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Dynamic pricing of regulated field services using reinforcement learning

Rupal Mandaniaa and Fernando S. Oliveirab

aSchool of Business and Economics, Loughborough University, Loughborough, UK; bSchool of Management, University of Bradford,
Bradford, UK

ABSTRACT
Resource flexibility and dynamic pricing are effective strategies in mitigating uncertainties in pro-
duction systems; however, they have yet to be explored in relation to the improvement of field
operations services. We investigate the value of dynamic pricing and flexible allocation of resour-
ces in the field service operations of a regulated monopoly providing two services: installations
(paid-for) and maintenance (free). We study the conditions under which the company can improve
service quality and the profitability of field services by introducing dynamic pricing for installations
and the joint management of the resources allocated to paid-for (with a relatively stationary
demand) and free (with seasonal demand) services when there is an interaction between quality
constraints (lead time) and the flexibility of resources (overtime workers at extra cost). We formal-
ize this problem as a contextual multi-armed bandit problem to make pricing decisions for the
installation services. A bandit algorithm can find the near-optimal policy for joint management of
the two services independently of the shape of the unobservable demand function. The results
show that (i) dynamic pricing and resource management increase profitability; (ii) regulation of
the service window is needed to maintain quality; (iii) under certain conditions, dynamic pricing of
installation services can decrease the maintenance lead time; (iv) underestimation of demand is
more detrimental to profit contribution than overestimation.
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1. Introduction

The successful application of incentive (dynamic) pricing in
various industries (e.g., hotels and retail) continues to
encourage innovative ideas for companies to improve their
operations. We consider the case of installation and main-
tenance services, where the customer pays to receive an
installation service (e.g., a telephone line or broadband) cur-
rently at a fixed price and then pays an ongoing service
charge with the expectation that if a fault occurs with the
equipment, it will be repaired without having to incur add-
itional costs. The current practice is to deploy a fixed num-
ber of employees during periods of sustained levels of
demand (e.g., Monday to Friday, 9 a.m. to 5 p.m.) and then
to use more flexible solutions to meet unexpected levels of
demand, such as overtime or on-call employees.

The maintenance service has a stochastic demand with
seasonal and weekly fluctuations, whereas the demand for
installations is stable throughout the week. The demands for
these two services are independent of each other. Figure 1
summarizes the total demand per day. The average number
of installations, maintenance, and total jobs completed per
day decreases during the week, being the highest on
Monday and the lowest on Friday.

The company’s database used in this article includes daily
historical data on maintenance and installation intake, the
total workforce size, a description of the engineer’s skill
types, planned and unplanned absences, the number of jobs
completed, the number of overtime workers, and the work
stack left. In the database, planned absences range from
about 18% to 30% (Christmas time), with a mean of 23.5%,
whereas unplanned absences range from 0% to 6.3%, with a
mean of 2.5%. It is clear that even in the short-term
unplanned absences are a significant cost for the company.

We aim to mitigate the mismatch of demand and supply
by jointly managing the maintenance and installation serv-
ices. We propose that the employees for both services be
combined and a dynamic pricing policy be used for the
installation service. A higher price can be charged for instal-
lations during high maintenance demand, and price dis-
counts are offered on installations during periods of low
demand for maintenance. The pricing scheme aims to work
as a tool to reduce the number of overtime technicians,
increasing efficiency in managing field service operations.
This improvement, nonetheless, needs to strictly respect the
quality targets, primarily measured by the service lead times.
Their specific characteristics are central to our contribution.
The assumptions required to approximate the problem of
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the motivating case are as follows. The maintenance service
is free and subject to a service level agreement, the demand
for the two services is not correlated, and additional resour-
ces are available at a higher cost; the maintenance service
has to be provided within a specific time frame following
the request because of regulations, and the firm has a fixed
number of available workers for each day of the week.

This article models the problem as a contextual multi-
armed bandit problem and uses a reinforcement learning
technique to approximate optimal prices. The main man-
agerial results are as follows. Dynamic pricing combined
with resource management increase profitability. The regula-
tion of the service window is needed to maintain the service
quality. Dynamic pricing of installation services can decrease
the maintenance lead time. The underestimation of demand
is more detrimental to profitability than demand overesti-
mation. The main contribution of this article is to consider
the interplay of shared resources and dynamic pricing of
one service to meet the regulation constraint of the other
free service.

The rest of this article is organized as follows: Section 2
provides a literature review; Section 3 models the interaction
between dynamic pricing and resource management; Section
4 uses reinforcement learning to determine an optimal pric-
ing policy; Section 5 summarizes the major analytical results;
Section 6 summarizes the numerical results. Finally, Section
7 concludes the article.

2. Related literature

Resource flexibility and dynamic pricing (also known as
responsive pricing) are two effective strategies for mitigating
uncertainties in production systems (Hariharan et al., 2020).
In production systems, resource flexibility requires the firm
to invest in a flexible resource capable of producing multiple
products to adjust supply to the realized demand.
Responsive pricing influences demand to reduce the mis-
match between demand and supply, reducing demand vola-
tility and investment in production capacity. For production
systems, resource flexibility comes with a higher investment
cost in possibly more expensive facilities. It is more valuable
when product demands are negatively correlated, and substi-
tutability among products is low. As product substitutability
increases, it becomes cost-effective to switch demand
through responsive pricing (Lus and Muriel, 2009).

Extensive reviews on the interplay of pricing and resource
management have been provided by Chan et al. (2004), Chod
and Rudi (2005), Ding et al. (2007), Chen and Simchi-Levi
(2012). More recently, Luong et al. (2017) provides an exten-
sive review of pricing theory for resource management about
the 5G wireless network; Sharghivand et al. (2021) survey auc-
tion mechanism design for cloud resource management and
pricing. Bish and Suwandechochai (2010) considered two sub-
stitutable products with one flexible capacity. They studied
how the degree of product substitution and the level of oper-
ational postponement affect optimal capacity decisions. Goyal
and Netessine (2010) investigated the trade-off between vol-
ume and product flexibility about the impact of demand cor-
relations for a two-product setting. They found that volume
flexibility helps mitigate aggregate demand uncertainty and
product flexibility helps with individual demand uncertainty
for each product. Ceryan et al. (2013) studied a joint mechan-
ism for dynamic pricing and resource flexibility to manage
demand and supply mismatches across multiple products.
They found that the presence of flexible resources helps to
maintain stable price differences across different items and
significantly improves profits. An overview of multi-product
models is given in Chen and Chen (2015).

More recently, Chen and Chen (2018) explored dynamic
pricing for two substitute products with several business rules,
considering both inter-product and inter-temporal demand
substitution; Hariharan et al. (2020) investigate capacity
uncertainties and disruptions caused by temporary produc-
tion shutdowns, faulty manufacturing processes, and natural
or man-made disasters; Vicil (2021) studied inventory ration-
ing as a strategy to help organizations to limit the growth in
inventory through inventory pooling and differentiating serv-
ices among different customer classes. Asheralieva and Niyato
(2020) provide a detailed survey of resource management and
pricing in the internet of things with blockchain as a service,
using reinforcement and deep learning.

Our company does not have complete information about
the installation service’s demand process in our study. For this
reason, learning (i.e., the bandit algorithm) is proposed to
estimate the installation service’s value function and near-
optimal pricing decisions. The algorithm aims to determine
the “right prices” to maximize profit. Nonetheless, if from the
learning process it arises that a fixed fee is the most profitable
strategy, then the optimal policy keeps the price constant.

