosphate and ternary lithium 
batteries are the most widely used in the market [7]. As the battery market continues to expand, more and more energy storage fields are starting 
to use ternary lithium-ion batteries with higher energy density for better product performance and user experience. Ternary lithium-ion batteries 
with high energy density advantages and fast charging efficiency have great potential for large-scale market applications in some consumer 
electronics products that value user experience [8]. However, the unstable chemical characteristics of ternary lithium- ion batteries have limited their 
development [9]. The key to breaking through the existing situation of new energy is whether the battery’s safety performance can be ensured by real-time 
monitoring of the battery’s state at the battery management level. 

For battery pack systems with high integration and high energy density, ensuring their safety and reliability during power output and energy 
storage processes, as well as real-time monitoring, is crucial. Therefore, the Battery Management System (BMS) for lithium-ion batteries, which is 
responsible for battery energy management and safety monitoring, has become an indispensable core for the use of lithium-ion batteries as a source 
of energy and power [10]. A high-performance BMS can not only accurately measure key reference information such as battery voltage, current, 
and temperature, but also perform system safety diagnosis and danger alarms, as well as accurately estimate the state of charge (SoC) and state of 
energy (SoE) [11]. It can combine actual conditions to manage battery energy consumption and improve battery energy utilization efficiency. Since 
parameters such as SoC and SoE are hidden and cannot be directly measured, and the estimation results are easily affected by noise, significant 
estimation errors may occur [12]. Therefore, accurately and efficiently estimating the state parameters of the battery has become a major research 
focus in today’s battery management systems. 

SoC is an intuitive display of the remaining capacity of a lithium-ion battery. Generally speaking, it is defined as the ratio of the amount of 
electricity that can be discharged from the current state of the battery to the rated capacity [13]. Accurate and reliable SoC is the foundation for 
ensuring normal user use and can optimize the charging and discharging strategies of lithium-ion batteries [14]. SoC can provide effective 
reference for the state of the battery, provide data and correction plans for energy management of power lithium-ion batteries, and is the 
cornerstone of BMS for predictive analysis [15]. Accurately estimating the SoC value is crucial to ensuring the performance of battery packs, 
improving cycle life, and reducing usage costs. As a typical secondary battery, the essence of the charge and discharge of lithium-ion batteries is 
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the intercalation and deintercalation of lithium-ions between the positive and negative electrodes [16]. At the same time, a series of side reactions 
occur between the positive and negative electrodes and the electrolyte, which means that there are multiple interrelated electro-chemical reactions 
inside the battery [17]. However, in practical applications, the complexity and diversity of the battery’s working environment, as well as issues 
such as aging due to frequent use, over-charging, and over-discharging, all affect the internal reaction process of the lithium-ion battery, greatly 
increasing the difficulty of estimating the battery’s SoC [18]. Therefore, an accurate and reliable SoC estima-tion strategy has become one of the 
urgent problems that BMS needs to solve. 

SoE refers to the changes in the energy status of a battery, which takes into account the variations in the battery voltage on the basis of SoC. 
Although the estimation of SoE is more challenging, it has greater advantages over SoC when used for estimating the remaining discharge time and 
energy of a subsequent power lithium-ion battery [19]. As the future prospects for the application of power lithium-ion batteries in various 
industries are vast, BMS systems require higher accuracy and stability [20]. Therefore, strengthening the research on the algorithm for estimating 
the SoE of lithium-ion batteries is of significant importance [21]. At present, in the use of power lithium-ion batteries, SoE is an important basis for 
estimating the remaining usage time or mileage [22]. If the estimated SoE result is greater than the actual result, it can lead to over-discharge of 
the power lithium-ion battery, which h can cause irreversible damage to the battery itself, not only reducing its lifespan but also posing significant 
safety issues [23]. If the estimated SoE value is smaller than the actual value, it will lead to reduced usage efficiency, which cannot effectively 
utilize the efficiency of the power lithium-ion battery [24]. Therefore, in order to effectively solve safety and efficiency issues, and extend the 

lifespan of power lithium-ion batteries, accurate SoE estimation is also one of the urgent problems that BMS needs to solve [25]. 
Currently, lithium-ion battery SoC and SoE estimation algorithms mainly include direct measurement methods, model-based estimation 

methods, neural network-based estimation methods, and hybrid methods [26]. For example, although direct measurement methods have 
high estimation accuracy, they require very accurate SoC-OCV and SoE- OCV correspondence and also have high requirements for measuring 
instruments [27]. methods are easy to operate and have high accuracy, but they require a large number of training samples to ensure 
measurement accuracy and are therefore not suitable for small sample sizes [28]. Model-based estimation methods ensure accuracy by 
constructing an accurate equivalent model, and they and the hybrid methods that include them are currently the most widely used methods 
[6]. Under these methods, the estimation effect mainly needs to consider convergence, accuracy, and universality. 