As the decision-maker does not know the probabilities
associated with the different states of demand for installa-
tions services, and as the firm has incomplete knowledge of
how the pricing policy impacts customer behavior, it seems
that the multi-armed bandit problem is an excellent tool to
study this problem as, although simple, it can capture the
complexities of economic systems (Sutton and Barto, 1998).
The contextual multi-armed bandits are ideal for capturing
non-stationary environments (i.e., the underlying model of
the changes in the problem settings over time) where some
of the variables characterizing the process are observable.
Still, other variables are such that the decision-maker may
be unaware of their existence. Misra et al. (2019) modeled
the problem with incomplete information using multi-armed

Figure 1. Average number of installation and maintenance jobs completed
per day.
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bandits with statistical machine learning to identify con-
sumer demand functions.

The multi-armed bandit problem is not amenable to an
analytical solution. Instead, it is studied by numerical meth-
ods, which account for the necessary learning and required
optimization used by the decision-maker to maximize profit
and revenue or increase efficiency. For this reason, we build
on existing literature by using reinforcement learning. The
ease of adopting learning models across industries has
increased with greater accessibility to data and increased
storage capacity. Reinforcement learning is shown to be a
powerful tool for dynamic pricing (Cheng, 2009; den Boer,
2015; Rana and Oliveira, 2015).

Kim et al. (2016) effectively uses reinforcement learning
algorithms to price electricity and learn customers’ behavior
dynamically. Maestre et al. (2019) consider a reinforcement
learning pricing model which includes fairness in the meas-
ured reward to allocate goods equally between different
groups of customers. Bondoux et al. (2020) study the use of
reinforcement learning for airline revenue management,
showing that exploration costs should be considered in the
algorithm. Kastius and Schlosser (2021) use reinforcement
learning to solve dynamic pricing problems in competi-
tive settings.

This article is the first to consider applying reinforcement
learning to find near-optimal pricing strategies, implicitly
considering demand and capacity uncertainties for field ser-
vice operations.

3. Modeling the field service operations

This is a two-stage model (Table A.1, in the Appendix, sum-
marizes the notation.). In the first stage, we make installation
pricing decisions using information about expected demand
(maintenance and installation) and expected absent workers.
In the second stage, once the actual demand is realized, as a
recourse action, the number of overtime workers required to
satisfy demand is calculated, taking into consideration the
lead time constraints and actual absent workers.

The firm’s planning horizon is a week. The decisions are
made for every working day t 2 f1, 2, ::,Tg, where T is the
number of working days. We assume a fixed number of
contracted engineers, which is in line with the company’s
current practice. On any given day, the maximum number
of workers assigned to installation and maintenance services
is ft; this already considers planned absences. At stage 1, the
decision variables are the number of technicians, at day t,
who are assigned to maintenance services (eMt ), and the
price charged for installation at time t, pt. These prices are
calculated taking into account the expected demand and the
available capacity, ft � eMt , and the respective number of
technicians assigned to installations, eIt : Then, at stage 2,
after observing demand for both types of services, for a
given day t, we need to compute the number of technicians
working overtime in installations (oIt) and maintenance
(oMt ). The daily overtime salary of a technician is k0.

There is a set of stochastic variables that condition the
field service operations problem at day t: first, the number

of absent workers for installation (aIt) and maintenance (aMt )
services; second, the new demand for installation (dIt ) and
maintenance (dMt ) services,

Additionally, these are the auxiliary variables used in the
model. For each day t: (i) the work stacks for installation
(SIt) and maintenance (SMt ) services are cumulative variables
representing the number of jobs in the respective queues,
and are indicated by capital letters; (ii) the lead time of
maintenance jobs LMt and the maximum number of days, �L,
imposed by the regulator as part of the quality of service;
(iii) the productivity per technician assigned to installation
(bI) and maintenance (bM). The engineer’s productivity is
determined by the number of jobs the engineer can com-
plete in a day.

The model is summarized by programs (1) and (2). We
aim to find a pricing policy that maximizes the expected
revenue and minimizes the expected cost of overtime work.
For this reason, in the program (1), we constrain the solu-
tion to meet expected demand and quality constraints.

According to the problem design, we estimate demand
for expected maintenance jobs, calculate the resources
required to meet the lead time constraint, and, hence, deter-
mine the available resources for installation jobs. Then, the
capacity available for installation on different days is used to
derive a pricing policy. The prices are displayed before the
actual demand is realized and are such that the allocated
resources are sufficient to meet demand. The major uncer-
tainty factor is not the level of demand on a given day, as
bookings are made in advance, and paying customers are
unlikely to drop the appointments. The most crucial uncer-
tainty source is the number of technicians available for
maintenance and installation and, therefore, the need for
overtime work. For this reason, in the recourse problem (2),
we use the number of overtime hours required from the
available technicians as, in general, we do not expect techni-
cians to be reallocated to a different type of task.

The decisions in the program (1) are made once a week,
given the expected demand for maintenance and installation
and the expected number of absent workers, where the
number of engineers, eMt , and eIt are non-negative integers,
and the prices pt are positive real numbers. The central fea-
ture of this optimization procedure is the inclusion of deci-
sions made at different times: the initial allocation of
technicians and the pricing of installation services are
decided in the first stage when demand and the number of
absent workers are both unknown. The expectation used as
a basis for these stochastic variables requires knowledge of
the probabilities associated with different demand levels and
the number of absentees for all possible installation prices.

max
pt, eMt , eIt

XT
t¼1

E dIt
� �

pt �
XT
t¼1

E oIt þ oMt
� �

k0 (1a)

subject to :

E dMt
� � � bM eMt � E aMt

� �� �
, 8t

(1b)

E dIt
� � ¼ bI eIt � E aIt

� �� �
, 8t (1c)
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E dIt
� � ¼ Dðp1, :::, pTÞ, 8t (1d)

E SMt
� � � �LbM eMt � E aMt

� �� �
, 8t (1e)

eMt þ eIt � ft , 8t (1f)

e jt � 0, j ¼ I,M, 8t (1g)

pt � 0, 8t (1h)

The firm’s objective is to maximize the expected weekly
revenue from installations, as represented by (1a). It com-
bines the capacities for maintenance and installations with
dynamic pricing; the demand for installation services is
influenced by the maintenance demand to manage resources
better and reduce the need for technicians’ overtime. The
price charged for an installation at day t, pt, is a function,
possibly nonlinear, of the expected demand for installation
and maintenance services each day and the available resour-
ces. Therefore, this is a bi-level optimization problem with
incomplete information.

Equations (1b) to (1e) relate the decisions on the number
of technicians allocated to the different tasks to the expected
demand and number of absences on any given day. These
are unusual constraints as they require knowledge of the
probabilities associated with the unobserved demand and
behavior of employees and are estimated by the firm. In the
first stage, for each day, the decision-maker chooses the
number of technicians assigned to the two jobs without
knowing the actual demand and the number of absent work-
ers. These decisions are based on the probability associated
with the different scenarios. In the second stage, after
observing demand and the number of absent workers for
each day t, the number of workers required to meet demand
is calculated.

For the maintenance service, (1b) is the equilibrium con-
dition, which specifies that we allocate enough resources to
maintenance services to meet expected demand. In contrast,
at the same time, constraint (1e) specifies that the expected
waiting time for the service is within the limits of quality.
This constraint imposes that the expected stack size of
maintenance jobs is within the quality constraints. The con-
straint considers the expected extent of technicians available
for the job. However, it does not take into consideration the
expected extent of overtime work as this resource should be
used exceptionally. In the first stage, we do not plan over-
time work; we prefer to use our contracted technicians to
manage demand.

On average, overtime is equal to the number of hours of
absent work. Still, as we prefer to use the cheaper resource,
we need to subtract expected absences, so these are compen-
sated by regular technicians instead of overtime work.
Overtime work is still used to cover for unexpected absen-
ces. This is a complex set of constraints as we have a cumu-
lative variable SMt interacting with the decision variables eMt :
Nonetheless, the relationship between these variables is lin-
ear, as discussed in Proposition 5.2. On the other hand, the

management of installations is more straightforward than
maintenance service management. As the firm can use price
to avoid peak demand and control the number of services it
needs to provide, the lead time is unimportant. Instead, it
attempts to meet the expected number of requests for new
installations each day, and there is no need to control the
size of the work stack.

Similarly, constraint (1c) specifies that given the expected
number of workers free to provide installation services, and
the respective expectation about absenteeism, the price set
needs to be such that the expected demand equals the resour-
ces expected to be available for this service. Constraint (1d) is
the demand function, which states that at any given time, the
demand for installations is a function (possibly nonlinear) of
the prices for each day of the week. Therefore, a customer
decides when to have the installation service provided by
comparing the prices across all the days of the same week.
Constraint (1f) represents the upper bound on the number of
technicians available to be allocated to both services. Likewise,
constraints (1g) and (1h) state that both the number of techni-
cians and the installation price are non-negative.

The expected number of workers allocated to overtime
work needs to be learned over time. After observing demand
and absenteeism then, the actual overtime work is mini-
mized in the program (2), which is a deterministic cost
minimization problem with decisions (assumed to be non-
negative real numbers) taken every day of the working
week. This means that first, at the start of the week, we
maximize the expected revenue. Then, in the second stage,
each day, we minimize costs.

For all t :
min
oIt , oMt

ðoIt þ oMt Þk0 (2a)

subject to :
dIt � bI eIt � aIt þ oIt

� �
,

(2b)

dIt ¼ Fðp1, :::, pTÞ (2c)

SMt � �LbM eMt � aMt þ oMt
� �

, (2d)

S j
t ¼ S j

t�1 þ d j
t � b j e jt � aj

t þ o j
t

� �
, If t 2 f2, ::,Tg,

j ¼ I,M,

(2e)

S j
t ¼ S j

0 þ d j
t � b j e jt � aj

t þ o j
t

� �
, If t ¼ 1 j ¼ I,M,

(2f)

oj
t � 0, j ¼ I,M: (2g)

In the linear program (2), at the second stage, after observ-
ing demand and the number of absent workers, the firm
minimizes the cost of overtime work (2a) subject to the con-
straints regarding the obligation to meet the demand for
installation (2b) and keep the minimum level of service

IISE TRANSACTIONS 1025



quality (2d). This second stage problem is solved daily after
demand is known and the number of absent workers
is observed.

Inequalities (2b) and (2g) describe how the number of
overtime technicians assigned to installations is computed.
When the actual demand exceeds expectations, the number
of overtime technicians assigned to the task is increased to
meet the actual demand. (This recourse measure is required
because the prices are posted before the actual demand is
observed.) When demand is less than expected, the overtime
work is set to zero, as enough technicians are assigned to
meet the demand requirements. Dðp1, :::, pTÞ is the expected
demand function and Fðp1, :::, pTÞ is the realized or actual
demand function: these demand functions are unobservable,
complex to define. The price elasticity of demand is assumed
to be non-zero, so the monopolist is limited in the ability to
raise prices. This limitation arises both from consumer
behavior and the potential for regulatory intervention.

In the second stage, after observing demand and absent
workers, the firm determines the required number of over-
time technicians. This decision depends on the observed
demand and lead time constraint (2d).

As b jðe jt � aj
t þ o j

t Þ represents the number of jobs com-
pleted (as we work with a very limited capacity) at time t
for service j, the computation of the number of technicians
assigned to maintenance overtime involves the use of the
work stack equations, both for maintenance and installation,
as described by (2e) and (2f). The value of the work stack at
day t is equal to the accumulated work stack at time t – 1,
as increased by the number of new jobs arriving at day t
and reduced by the number of assignments completed at
day t, as represented by (2e). Then the work stack accumu-

lated by the end of the previous week (S j
0) is carried over to

day 1, as represented by (2f). These work stacks are required
due to unplanned absences or unexpected service delays.
Otherwise, some of the jobs may not get completed. For this
reason, we expect the work stack to be very small or empty
most of the time for installations but remain high for main-
tenance jobs. The work-stack calculates the number of out-
standing jobs at the end of each period. As a by-product, we
calculate the observed maintenance lead time using (3). The
lead time at time t is defined as the number of days it takes
to complete the maintenance work stack at time t given the
resources assigned to maintenance, the number of absent
workers, and overtime workers assigned.

Therefore, the lead time and size of the work stack are
functions of the number of workers assigned to each type of
service and the job’s arrival rates. As the numbers of jobs
arriving (dMt and dIt ) are stochastic variables, the lead times
are also affected by the uncertain demand. Therefore, by
managing dIt using dynamic pricing, the firm reduces the
volatility of installation requests.

LMt ¼
SMt

bM eMt � aMt þ oMt
� � , 8t: (3)

Moreover, it follows from (3) that when the regulator
controls for the quality of the maintenance service, which is
required to be less than a maximum number of days, �L, this

indirectly imposes an upper bound on the maintenance
work stack, as summarized by constraint (2d). To ensure
this constraint is not violated, the firm uses overtime work
whenever job arrivals or the number of absent technicians is
more significant than expected. Although this equation is
linear, it is more complex than it seems because it is bi-level:
the decision on the number of technicians eMt is made in the
first stage before the demand for maintenance and the
absentees are observed, and oMt is a recourse decision, used
in the second stage to ensure that the constraint
is respected.

Therefore, an essential component of the workforce is the
number of technicians working overtime in maintenance
services, oMt , as in practice, it allows the management of
field service operations to adapt to unforeseen events with
demand behavior and percentage of absentees, and these
overtime technicians are used by the management of the
field service operations to meet the lead time constraint.
Additionally, as the total number of technicians in any given
week is fixed by the contractual agreement, we need to
account for this constraint when assigning them to different
services. Moreover, as the numbers of absent workers for
installations (aIt) and maintenance (aMt ) are both random
variables, the number of technicians available at day t is,
therefore, equal to ft � aIt � aMt , and the absentees need to
be compensated for by overtime work.

4. Dynamic pricing using reinforcement learning

In Section 3, we have described the key features of the prob-
lem. However, the model cannot be solved as a stochastic
program, because we do not know the demand for installa-
tions at different prices. For this reason, in this section, we
show how the problem can be solved using reinforce-
ment learning.

We assume that the pricing action in one week does not
affect the following week’s demand, and that the underlying
demand for installation is stationary concerning time,
because the company’s data does not show any significant
weekly fluctuations throughout the year.

We consider a three-step process. In the first step we use
the expected demand for maintenance (estimated using
Holt–Winters exponential smoothing, e.g., Hanke and
Wichern, (2005)) equation (1b), and lead time constraint
(1e) to calculate the number of workers required for main-
tenance services, the remaining resources are available for
installation jobs: kIt ¼ ft � eMt , an upper bound on eIt : For
example, if the expected demand for maintenance at day
t¼ 1 (Monday) is 11,900, and the maintenance work stack is
18,000, then the expected absence for maintenance work is
100, the lead time L¼ 1.5, and productivity is 2.8 jobs. The
maintenance resources available at any given time are con-
strained by (1b), 11900 � 2:8ðeMt � 100Þ, and (1e), 18000 �
ð2:8� 1:5eMt � 100Þ: Therefore, in this example, the main-
tenance resources are such that eMt � 4386:

The second step of the process occurs after observing the
actual demand for maintenance and installations. Given
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the current price at day t, the firm decides, as a recourse,
the number of overtime workers employed.

In the third step, using a reinforcement learning algo-
rithm, the firm updates the pricing policy (p) for installa-
tions, taking into account the new observed information.
Customers may not accept price changes for an installation
product. Still, a variable delivery charge is more likely to be
accepted, paying a premium to receive the service at peak
time rather than off-peak. Those that are “time-poor” are
willing to pay for popular peak times, and those that are
more price sensitive may wait longer to receive the service
at a discounted price. The company considers selling instal-
lations for T days of the week. For example, if T¼ 5, then
Monday, Tuesday, Wednesday, Thursday, and Friday should
constitute five different services. The service price on one
day can affect the demand for the service on another day,
and the website only displays the price for T days at a time.