Fan et al. [29] proposed a novel long short-term memory network combined with an adaptive unscented Kalman filter (LSTM-AUKF) 
method to estimate SoC and SoE simultaneously, and its accuracy has been verified under different operating conditions. Wang et al. [30] 
estimated SoC and SoE using different models and methods respectively, and verified their accuracy under different operating currents. A 
combined SoC and SoE estimation using the dual forgetting factor adaptive extended Kalman filter (DFFAEKF) algorithm and experimental 
quantitative relations between SoC and SoE are utilized to estimate the SoC and SoE by Shrivastava et al. [25]. Zhang et al. [31] taking identified 
open-circuit voltage as observation information, two first-order EKFs are established to online estimate SoC and SoE. Ma et al. [32] investigated a 
novel data-driven method that can estimate SoC and SoE simultaneously based on a long short-term memory (LSTM) deep neural network. Wei et 
al. [33] proposed a method for estimating the SoE of lithium-ion batteries using the Unscented Particle Filter (UPF). 

With the goal of achieving high-precision simultaneous estimation of SoC and SoE for ternary lithium-ion batteries, this paper considers 
aspects such as estimation convergence, accuracy, and universality. Rather than using the coupling relationship between SoC and SoE for joint 
estimation, the paper separately estimates SoC and SoE at the same time scale to improve estimation accuracy. A second-order Thevenin 
equivalent circuit model is established, taking into account the accurate characterization of battery polarization effects and 
computational complexity. The FFRLS algorithm is used for parameter identification of the model to solve the problem of untimely data 
processing and inability to update parameters in real-time caused by offline parameter identification. To address the issue of particle 
impoverishment in traditional particle filtering algorithms, a genetic algorithm is used to improve the resampling process of traditional particle 
filtering, reducing conver-gence time and improving convergence. Additionally, Rao-Blackwell theory in statistics is used to marginalize some 
of the linear state vari-ables in the calculation process of particle filtering, reducing estimation variance and improving estimation accuracy. 
Finally, the proposed method is validated under multiple temperatures and operating conditions. Experimental results show that the proposed 
GMPF algorithm can effectively achieve cooperative estimation of SoC and SoE for dynamic lithium-ion batteries. Moreover, the MAE of SoC 
estimation under HPPC and BBDST operating conditions can be maintained within 1.56 %, with RMSE maintained within 1.25 % under 
multiple temperature condi-tions. The MAE of SoE estimation can be maintained within 1.56 %, with RMSE maintained within 1.58 %. These 
results demonstrate the universality of the proposed method. 

The problems that the proposed method in this paper can solve are as follows: First, estimating SoC and SoE for ternary lithium-ion batteries 
separately at the same time scale avoids the problem of one estimation error leading to a larger estimation error for the other due to the 
interrelationship between the two. Second, the proposed GMPF algorithm solves the problem of particle impoverishment in traditional particle 
filtering, improving the estimation accuracy of SoC and SoE for lithium-ion batteries. Third, the proposed GMPF algorithm improves the convergence of 
the estimation of SoC and SoE for lithium-ion batteries and can converge at the initial moment of operation. Fourth, the proposed method is validated under 
multiple temperatures and operating conditions, demonstrating the effectiveness and good universality of the proposed method. 

The rest of this paper is organized as follows: Section 2 is the theoretical analysis part of this paper. Section 2.1 establishes the model for the lithium-ion 
battery and relevant calculations, while Section 2.2 provides a detailed introduction and calculation of the online parameter identification algorithm based on 
the forgetting factor. Section 2.3 provides a detailed introduction of the proposed GMPF algorithm and its improvements. Section 3 is the experimental 
verification part of this paper. Section 3.1 validates the online parameter identification results, while Section 3.2 verifies the proposed method under the HPPC 
operating condition with multiple temperature conditions. Section 3.3 verifies the proposed method under the BBDST operating condition with multiple 
temperature conditions. Section 4 is the conclusion and outlook of this paper. 

2. Mathematical analysis

2.1. Equivalent circuit modeling

Unlike the electrochemical model, most equivalent circuit model structures are relatively simple, they have few parameters and are easy to 
recognize. It consists of components such as voltage sources, resistors, and capacitors, current and voltage data can be obtained by charging and 
discharge experiments, and then we can use the parameter recognition method to obtain model parameters. The equivalent model is built based on 
experience, the chemical reactions inside the battery are not studied, because of low calculation complexity, they are widely used in battery 
status estimation. 



Fig. 2-1. Second-order Thevenin model.mo

Whether SoC is accurately estimated to a large extent depends on the accuracy and complexity of the model, under the premise of 
accurately indicating the dynamic performance of the battery, a model with a suitable complexity should be selected. The Thevenin 
model and the PNGV model are not enough to accurately simulate the battery polarization effect, if here are many RC circuits, computing will 
be more complicated. Therefore, this article selects the second-order Thevenin model from the equivalent circuit models, which can 
accurately simulate the battery polarization effect, the model is simpler and suit-able for engineering. The Thevenin model as shown in Fig. 2-1. 

According to the law of Kirchhoff, the state-space equation can be obtained, as shown in Eq. (2-1): 

⎧
⎪⎪⎪⎪⎪⎪⎨
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I
C2

(2-1) 

In the Eq. (2-1), Uoc represents the opening voltage, UL is the end voltage of the lithium-ion battery, R0 is the ohmic resistance; R1 and C1 are 
electrochemical polarization internal resistance and polarization capacitors, respectively; R2 and C2 are thick polarization resistors and 
polarization capacitors, respectively; I is a dry road current, U1 and U2 are voltages of parallel networks of R1C1 and R2C2, respectively. The SoC 
definition as shown in Eq. (2-2). 

SoCt = SoCt0 −
η1

Cn

∫ t

t0
I(t)dt (2-2) 

In the Eq. (2-2), SoCt is the SoC value of time t, Cn is the rated capacity of the battery, η1 is the charge and discharge efficiency. [SoC U1 

U2] is the state variable at the input terminal in the second-order Thevenin model, the SoC’s discrete state spatial equation is like Eq. (2-3).   
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(2-3)   

In the Eq. (2-3), ωi(i = 1, 2, 3) is process noise, v is the measuring noise, UOC, R2, R0, R1, C1, and C2 are parameters need to be identified in 
the model. The power integrator method is similar to amp-hour integrator in the process of SoC estimation, it is based on the battery SoE 
definition method to integrate the power, the value of energy changed can be got from the integral of battery current and voltage, then the 
current SoE value of the battery can be obtained. The SoE’s calculation expression as shown in Eq. (2-4). 

SoE = SoE0 −

∫ t
0 ηIUdt

3600EN
(2-4) 

In the Eq. (2-4), SoE0 is the initial value of battery SoE, η is the charge and discharge efficiency of the battery. I is a battery load current, the 
discharge direction is positive, the unit is A, U is the battery side voltage, the unit is V. T is working time, the unit is s, EN is the rated energy of the 
battery, and the unit is Wh. SoE discrete expression as shown in Eq. (2- 5). 

SoEk+1 = SoEk −
ηkΔEk

EN
= SoEk −

ηkIkUL,kΔt
EN

(2-5) 

In the Eq. (2-5), ΔEk is the consumed energy at time of k, I is the load current of the battery at the time of k, UL,k is the terminal voltage of the 
lithium-ion battery at time of k, Δt is the sampling interval. 



2.2. Forgetting factor recursive least square algorithm 

In the study of battery SoC and SoE estimation, the method of offline experimental data fitting function is generally used to determine the 
value of each parameter in the battery model. But this way will cause a large error in the estimation results, and the parameter value obtained 
from offline recognition is fixed, it does not reflect the actual situation of model parameters at each moment. In order to improve the accuracy of 
parameter identification, fully express the actual changes of each parameter in the using of lithium-ion batteries. Therefore, the online 
recognition of the model parameter and the real-time correction of the parameters are particularly important. 

The ordinary minimum daily method has a large matrix calculation, and the disadvantages such as online recognition cannot be performed. In 
order to solve these problems, recursive least square (RLS) can be used, it can get a gain coefficient form based the collaborative differential 
matrix, it can modify the parameter estimation value of each time, in the process of pushing every time, you can get accurate parameter 
estimation results. However, the phenomenon of “data saturation” is prone to occur during the recursive process, in other words, the trust of 
RLS allocated to at any moment is the same, which will lead to more and more old data accumulation, The information of the old data has been 
obtained at the previous moment. The information of the new data is covered by the old data. The information obtained from the new data is 
reduced. The correction ability of the algorithm will gradually weaken. 

In order to avoid the phenomenon of “data saturation”, it is necessary to distribute more trust to the newly collected data, to maximize the 
weight of the old data occupied. Therefore, the forgotten factor is added to the RLS algorithm, this way will improve the online estimate of the 
RLS algorithm. Forgotten factor can distribute greater weights to new data, it can strengthen the feedback effect of new data in parameter 
recognition, and gradually reduce the impact of the old data, therefore, the information provided by the new data will not be covered by old 
data, it can strengthen the correction ability of the algorithm so that the algorithm can always achieve a fast convergence. The improved target 
function is shown in Eq. (2-6). 