The decision-maker knows the state of the system, the
number of workers assigned to installations during the week
KI ¼ ðkI1, kI2, :::kItÞ from day 1 to T, the discrete state, and
selects a discrete action, the price for installation jobs, for
each day of the week, so that the demand and price depend-
encies between days are taken into account, i.e., pt is a func-
tion of the expected demand for each of the days in the
planning horizon, and P ¼ ðp1, p2, :::, pTÞ is the vector of
installation prices in the time horizon, together with the
number of technicians to be assigned to installations
ðeI1, eI2, :::, eITÞ: KI comes from a discrete set of possible states,
and P comes from a discrete set of possible pricing actions.
Let the unobserved probability distribution associated with
the demand for installations at day t depend on the installa-
tion prices during the planning horizon. These prices are set
using reinforcement learning, with an �-greedy policy, such
that at the first stage, p : KI ! P specifies the prices that
should be set for installation jobs each day of the week.

Note that the pricing policy is not dependent on the
week w of the year, as demand for installation is stationary
throughout the year. Therefore, the week of the year does
not matter because the demand in each week is similar: for
this reason, demand can be learned from one week to the
next. The amount of overtime work is highly constrained
and will be a function of demand and price as well as the
lead time constraint. Hence in the second stage after observ-
ing the actual demand dIt , d

M
t in state KI, overtime work

oIt , o
M
t is calculated, for any t, as oIt ¼ maxfdIt=bI � ðkIt �

aItÞ, 0g and

oMt ¼ max

�
SMtþ1
bMLMt

� eMt þ aMt

�maxfðkIt � ðaIt þ dIt=b
IÞ, 0g, 0

�
:

Note that dIt=b
I does not need to be an integer. For

example, if the overtime value is 2.5, we would have two
workers working for the full day and one working for half
a day.

Let cðKI , PÞ be the profit contribution from taking deci-
sions P in state KI calculated using cðKI , PÞ ¼ rðp1Þ þ rðp2Þ þ
:::þ rðpTÞ � ðoMt þ oItÞk0: Thus, the profit contribution equals

the revenue gained each day t, rðptÞ, minus the number of
overtime workers for maintenance and installations multiplied
by the overtime wage k0. The revenue gain rðptÞ is equal to
the number of new installation jobs dIt multiplied by price pt:
rðptÞ ¼ dItpt: Since demand for installation and maintenance
services and the number of absent workers are stochastic vari-
ables, the profit contribution c is a random variable. cðKI , PÞ
captures the constraints in Program 2 (the recourse model in
Section 2) by calculating overtime work using the work stack,
the lead time, the realized demand, and actual absences in the
same way.

Therefore, the objective is to maximize the expected con-
tribution:

E
p
XT
t¼1

dItpt � ðoMt þ oItÞk0
� � !

(4)

where Ep is the expected value given the policy p: The
contextual bandit algorithm has been proposed to solve
approximately large-scale problems. In this framework,
QpðKI ,PÞ denotes the expected contribution when starting
at state KI, taking action P and following policy p. Qp is the
state-action value function for policy p.

In this paradigm, the decision-maker interacts with the
environment by executing a set of actions. The environment
is then modified, and the agent perceives a scenario and a
reward signal. Through this learning process, an objective
strategy is defined, and the learning strategy takes place
through trial and error in a dynamic environment. Over the
course of the learning process, the Q-values of every state
action QðKI , PÞ are stored and updated. A Q-value repre-
sents the usefulness of executing a pricing action P when
the environment is in a state KI. This article considers the
dynamic pricing model of similar services over a finite sell-
ing horizon, allowing the value of the state–action pairs
from one selling horizon to the next to be learned. Each
week w refers to multiple instances of the dynamic pricing
problem in consecutive time horizons, and the transition
probabilities are the same for different episodes. The algo-
rithm consists of updating, at each week w, the estimation
of Qw to Q� from the current observed transitions
and rewards.

The bandit updating rule is represented by (5), where
awðKI ,PÞ is the learning rate. The learning rate is equal to
1=nwðKI , PÞ, where nwðKI , PÞ is equal to one plus the num-
ber of times the state–action pair ðKI ,PÞ Q-value has been
updated before time w. cw is the realized contribution in
week w for taking action P in state KI.

Qwþ1ðKI , PÞ ¼ ð1� awðKI , PÞÞQwðKI , PÞ þ awðKI , PÞcwðKI , PÞ
(5)

The reinforcement learning algorithm allows us to find
the optimal price to maximize the profit gained by installa-
tion services, given the number of resources available for
installation at a regular wage in week w, as summarized in
Figure 2.

Before discussing the dynamic pricing algorithm in pro-
cedural form (as presented in Table 1), two essential ele-
ments must be introduced: the exploration and learning
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rates. The absence of perfect prior information concerning
the demand model introduces a new component into the
dynamic optimization problem, the trade-off between
exploration (attempting non-optimal decisions to improve
the current policy) and exploitation (choosing the best pol-
icy thus far to maximize the expected profit). The longer
one learns the demand; the less time is spent exploiting pri-
ces that optimize revenue.

The algorithm’s objective is to obtain an accurate esti-
mate of the near-optimal policy based on observations

during the exploration phase while keeping the exploration
rate low to limit revenue loss over this learning phase. The
exploration rate (�) that we have chosen is an �-greedy pol-
icy at a rate 1=w so that the learning progresses as the
exploration rate decreases, but becomes fixed once it reaches
0.1 and then remains constant at this rate. This is because
the environment may be non-stationary; hence, setting the
exploration rate in this manner ensures that a new policy is
learned if the environment changes. The learning rate is set
in the same way.

Figure 2. Framework of the proposed approach.

Table 1. An online dynamic pricing algorithm for installations using a lead time constraint to determine inventory level.

Step 1: Input parameters: state space, pricing actions, learning and exploration rate, policy rule
Step 2: Initialize QðKI , PÞ;
For w¼ 1 (first week)
Repeat for each week w!1
Step 3: First stage: Forecast Repair using historical data for a week w
Step 4: Using constraints 1(b) and 1(e) to calculate resources required for maintenance
Step 5: Calculate the resources for installation KI using kIt ¼ ft � eMt 8 t ¼ 1:::T
Step 6: For state KI select an decision P according to the �-greedy (1/w)
(For the neighborhood search, the exploration method follows Table 2) policy p: KI ! P
Step 7: Display prices P
Step 8: Second stage: Observe the actual demand in week w for each t, dIt and dMt

Calculate overtime workers using the observed demand in a week w for each KI with prices P
8 KI at price P: cðKI , PÞ ¼PT

t¼1ðdItpt � ðoMt ðkItÞ þ oItðkItÞÞk0Þ
Step 9: Third stage: Update Q-values 8 KI at price P:

QðKI , PÞ  QðKI , PÞ þ awðKI , PÞðcðKI , PÞ � QðKI , PÞÞ
Step 10: w  w þ 1
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The algorithm starts by initializing the Q-values. The fol-
lowing steps are repeated for each episode w. State KI is the
technician’s capacity assigned to instal jobs for day 1 to T in
week w. First, the expected number of maintenance jobs is
forecast. Then, the number of workers needed to perform
the maintenance jobs to meet the regulation (lead time) con-
straints is calculated and deducted from the total. The pric-
ing decisions P are selected from an �-greedy policy. Then,
after observing demand for both services, we calculate the
contribution profit for all states KI for price P. We can cal-
culate the contribution profit for all KI and not just the state
in a week w because demand depends on price P and not
on state KI. Hence we can calculate the overtime work for
installation for each state KI 2 K and determine its contri-
bution profit. This significantly reduces the dimensions of
the problem, as demand learning in any state can be used to
update the values in all other states for that price action.
Finally, the Q-values of the state actions are updated, and
the process is repeated for the next week. A simple illustra-
tion of the calculation can be found in Appendix A.2.