J =
∑

k

N

=n+1
λN− k[e(k) ]2 (2-6) 

In the Eq. (2-6), λ is forgotten factor, and its value range is 0 to 1, different values will have different accuracy, e(k) is an error collaboration 
matrix, the Gaussian white noise sequence is applied to it. Then the recursive Equation of the FFRLS algorithm is shown in Eq. (2-7). 

⎧
⎪⎨

⎪⎩

θ̂(k + 1) = θ̂(k) + K(k + 1)
[
y(k + 1) − ϕT(k + 1)θ̂(k)

]

K(k + 1) = P(k + 1)ϕ(k + 1)
[
ϕT(k + 1)P(k)ϕ(k + 1) + λ

]− 1

P(k + 1) = λ− 1[I − K(k + 1)ϕT(k + 1)
]
P(k)

(2-7) 

In the Eq. (2-7), λ is closer to 1, the simulation results will be better, the value of λ is 0.98 in this simulation. The smaller the λ, the faster the 
algorithm, but it will also cause the fluctuation of the algorithm. When λ = 1, it is standard recursive least square algorithm. Then the battery 
model is converted into minimum daily mathematical forms, as shown Eq. (2-8). 

UOC − UL =

(

R0 +
R1

1 + τ1s
+

R2

1 + τ2s

)

I (2-8) 

In the Eq. (2-8), The FFRLS algorithm is used in the equivalent model parameter recognition of the lithium-ion battery, in this way, the 
parameters in the second-order Thevenin equivalent circuit model are identified. Time constant τ1 = R1C1, τ2 = R2C2, then Eq. (2-8) can be 
rewritten to Eq. (2-9). 

τ τ UOCs2 +(τ1 + τ2)UOCs+UOC = τ1τ2R0Is
2 +[R1τ2 +R2τ1 +R0(τ1 + τ2) ]Is1 2

+(R1 +R2 +R0)I+ τ1τ2U2
Ls +(τ1 + τ2)ULs +UL

(2-9) 

In the Eq. (2-9), Uoc represents battery opening voltage, R0 represents ohmic resistance of the battery. Supposing a = τ1τ2, b = τ1 + τ2, c = R1 + 
R2 + R0, d = R1τ2 + R2τ1 + Ri(τ1 + τ2), then the Eq. (2-9) can be simplified to Eq. (2-10). 

aUOCs2 + bUOCs+UOC = aR0Is
2 + dIs + cI + aU2

Ls + bULs +UL (2-10) s = [x(k) − x(k − 1) ]/T and s2 = [x(k) − 2x(k − 1) + x(k − 2) ]/T2 

were the sampling time, then the Eq. (2-10) can be written into Eq. (2-11). brought into Eq. (2-10) for discrete treatment, T is 

UOC(k) − UL(k) =
− bT − 2a

T2 + bT + a
[UL(k − 1) − UOC(k − 1) ]+

a
T2 + bT + a

[UL(k − 2) − UOC(k − 2) ] +
cT2 + dT + aR0

T2 + bT + a
I(k)+

− dT − 2aR0

T2 + bT + a
I(k − 1) +

aR0

T2 + bT + a
I(k − 2)

(2-11) 



Ordering k1 = T
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T2

k1 + k2 + 1
a = k0k2

b =
− k0(k1 + 2k2)

T

c =
k0(k3 + k4 + k5)

T2

d =
− k0(k4 + k5)

T

R0 =
k5

k2

(2-12) 

In the Eq. (2-12), the value of R0 can be obtained. Then ordering a = τ1τ2, b = τ1 + τ2, d = R1τ2 + R2τ1 + R0(τ1 + τ2), other parameters can be 
obtained, the Eq. (2-13) can be obtained from the Eq. (2-12). 

⎧
⎪⎪⎨

⎪⎪⎩

R1 = (τ1c + τ2R0 − d)/(τ1 − τ2)
R2 = c − R1 − R0

C1 = τ1/R1
C2 = τ2/R2

(2-13)  

2.3. Genetic marginalized particle filter algorithm 

Traditional particle filters (PF) algorithm usually cannot obtain a linear state estimation from the measurement equation, and it has 
problems of large calculation quantity and particles lacking when estimating the non-linear state. So a novel genetic marginalized particle filter 
(GMPF) method for state of charge and state of energy estimation adaptive to multi-temperature conditions of lithium-ion batteries is proposed 
in this article: the genetic algorithm is used to improve the heavy sampling process of traditional particle filtering, to obtain higher calculation 
accuracy by increasing the complexity of smaller calculation, and the problem of particles lacking will be solved by this way; at the same time, 
according to the Rao-Blackwell theory in statistical science, the marginalization of part of the linear state variables during the calculation of 
particle filtering, the distribution of the post-test is similar to a single Gaussian distribution, the Karman filter is updated to improve the accuracy of 
prediction when the condition of the remaining non-linear state variables. 

The basic idea of PF algorithm is to use the Monte Carlo method to generate a large number of random particles to approach the state of the 
post-testing state to achieve the state estimate, in the process of the PF’s prediction and update, it only updates part of the particles, status estimation is 
obtained through weighted and obtained, it does not need to calculate the post-verification collaborative difference in the status. This method can 
be used in non-linear, non-Gauss distribution. Monte Carlo Thought is to use a large number of random samples in the state space to approach the 
post-test probability distribution function of the variable that is approximately required, compared with other filtering methods such as the KF 
algorithm, the EKF algorithm, and the UKF algorithm, the PF algorithm does not need to make any prior assumptions on the system state, in theory, 
it can be used for any random system described by a state space model. But the PF algorithm has the following two problems:  

1. Particles degradation: In actual calculation, after several particles dissemination, only a few particles have a large value, the weight of
the remaining particles is ignored, the post-test probability distribution of the system state cannot be effectively expressed by the
particles set. As a result, the filtering performance decreases or even diverges.

2. Particles lacking: Although the problem of particles degradation can be avoided by resampling, a lot of particles will be copied from the 
same large power particles, it will reduce the particle type significantly, even in the end, there is only one particle with a value of 1, 
the PF algorithm will no longer be able to make the probability distribution correctly.

The steps of the GMPF algorithm are as follows. Firstly, a state space  model of lithium-ion batteries is established based on the process model and 
observation model, the status variable of the lithium-ion batteries model is the SoC and SoE of the lithium-ion batteries, it is shown in the Eq. 
(2-14). 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = f (xk, ik,wk) = xk −
nikΔt

ηiηT ηnQn
+ wk

yk+1 = h(yk, ik,wk) = k0 − Rik −
k1

xk
− k2xk + k3ln(xk) + k4ln(1 − xk) + vk

(2-14) 

In the Eq. (2-14), wk is the process noise of the system, vk is the system’s observation noise, supposing wk ∼ N(0, Q), vk ∼ N(0, R), Δt is the 
sampling cycle, xk is a state variable, f( • ) is the state function, yk is observation variable, h( • ) is the observation function. 

a direct recognition  
Eq. (2-12) can be showed: 

parameter, realizing the results of these parameters to derive the circuit model parameters, then ordering k0 = T2 + bT + a, 



N N
   First of all, the algorithm needs to be initialized, n SoC initial particles

{
SoCi

0
}

i=1 and n SoE initial particles 
{
SoEi

0
}

i=1 are generated according to the 
probability of first check, the weight of the particles is shown in the Eq. (2-15). 
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N NParticles status is updated, according to the system update equation, the prior probability samples 
{
SoCi

k
}

i=1 and 
{
SoEi

k
}

i=1 at the next 
moment are obtained. After the system obtains new observations, a new particles set 

{
x0,i

}+ is generated through the equation of state, then the 
predicted value of the observed value is obtained through the observation equation. The particle weight equation is shown in Eq. (2-16). 
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(2-16) 

In the Eq. (2-16), the error between the observed value and the predicted value of each particle is calculated, and then the weight of 
particles is obtained through the error. After that, normalizing the weight of the sampled particles, as shown in the Eq. (2-17). 
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(2-17) 

In the Eq. (2-17), the weight of the sampled particles is normalized to reduce the load of calculation, and the least mean square estimate 
needs to be calculated, the equation of least mean square estimation is shown in the Eq. (2-18). 
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Using the new random sample distribution generated in the previous steps to calculate the effective particle number Neff = ∑
i
N
=1

1
(ωi

k)
2. If the

number of effective particles is less than the threshold of the set number of effective particles, through resampling (extracting particles 
with high weight and eliminating particles with low weight), a new particle set is generated, after resampling, the weight of each 
particle in the new particle set is 1/N. Then the estimated value is output, xk is the SoC estimation value and zk is the SoE estimated 

value, they are shown in the Eq. (2-19). 
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The idea of biological evolution in genetic algorithm is introduced into particle filter, genetic algorithm optimizes the particles set in 
the process of resampling. Due to the unique optimization ability of genetic algorithm, the efficiency of particles is optimized, and many 
particles with different weights are added, it effectively suppresses the weight degradation of particles and the dilution of samples. The 
optimization process is as follows. 