The Q-learning algorithm has many advantages; however,
the curse of dimensionality is present in large practical
problems. To address this challenge, researchers proposed
using linear and nonlinear approximators to estimate the Q-
values without needing to visit all state–action pairs (Sutton
and Barto, 1998). We try to use the new information learned
in the visited state to update other related state-action pairs.

We also introduce smarter exploration by looking at an
extension of the algorithm. Let Q� denote the optimal
expected Q-value of the state KI when every pricing and
overtime decision is executed in each state infinitely. As ran-
domly exploring the state of pricing policies can be very
costly due to non-optimal policies, we now consider an
exploration strategy that uses the knowledge of the actions
already tried to select future pricing actions. We call this
algorithm the Bandit With Neighborhood Search, as sum-
marized in Table 2. We assume a solution of a vector of
pricing action P 2 PðKIÞ and the profit contribution at
cðKI , PÞ: Each solution of P 2 PðKIÞ has an associated set of
neighbors, i.e., the prices near P, a subset N(P) of all the
possible pricing policies, NðPÞ � PðKIÞ: Each solution P0 2
NðPÞ can be reached directly by a move operation. The
innovation of the neighborhood search is the way that the
exploration of pricing actions is selected. The Q-values are
updated as represented in Table 1.

We start with an initial exploration by randomly choos-
ing the pricing action from a discrete price set for n weeks.
After n weeks, we use the pricing action that generates the
most profit as our starting solution Pnow. We then select pri-
ces in the neighborhood of the best price solution pnow, q

(e.g., 0.9) of the time. We update our best solution Pnow if
the profit contribution with Pnext is higher.

5. Optimality conditions and structural results

In this section, we investigate the model’s main features.
First, we establish an upper bound on the optimal solution,
starting by assuming perfect demand forecasting: hence

equation (4) simplifies to maxptEð
PT

t¼1 d
I
tptÞ: The determin-

istic problem is defined as follows. At the start of the plan-
ning horizon, for each day t¼ 1,… , T, the company has a
vector of resources available for installations KI. Let the
finite planning horizon be represented by 0 � x � z.
Demand at time x is modeled as a vector of rates dIðxÞ ¼
ðdI1ðxÞ, :::, dITðxÞÞ that are a functions dIðP, xÞ of a fixed price
vector for the entire planning horizon P ¼ ðp1, p2, :::, pTÞ:

We assume that demand and revenue function
rðdIðxÞ, xÞ ¼ dIðxÞP satisfy regularity assumptions (Gallego
and van Ryzin, 1997) and salvages are zero. The price vector
P is chosen from a set of allowable prices. We can equiva-
lently view the firm as setting the vector of purchases rates
dIðxÞ 2 f(x), where f(x) is a discrete set of purchase rates,
which implies charging a vector of prices P ¼ PðdIðxÞÞ: The
firm maximizes the revenue over [0, z], given KI, denoted as
VðKIÞ, and subject to the capacity constraints, as repre-
sented by program (6):

VðKIÞ ¼ max
ðz
0
rðdIðxÞ, xÞdx (6a)

subject to :Ð z
0 d

IðxÞdx � KI , (6b)

dIðxÞ 2 f ðxÞ, (6c)

0 � x � z: (6d)

Moreover, let us define the run-out rate, price vector and
revenue, respectively, by dI0, P0 ¼ PðdI0Þ and r0 ¼ P0dI0:
Note that P0 is the price at which the firm sells exactly KI

resources. Let dI
�
be the least maximizer of the revenue

function rðdI� Þ ¼ dI
�
PðdI� Þ: Proposition 5.1 shows the opti-

mal solution for the deterministic case, which is an upper
bound on the stochastic case (i.e., Gallego and van
Ryzin, 1997).

Proposition 5.1. The optimal solution to the deterministic
problem is dI ¼ minfdI� , dI0g, 0 � x � z. In terms of price,
the optimal policy is P ¼ PD ¼ maxfP�, P0g, 0 � x � z.

Table 2. Neighborhood search Exploration Method.

Step 1: After initial exploration for n weeks
Step 2: Select a starting solution Pnow

Step 3: Record the current best-known solution (generating the most profit) by setting
Pbest ¼ Pnow and define best-profit ¼ cðKI , PbestÞ
Step 4: Choose Pnext 2 NðPnowÞ, use local exploration q times, and global exploration (1-q) times
Step 5: Re-set Pnow ¼ Pnext if cðKI , PÞ > best-profit, perform step 3.
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Finally, the optimal revenue over the entire horizon
is VðKIÞ ¼ minfr�, r0g.

In Proposition 5.2, we prove that constraint (1e) relating
to the cumulative stack size for maintenance services can be
operationalized in such a way that it is still linear.

Proposition 5.2. Let l stand for the lag period for which the
actual stack is known. Then constraint (1e) is equivalent

to eMt �
SMðt�lÞ
�LbM
þ EðaMt Þ:

Currently, the firm manages the resources for mainten-
ance and installation separately. There is a fixed number of
technicians assigned to maintenance eMt and to installations
eIt , in each day t, we continue by analyzing the effectiveness
of resource management under these conditions. The num-
ber of technicians is optimized at a fixed price p and the
overtime work on maintenance equals oMt ¼ maxfSMt �
�LbMðeMt � aMt Þ, 0g: In Proposition 5.3, we show that the
joint management of resources increases profit contribution,
even when the installation price is fixed. This is the first step
in improving how the technicians are currently managed,
focusing on the real-world scenario of scarce resources.

Proposition 5.3. Let the expected contribution to profit be
represented by (4), with a fixed price pt ¼ p. Additionally, let
the resources be scarce at day t so that one of the resources is
a binding constraint. In contrast, the other one has a slack
capacity, as defined by constraints (1b) and (1c). The joint
management of resources increases profit contribution.

Another critical issue central to our analysis is the main-
tenance regulation, which translates to the required service
quality controlled using the maximum lead time. In
Proposition 5.4, we analyze the effect of a decrease in the
maximum lead time, due either to regulation or the willing-
ness of the company to improve service quality, on the
number of technicians required to be available on the days
when resources are scarce. We prove that the increase in the
expected number of available technicians is directly propor-
tional to the decrease in the maximum lead time.

Proposition 5.4. Let the maximum lead time �L be a binding
constraint, such that EðSMt Þ ¼ �LbMðeMt � EðaMt ÞÞ at time t. A
decrease in this maximum lead time, L0 � �L, for any EðSMt Þ,
increases the required number of technicians available at t by

eM
0

t � E aMt
� �

eMt � E aM0t

� � ¼ �L

L0
:

On the other hand, this also means that a better alloca-
tion of resources may be attained if the company can reduce
the number of jobs in the queue when resources are scarce.
It seems that the maintenance service queue can decrease if
the resources are reallocated, so more technicians are avail-
able on low-demand days if there is an overall capacity
slack. For this reason, in Proposition 5.5 we prove that, even
when service prices are fixed, a decrease in the maximum
lead time, if accommodated by reallocating available resour-
ces from low to high demand periods, is not detrimental to
the contribution to profit, i.e., if the regulator, or the

company, decide to increase the quality of the maintenance
service, this may be achieved without compromising profit-
ability. This result also implies that, in general, due to the
fixed cost of the available workforce, there are multiple solu-
tions to the problem.