Step 1: Sampling M particles from the initial distribution of the population, they are recorded as xi, i = 1, 2, 3…, n. 
Step 2: According to the state transition equation of particles, the particles time of k are updated. 
Step 3: Based on the measurement equation, calculate the weight of each particle in the particle set at time of k. 
Step 4: The fitness of each particle in the particle set is determined by the weight coefficient, and then genetic operations such as 

selection, crossover and mutation of genetic algorithm are carried out, taking into account the selection of a variety of high weight 
particles and the diversity of particles, a new particle set is iterated. 

Step 5: Calculating the state estimation and variance estimation at time of k: 
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Step 6: Using the equation f( • ) of state f to predict the particles at 
( )

the next moment, it is recorded as x(

k
i)
+1 = f x̃(

k
i)

+ ωk, i = 1,2,3,…,n;

Step 7: Letting k = k + 1, turning to step 3 at the next measurement time. 



The marginalized particle filter algorithm samples directly from the edge distribution of the state vector, using edge distribution function 
P(x1:k|Z1:k, u1:k) to replace P(xk|Z1:k−  1, u1:k), the predicted probability density can be obtained from it, and the predicted probability density is 
shown in the Equation 

P(xk|Z1:k)∞P(zk|xk)

∫

P(xk|xk− 1)×P(xk− 1|Z1:k− 1)dxk− 1 (2-21) 

Because the integral result cannot be obtained directly, P(xk−  1|Z1:k−  1) can be estimated from the particle set at time of k − 1. Therefore, 

P(xk|Z1:k−  1) can be approximated by 
∑
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(  
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)
. For the convenience of calculation, q(xk|Z1:k) can take the form similar to q(xk|Z1:k), it 

is shown in the Eq. (2-22). 
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The marginalized particle filter algorithm samples directly from the 
particle importance weight and increase the estimated value of effective sampling. The algorithm flow chart is shown in Fig. 2-2. 

edge distribution function, it can reduce the variance of 

Fig. 2-2. The flow chart of genetic marginalized particle filter algorithm.al

3. Experimental analysis

3.1. Results of parameter identification

The FFRLS algorithm is used to identify the parameters in the second-order Thevenin model under HPPC conditions and BBDST conditions 
with 15 ◦C, 25 ◦C, and 35 ◦C, respectively, and the discharge current is 1C under conditions of 15 ◦C and 25 ◦C, another discharge current is 0.5C 
under conditions of 35 ◦C. The results of parameter identification as shown in Fig. 3-1. 

Each parameter in the second-order Thevenin model changes in real-time, the value of the same parameter is different under different 
working conditions, and the value of the same parameter is different at different temperatures. It can be seen from Fig. 3-1(g) that the error of 
online parameter identification is controlled within 5.61 %. It can be seen from Fig. 3-1(h) and (i) that the open circuit voltage decreases with the decrease 
of SoC/SoE, and the downward trend is similar at different temperatures, however, the open circuit voltage is different at different temperatures. 

3.2. HPPC working condition verification 

To verify the estimation accuracy of the GMPF algorithm for the joint estimation of SoC and SoE, for the same ternary lithium-ion battery, the 
test experiment of power lithium-ion battery is carried out at 15 ◦C, 25 ◦C, and 35 ◦C under HPPC working conditions. The rated capacity of 
the battery is 72 Ah, the battery charging and discharging equipment is BTS200-100-104 battery detection equipment, and the thermostat is 
SETH-Z-040L. The experimental platform is as shown in Fig. 3-2. 



The specific steps of the HPPC working condition test are as follows: Step 1: First, conduct standard discharge on the battery, with the 
discharge current of 1C. After that, place it for 2 h, and then charge the battery with constant current and voltage until the SoC is 100 %. The 
charging current is set as 1C (72 Ah), the charging voltage is set as 4.2 V, and the cut-off condition is set as 2.5 A; Step 2: Leave the battery for 12 h 
to activate it, measure and record the voltage values at both ends of the battery. The voltage value at this time is the terminal voltage value when 
SoC = 1; Step 3: Leave the battery for 12 h to activate it, measure and record the voltage values at both ends of the battery. The voltage value at 
this time is the terminal voltage value when SoC = 1.3. Conduct current pulse test on lithium battery. First discharge the battery at 1C current 
for 10s, then let it stand for 40s, and then charge it at 1C current for 10s. The purpose is to return the battery to the SoC value before discharge 
and complete a set of experiments. The above pulse experiments all take time as the cut-off condition. (The discharge current is 1C at 15 ◦C and 25 
◦C, and 0.5C at 35 ◦C); Step 4: Then start discharging with a current of 1C. After discharging for 6 min (90 % SoC remains in the battery), let it
stand for another 1 h. The cut-off condition is set to voltage 2.75 V. Finally, record the terminal voltage as the open circuit voltage UOC at this time;
Step 5: Repeat step 3 and step 4, discharge 10 % of the capacity in each cycle, record the relevant data at the SoC of 0.9, 0.8, 0.7…, 0.1, and
provide data for the following parameter identification.

The sampling time of the experiment is 0.1 s. In order to restore the battery to the electrochemical balance and thermal balance state, the 
battery needs to be put aside for a long time between adjacent pulse tests. The whole experiment is mainly composed of a single repeated 
charge discharge pulse test. Calibration capacity is 65.76 Ah at 15 ◦C, 66.32 Ah at 25 ◦C, and 71.62 Ah at 35 ◦C. The estimation results of SoC and 
SoE joint estimation under different algorithms are compared through experimental data, and the GMPF algorithm is verified and analyzed 
through the comparison results. The experimental results as shown in Fig. 3-3. 

In the verification experiment, the theoretical value of battery SoC is calculated by the AH algorithm, according to the definition of SoE, the 
theoretical value of SoE is calculated by power integration. The estimation results of the three algorithms are compared with the theoretical 
values respectively, and the estimation error is integrated and analyzed, it can be seen from Fig. 3-3, in the process of estimate of SoC and SoE, 
the tracking effect of the MPF algorithm is better than the PF algorithm, and the tracking effect of the GMPF algorithm is better than MPF 
algorithm, and the GMPF algorithm has the most stable estimation effect and the smallest error fluctuation. When the initial value of the algorithm 
is arbitrarily set to 0.8, the GMPF algorithm can converge at the beginning. Comparison of SoC and SoE estimation results in MAE and RMSE under 
HPPC condition as shown in Fig. 3-4. 

It can see from Fig. 3-4, in the process of estimate SoC and SoE based on the GMPF algorithm, the SoC estimation under different temperature 
conditions, the average MAE of SoC estimation is 1.09 %, the average RMSE of SoC estimation is 1.09 %; the SoE estimation under different 
temperature conditions, the average MAE of SoE estimation is 0.81 %, the average RMSE of SoE estimation is 0.99 %. Through the error 
comparison under different conditions, it can be seen that GMPF algorithm has good robustness and excellent overall estimation performance, 
it has a very good estimation effect in the joint estimation of SoC and SoE of lithium-ion batteries. At the same time, it can be seen that PF is 
greatly affected by temperature, while GMPF algorithm is less affected by temperature. It can be seen that there is no strict linear relationship 
between the estimation accuracy of the algorithm and the ambient temperature, so the MAE value and RMSE of the algorithm do not strictly 
follow the increasing trend of temperature, but at the same temperature, it is obvious that the estimation error of GMPF algorithm is the smallest. 

3.3. BBDST working condition verification 

To further verify the estimation effect of the GMPF algorithm, verification experiments are carried out under more complex Beijing bus 
dynamic stress test (BBDST) conditions, and the temperatures are also set at 15 ◦C, 25 ◦C, and 35 ◦C respectively, and the improved GMPF 
algorithm is compared to analyze the advantages and disadvantages. The working condition parameters and description of BBDST are shown in 
Table 3-1. 

BBDST working condition is obtained by collecting real data from Beijing buses. In the above table, Ph (KW) is the battery output power 
under real bus starting, accelerating, and taxiing conditions. In the experiment, the Pc (W) column data in the above table are used for 
constant power charge discharge experiment, and the data of Cumulative (s) is listed as the duration of a single step, the working condition 
column is the current status of the simulated bus. One cycle includes 19 single steps, and the duration of 1 cycle is 300 s. The experiment is 
carried out until the battery is discharged to the cut-off voltage. The experimental results as shown in Fig. 3-5. 

It can be seen from Fig. 3-5 that SoC and SoE are estimated under BBDST working condition, the GMPF algorithm still maintains very good 
estimation ability and strong robustness. According to the experimental verification results, the three methods can effectively estimate the SoC and 
SoE of lithium batteries, however, both the MPF algorithm and the PF algorithm have large fluctuations and large errors in estimation, the improved
GMPF algorithm has the best estimation effect. Although MPF can approximate the posterior distribution to a single Gaussian distribution, it can 
reduce the error of PF algorithm in the joint estimation of SoC and SoE to a certain extent. However, it cannot solve the problem of particle 
dilution, resulting in large estimation error. When the initial value of the algorithm is arbitrarily set to 0.8, the GMPF algorithm can converge at  

the beginning. Comparison of SoC and SoE estimation results in MAE and RMSE under BBDST condition as shown in Fig. 3-6. 
It can see from Fig. 3-6, in the process of estimate SoC and SoE based on the GMPF algorithm, the SoC estimation under different temperature 

conditions, the average MAE of SoC estimation is 0.95 %, the average RMSE of SoC estimation is 0.98 %; the SoE estimation under different 
temperature conditions, the average MAE of SoE estimation is 1.15 %, the average RMSE of SoE estimation is 1.21 %. The experimental results 
show that the GMPF algorithm can well realize the joint estimation of SoC and SoE of power lithium-ion battery. 