Proposition 5.5. Let the service prices be fixed so that the
profit contribution is equal to

PT
t ðdItp� ðoMt þ oItÞk0Þ and let

us define a partition such that t0 stands for days where cap-
acity is more than enough to meet demand and t1 stands for
days where capacity is fully used to meet the required max-
imum lead time. A decrease in this maximum lead time, so
that L0 � �L, has no impact on the profit contribution
if

P
t0ðeMt0 � EðaMt0 Þ � eM

0
t0 þ EðaM0t0 ÞÞ �

P
t1ðeM

0
t1 � EðaM0t1 Þ �

eMt1 þ EðaMt1 ÞÞ:
Next, in Proposition 5.6, we extend this result by proving

that the joint management of resources using dynamic pric-
ing for installations increases profit contribution and allows
better management of resources by decreasing over-
time costs.

Proposition 5.6. If the firm manages the resources jointly,
and expected demand is seasonal, i.e., for at least one time
t0 6¼ t, EðdIt0Þ � EðdItÞ, then dynamic pricing increases profit
contribution.

We now re-address the issue of service quality, analyzed
in Proposition 5.4, in the context of its interaction with
dynamic pricing. In Proposition 5.7, we show that dynamic
pricing of installation services increases profit contribution
when resources are scarce. If the price increase reduces the
demand for services large enough to free some technicians,
then it also increases maintenance quality.

Proposition 5.7. Let the constraint on lead time be binding,
such that, EðS j

t Þ ¼ �Lb jðe jt � Eðaj
t ÞÞ for j ¼ I,M at time t.

Dynamic pricing of installation services at time (a) t increases
EðdItpt � ðoMt þ oItÞk0Þ, and (b) if EðdItðptÞÞ < kIt , decreases
the maintenance lead time to

LMt ¼
SMt

bM eMt � aMt þmax kIt � E dItðptÞ
� �

, oMt
� �� � :

It follows from Proposition 5.7 that the firm can improve
service quality, increase revenue, and decrease costs by
introducing dynamic pricing when resources are scarce. The
condition EðdItðptÞÞ < kIt guarantees that the reduction in
demand for installation services at time t needs to be large
enough to free up resources to be used in maintenance. The
reduction of lead time only occurs if the resources freed for
maintenance are greater than the overtime technicians hired,
i.e., maxðkIt � EðdItðptÞÞ, oMt Þ, otherwise, there is a reduction
of costs due to less overtime work, but the lead time
remains the same.

6. A case study

This section illustrates our algorithm with a case study ana-
lyzing the company’s pricing policies. We use the follow-
ing parameters:
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1. The reference price is indexed to 100. Based on the his-
torical data, the average demand at this fixed price is
around 6600 installation jobs. The price set considered
in the simulation is {105, 104, 103, 102, 100, 98, 96, 95}.
As price differentiation is regulated, we assume the ser-
vice charges should not vary more than 10%.

2. The cost of overtime work is 120 per day (when com-
pared with 60 for the regular pay rate).

3. The productivity parameter is estimated using historical
data and is equal to 2.8 and 2.5 jobs per technician on
any given day for maintenance jobs and installations,
respectively.

4. Lead times are between 1 and 1.5 days during the week-
days. Thus, the target for the maximum lead time is set
at 1.5.

5. As the underlying functional relationship between price
and demand is unknown, we have used both linear and
nonlinear functions in these simulations, with stochastic
parameters, to compare the effectiveness of the algo-
rithms. Initially, we generate the data using a steep and
flat demand function, including interactions between
days. (8 t, j 6¼ t, dIt ¼ 20000� 134:75pt �

P
j 30ðpt � pj)

and 8 t j 6¼ t, dIt ¼ 13150� 65:75pt �
P

j 30ðpt � pj).

6. The installation resources can vary daily from 2300 to
2900 based on historical demand data for maintenance.

We first examine the performance of the learning algo-
rithms. Our initial Q-values can be set using sensible
demand functions from market research to avoid loss at the
initial exploration stage. If we assume a demand structure
(e.g., linear) and this is the actual demand structure, we can
arrive at an optimal policy quite quickly. If we assume a
demand structure and it is the wrong structure (e.g., if the
actual design was exponential and we took it to be linear,
for example), then we will lose revenue because the model

has been misspecified (for a detailed discussion of this point
see, e.g., Besbes and Zeevi, (2009)). We refer to this as a
parametric misspecified model.

Reinforcement learning is used to determine the dynamic
pricing policy for installations. We compare our model-free
approach to parametric learning algorithms to understand
the advantages and limitations of learning algorithm
approaches for our problem. We consider the following
experimental set up, where the true demand is dIt ¼
l� htpt �

P
j hjðpt � pjÞ and l is the customer arrival rate

drawn randomly from a uniform distribution ½19000,
21000�, ht ¼ 134.75 and hj ¼ 30. The simulated demand
can vary in the range [9399, 4551], as it depends on the ran-
dom customer arrival and the prices selected for service
each day.

The parametric misspecified model is defined as
le

btptþ
P

j
b jðpt�pjÞ, for all j 6¼ t: The demand is assumed to

follow an exponential model, and the algorithm learns its
parameters from actual data. As the real data, in reality, is a
linear function of price, the learned model is misspecified.
For this reason, an exponential, misspecified model is not
expected to converge to the optimal policy.

The average percentage difference in contribution meas-
ures the performance of the four algorithms compared to
the fixed price policy. We have run 1000 experiments for
each algorithm, and the results are recorded in Table 3.

From Table 3, we can see that the parametric algorithm
outperforms both these algorithms when the assumed model
is consistent with the true demand function. Otherwise, the
parametric algorithm makes less contribution compared
with the fixed price policy.

The reinforcement learning algorithm can learn in a
changing environment. As illustrated in Figure 3: the initial
demand was a flat demand with interaction; after the
32-week mark, the demand for installations becomes more
price sensitive. For this reason, the current pricing policy is
not optimal, as it results in a lower contribution, given the
new demand. Then by updating the Q-values through inter-
action with the new demand function, the algorithm finds a
better pricing policy.

When the parametric demand model is well specified, a
large amount of data is not required to learn the parameters
in the demand model, similar to Besbes and Zeevi (2009)).

Table 3. Profit contribution under four learning algorithms compared with
fixed pricing.

Algorithm Percentage Difference

Bandit 2.3
Bandit (neighborhood search) 3.2
Parametric(well structured) 4.0
Parametric(misspecified) �0.5

Figure 3. Learning the Q-value for a changing demand.
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When the demand structure is unknown, more exploration
and data are needed to learn the optimal policy, even as
much as 1000 weeks of data. The service provider works
nationally around the UK, and the data in similar regions
can be pooled to learn the value of state and action pairs.
The algorithm starts with the best-guessed Q-values (using
the demand they believe is the genuine demand) so that pri-
ces are set more proactively until the near-optimal policy is
learned. The Q-value learns the value of the optimal policy,
independently of the functional form of the demand, and
considers (implicitly) the availability of workers and inter-
action between the pricing policies for the different days.

We explore different learning and exploration rates for
the bandit algorithms. The Q-values are set to zero, and for
the first 10 weeks, we set the initial learning and exploration
rates at 0.2, 0.4, 0.6, and 0.8. After 10 weeks, the exploration
rate is reduced to a minimum of 0.05. The rate of 1=w
decreases as the number of weeks increases. When compar-
ing different learning rates, the exploration rate is fixed to
1=w, and when varying the exploration rate, the learning
rate is set to 1=w: Figure 4 shows that the bandit algorithm
using neighborhood search performs better than the bandit
algorithm when the initial rate of exploration is high.
Otherwise, it may perform worse, because it may get
trapped into exploring actions around a sub-optimal solu-
tion. Also, when the initial learning rate increases, we are
likely to find a near-optimal pricing policy faster.

Next, simulation experiments are used to compare the
performance of both models: the proposed model of joining
resources for installation and maintenance and applying
dynamic pricing to the former, compared to using two sep-
arate teams of resources for both services and considering a
fixed pricing policy for installation services. The models are
tested on data from October 1, 2019 to March 26, 2020. The
effects of forecasting errors on optimal pricing policies are
also analyzed. The number of workers required to meet ser-
vice-level agreements for the maintenance service is under-
forecast and over-forecast by 5%. The error of under-fore-
casting results in fewer workers being assigned to carry out
maintenance jobs than required. In this case, the dynamic
pricing policy with the under-forecasting error assigns some
maintenance capacity to installations. Then, additional

workers are needed for overtime to meet the service-level
agreement for the maintenance service. On the other hand,
when the number of workers required for the maintenance
service is over-forecast, fewer workers are assigned to instal-
lations compared with a perfect forecast.

Table 4 illustrates the percentage increase in profit contri-
butions for dynamic vs. fixed pricing under different
demand functions for installation services. We used 1000
simulations to compute the 95% confidence intervals. The
four demand functions considered are: (i) flat, (ii) flat with
interactions between days, (iii) steep, and (iv) steep with
interactions between days.

As expected, the steep demand function results in a
higher percentage of contribution increase compared with
the flat demand. For the flat and steep demand with the
interaction between days, there is a higher contribution
increase compared with their demand function without
interaction, because the interaction effect can help shift
some demand from one day to another. All four demand
functions significantly improve contribution compared to
the fixed pricing strategy.

Table 4 also reports the effect of systematic forecasting
errors on the profit contribution. A 5% under-forecast or
over-forecast maintenance job can significantly affect the
profit generated by the dynamic pricing policies. As
expected for all four demand functions, the perfect forecast
has the most substantial positive contribution. An over-fore-
cast of maintenance also increases the profit contribution
compared with fixed pricing. In this case, even though there
is no increase in overtime cost, as the salaries are given, it
leads to a rise in resources allocated to installations which,
under high-demand days for maintenance, increases the use
of overtime work.

Finally, we have studied the effects of the lead time for
maintenance services on the profit contribution to better

Figure 4. Impact of exploration and learning on profit contribution.

Table 4. 95% Confidence intervals for the percentage increase in contribution
for dynamic vs. fixed pricing.

Parameter Level
Perfect
Forecast

Over-
Forecast

Under-
Forecast

Demand (i) Flat (3.63, 3.78) (2.53,2.67) (1.2,1.4)
(ii) Flat Interactions (4.12,4.28) (3.1,3.21) (1.91,2.10)
(iii) Steep (4.42,4.5) (3.31, 3.45) (2.60,2.80)
(iv) Steep Interactions (4.8,4.91) (3.30,3.40) (2.10,2.13)
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explain the effectiveness of dynamic pricing. The results are
summarized in Table 5. The confidence intervals show the
difference in contribution from increasing the lead time
requirement. For example, for a perfect forecast of mainten-
ance demand with a lead time of 3 days, the increase in
contribution compared with a fixed pricing policy with a
lead time of 1.5 is between 4.4 and 4.8%. Our results indi-
cate that dynamic pricing is less effective as the lead time
for maintenance jobs increases, because the maintenance
workforce can manage its demand more efficiently without
needing installation workers. Increasing the lead time from
1.5 to 3 days significantly impacts the profit contribution,
but deteriorates the quality of service. Increasing the lead
time to 5 days does not significantly increase profit and fur-
ther deteriorates service quality.

Table 6 shows an example of dynamic pricing. The aver-
age service charge is indexed to 100. We analyze how the
customers can get discounts or be charged more throughout
the week to manage demand. As shown, with dynamic pric-
ing for a Flat demand on a Monday, the premium charged
is 5%, and on a Thursday, the firm gives a discount of 3.5%.
The optimal pricing policy for each day of the week is com-
puted under different demand regimes. For example, the flat
demand function offers price discounts on Wednesday
(1.5%), Thursday (3.5%), and Friday (5%). The importance
of including the interaction effect can be seen in the differ-
ence in prices: by considering the possible cannibalization
effect between the different days, the price changes decrease.
We can see that under flat demand functions, the firm pro-
vides discounts, and the firm learns to have some days with
no discount under steeper ones.

7. Conclusion

This article is the first to explore the interplay of shared
resources and dynamic pricing, considering two field service
operations, and solving the problem using reinforce-
ment learning.

The main managerial results show that

1. Dynamic pricing and the joint management of resources
increase profitability by around 3%.

2. Regulation of the service window is needed to maintain
the service quality. In the numerical experiments, we
observe that an increase from 1.5 to 3 days in the

maximum lead time (deteriorating service quality)
increases profit contribution. Still, an additional boost
of the maximum lead time to 5 days has no statistically
significant impact on profit.

3. Under certain conditions, dynamic pricing of installa-
tion services can decrease the maintenance lead time.

4. Underestimation of demand is more detrimental to
profit than overestimation. Concerning the usefulness of
improving demand forecasting accuracy for the overall
efficiency of managing the resources, we have shown
that under (over) estimation of demand leads to higher
(has no impact on) overtime costs.

We have shown that using dynamic pricing and flexible
resources as strategies can help maintain quality levels while
increasing profit for field service operations. Reinforcement
learning has been used to find near-optimal pricing policies
when there are both demand and capacity uncertainties.

In many industries, firms are unsure about trusting
black-box algorithms such as reinforcement learning
approaches. For this reason, simpler models may be pre-
ferred, but these are disadvantageous if relying on assump-
tions that are simplifications of real-world complexity. The
main advantages of using a reinforcement learning approach
compared to stochastic integer-linear programming, for
example, in our problem, are as follows:

1. The relationship between the prices and demand is not lin-
ear, and its functional form unknown and unobservable.

2. We must make unrealistic assumptions that lead to
non-optimal pricing policies.

3. If the demand function changes, the Q-learning algo-
rithm can adapt to finding the new optimal policy, as
illustrated in Figure 3.

4. From the learning algorithm, we infer the optimal
dynamic pricing policies represented as look-up tables,
which is a handy tool for managers.

Future work will consider the geographical movement of
engineers to relax the assumption of fixed number of engineers,
where engineers can be moved between patches (currently,
each patch manages the engineers in their region) in proximity.
Additionally, we would like to study non-stationary environ-
ments in which demand and pricing are time-dependent.
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A Appendix

A.1 Notation Table

Table A1: Notation
t ∈ {1, 2, .., T}, where T is the number of working days
j = I,M , where j is the service type, I for installation and M for maintenance

djt demand for service j
λ0 overtime salary of a technician
ft the maximum number of workers who can be assigned to installation and maintenance services
LM
t lead time of maintenance jobs

ajt the number of absent workers for service j
βj the productivity per technician for service j

Sj
t work stack for service j at time t

pt price charged for installation at time t

ojt the number of technicians working overtime in service j

ejt the number of technicians, at day t, assigned to service j
KI = (kI1, k

I
2, ...k

I
T ) the number of workers available for installations during the week from day 1 to T

P = (p1, p2, ..., pT ) is installation prices from day 1 to T

ojt (k
I
t ) number of workers assigned to overtime work in service j at day t when in state kIt

c(KI , P ) is the profit contribution from taking decisions P in state KI

A.2 Example of Q-value Updating
We illustrate the updating of Q-values with a simple example, state KI = [2360, 2360, 2640,
2760, 2880] in week w, where the number of technicians available to conduct installation for
the five working days of the week equals to 2360, 2360, 2640, 2760 and 2880 jobs respectively.
After taking a pricing action P 1 =[104, 103, 102, 100, 100], we observe the demand for
installation at week w as 5982, 6198, 6414, 6845 and 6845 for each weekday respectively.
The actual demand for maintenance on Monday and Tuesday was more than expected, and
there were absent workers on Friday. The number of overtime workers required to satisfy
the lead time constraint for maintenance each day is given by the following vector [75, 25,
0, 0, 10]. Overtime workers are not needed on Friday as extra technicians are available
from installations; hence the total number of overtime workers for maintenance is 100. The
productivity of each worker is assumed to be 2.5 jobs, and the cost of overtime work is 120.
oIt = max{dIt /βi− (kIt −aIt ), 0} = (5982/2.5− (2360− 0))+119+0+0+0 = 152, hence the
cw ([2360, 2360, 2640, 2760, 2880], [104, 103, 102, 100, 100]) = 5982 × 104 + 6198 × 103
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+ ... - 152 × 120 - 1001 × 20 = 3253510. Using the demand learning for price action P 1,
we can calculate the contribution of all other states. For example, if the state was [2390,
2450, 2600, 2750, 2770], then cw ([2390, 2450, 2600, 2750, 2770], [104, 103, 102, 100, 100])
= 3267910. Consider that the process has visited state K1 = [2360, 2360, 2640, 2760, 2880]
nine times and the current Q-value for the state Q9(K