Fig. 3-1. The results of parameter identification.  



Fig. 3-1. (continued). 
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Fig. 3-2. The experimental platform.  



Fig. 3-3. The experimental results under HPPC conditions.  



Fig. 3-3. (continued). 



Fig. 3-4. Comparison of SoC and SoE estimation results in MAE and RMSE under HPPC condition.  

Table 3-1 
BBDST working condition parameters and description.  

Ph (KW) Pc (W) Single-step (s) Cumulative (s) Working condition  

37.5  69  21  21 Start  
72.5  135  12  33 Accelerate  
4.5  9  16  49 Glide  
− 15.0  − 27  6  55 Braking  
37.5  69  21  76 Accelerate  
4.5  9  16  92 Glide  
− 15.0  − 27  6  98 Braking  
72.5  135  9  107 Accelerate  
92.5  174  6  113 Rapid acceleration  
37.5  69  21  134 Accelerate  
4.5  9  16  150 Glide  
− 15.0  − 27  6  156 Braking  
72.5  135  9  165 Accelerate  
92.5  174  6  171 Rapid acceleration  
37.5  69  21  192 Accelerate  
4.5  9  16  208 Glide  
− 35.0  − 66  9  217 Braking  
− 15.0  − 27  12  229 Braking  
4.5  9  71  300 Parking  



Fig. 3-5. The experimental results under BBDST conditions.  



Fig. 3-5. (continued). 

Fig. 3-6. Comparison of SoC and SoE estimation results in MAE and RMSE under BBDST condition.  



4. Conclusions

SoC and SoE of the lithium-ion battery have always been the focus and difficulty of BMS system condition monitoring, to achieve a high- 
precision collaborative estimation of SoC and SoE, based on the second-order RC equivalent circuit model, this paper realizes the online  
identification of model parameters through the FFRLS algorithm. It solves the problem that offline parameter identification data processing is 
not timely and cannot be characterized in real-time. For the traditional PF algorithm, this paper proposes the following improvements: the genetic 
algorithm is used to improve the re-sampling process of the traditional PF algorithm, which will solve the problem of particles lacking in 
the traditional PF algorithm; according to the Rao-Blackwell theory in statistical science, the marginalization of part of the linear state variables 
during the calculation of particle filtering, the distribution of the post-test is similar to a single Gaussian distribution, the Karman filter is 
updated to improve the accuracy of prediction when the condition of the remaining non-linear state variables. 

The improved GMPF algorithm is used to jointly estimate the SoC and SoE of lithium-ion batteries, it is verified under various working 
conditions and ambient temperatures: Under the HPPC working condition of 15 ◦C to 35 ◦C, the estimation accuracy of SoC is improved by 77.90 
% on average, the estimation accuracy of SoE is improved by 81.94 % on average; under the BBDST condition of 15 ◦C to 35 ◦C, the estimation 
accuracy of SoC is increased by 84.86 % on average, the estimation accuracy of SoE is improved by 78.8 % on average. The feasibility of 
the GMPF algorithm for the joint estimation of SoC and SoE of lithium-ion batteries is verified, compared with the traditional PF algorithm, the 
GMPF algorithm has higher estimation accuracy and stronger robustness. 

The scheme proposed in this paper has at least two obvious advantages: first, it can reduce the bad mutual coupling effect of SoC and SoE 
values, estimate SoC and SoE simultaneously at the same time scale, and improve the estimation accuracy of SoC and SoE; Secondly, it can be 
applied to a variety of working environment temperatures, and can obtain high estimation accuracy in a variety of working environment 
temperatures. 

The GMPF algorithm can provide an effective reference for BMS system development and upgrading, but it also has shortcomings. For 
example, the ambient temperature range considered in this paper is not enough, and the working conditions of lithium-ion batteries in 
extremely low temperature, extremely high temperature, temperature over time, high and low voltage, and other harsh environments are not 
considered, and the experimental object of this paper is the battery cell, without considering the situation of the battery pack, so in the follow-up 
study, we will make further analysis for the above situation. 
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