1, P 1) is 3259110.
On the 10th visit, price action P 1 is executed, and the contribution c10 = 3253510. The

learning rate is 1/10. The Q-value at the 10th iteration will be updated as Q11(X
1, P 1) =

3258550.
Other Q-values for states with the same pricing action are also updated. For example

consider a state [2240, 2300, 2700, 2880, 2880] its cw([2240, 2300, 2700, 2880, 2880], [104,
103, 102, 100, 100]) = 5982×104 + 6198×103 + ... - 332×120 - 100×120 = 3231910.

A.3 Mathematical Proofs
Proof of Proposition 5.1. The revenue function r(dI) is concave by assumption. We can
consider two cases. Suppose we maximize r(dI), dI

∗
satisfy dI

∗ ≤ KI . In the second case
dI

∗
> KI , because r(dI) is concave y =

∫ z
0 dI(x)dx maximizes the integral. The maximum

revenue r(y) and since y < dI
∗
and r(dI) is increasing for dI < dI

∗
it follows the y = KI is

the optimal solution and thus y = dI
0
. The rates can then be converted to the corresponding

prices.

Proof of Proposition 5.2. Let SM
(t−1) be known. According to the definition of stack, for the

maintenance service E
(
SM
t

)
= SM (t− 1) + E

(
dMt

)
− βM

(
eMt − E

(
aMt

))
. As by equation

(1b) we known that E
(
dMt

)
= βM

(
eMt − E

(
aMt

))
, it follows that E

(
SM
t

)
= SM (t− 1). In

general, due to constraint (1b), for any lag period l, for which the actual stack size is known,
E
(
SM
t

)
= Sm(t−l). Then, as from constraint (1e), for all t, E

(
SM
t

)
≤ L̄βM

(
eMt − E

(
aMt

))
,

we can equivalently state that SM (t− l) ≤ L̄βM
(
eMt − E

(
aMt

))
, from which it follows

eMt ≥ SM (t−l)
L̄βM + E

(
aMt

)
.

Proof of Proposition 5.3. Assume that the scarce resources are the ones allocated to main-
tenance, so that eMt = kM whereas kI − eIt > 0. Then from constraint (1b) we get
E
(
dMt

)
= βM

(
kM − E

(
aMt

))
, whereas installations has spare capacity, as from constraint

(1c) we have E
(
dIt
)
= βi

(
eIt − E

(
aIt
))
.

If the resources are managed separately, the expected contribution, as represented by
equation (4), with a fixed price pt = p, at day t, is equal to E

(
dIt p− oItλ0

)
− E

(
oMt λ0

)
,

which, as E(oIt ) = 0, is equivalent to: pE
(
dIt
)
− E

(
oMt

)
λ0.

If the resources are managed jointly, the expected contribution, as represented by equa-
tion (4), with a fixed price pt = p, at day t, is also equal to pE

(
dIt
)
− E

(
oMt

)
λ0, but as

the firm can now reallocate kI − eIt > 0 from installations to maintenance, the new con-
straint becomes pE

(
dIt
)
− E

(
max

(
oMt − kI + eIt , 0

))
λ0, as the new available resources are

deducted from the potential requirements for overtime work.
Consequently, the difference in contributions between joint and separate management

of resources is due to the cost of providing maintenance services and equals pE
(
dIt
)
−

E
(
max

(
oMt − kI + eIt , 0

))
λ0− pE

(
dIt
)
+E

(
oMt

)
λ0, which is equivalent to: a) if oMt − kI +

eIt > 0, the contribution difference is
(
kI − eIt

)
λ0; b) if o

M
t −kI+eIt < 0, the newly available

workers are more than expected to be necessary for the overtime jobs, the contribution
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difference is E
(
oMt

)
λ0. Joint management increases the profit contribution in both a) and

b).
On the other hand, if the installations are using full capacity and maintenance has

resources available, then, from constraint (1b) we get E
(
dMt

)
= βM

(
eMt − E

(
aMt

))
and

from (1c) we have E
(
dIt
)
= βI

(
kI − E

(
aIt
))
. When managing the resources separately,

the contribution obtained from equation (4) is equal to E
(
dIt p− oItλ0

)
− E

(
oMt λ0

)
, which,

as in this case E(oMt ) = 0, is equivalent to pE
(
dIt
)
− E

(
oIt
)
λ0 and to pβi

(
kI − E

(
aIt
))

−
E
(
oIt
)
λ0. If joint management of the resources allows the reallocation of kM − eMt techni-

cians from maintenance to installations, the contribution pE
(
dIt
)
− E

(
oIt
)
λ0 is equivalent

to pβI
(
min(kI + kM − eMt , dIt )− E

(
aIt
))

− E
(
max

(
oIt − kM + eMt , 0

))
λ0.

Therefore, the difference in contributions between joint and separate management of
resources equals pβI

(
min(kI + kM − eMt − E(aIt ), dIt )

)
− E

(
max

(
oIt − kM + eMt , 0

))
λ0 −

pβI
(
kI − E

(
aIt
))

+ E
(
oIt
)
λ0, which, as kI − E(aIt ) ≤ dIt , simplifies to pβI(kI − E(aIt )) +

pβI
(
min(kM − eMt , dIt − kI + E(aIt ))

)
−E

(
max

(
oIt − kM + eMt , 0

))
λ0−pβI

(
kI − E

(
aIt
))
+

E
(
oIt
)
λ0 and, consequently, it is equivalent to pβI

(
min(kM − eMt , dIt − kI + E(aIt ))

)
−

E
(
max

(
oIt − kM + eMt , 0

))
λ0+E

(
oIt
)
λ0, which is always positive, as oIt−kM+eMt ≤ oIt .

Proof of Proposition 5.4. As LM
t ≤ L̄ it is true that E

(
SM
t

)
≤ L̄′βM

(
eM

′

t − E
(
aMt

))
.

Additionally, as L̄′ ≤ L̄ and E
(
SM
t

)
= L̄βM

(
eMt − E

(
aMt

))
, it follows that the new con-

straint with the same number of jobs in the queue, and taking into account the number
of technicians expected to be available, in order to maintain the new maximum lead time,

eM
′

t −E(aM ′
t ), is also binding, and we get, E

(
SM
t

)
= L̄′βM

(
eM

′
t − E

(
aM

′
t

))
. From this it

follows equivalently that L̄′βM
(
eM

′
t − E(aM ′

t )
)
= L̄βM

(
eMt − E

(
aMt

))
and

eM
′

t −E(aMt )
eMt −E(aM′

t )
=

L̄
L̄′ .

Proof of Proposition 5.5. Let the new maximum lead time L̄
′
be such that E

(
SM
t0

)
≤

L̄
′
βm

(
eMt0 − E

(
aMt0

))
and E

(
SM
t1

)
= L̄′βM

(
eM

′

t1 − E(aM
′

t1 )
)
. If the firm can reallocate the

resources from t0 to t1 so that E
(
SM
t0

)
= L̄′βM

(
eM
t
′
0

− E(aM ′
t0 )

)
and∑

t0

(
eMt0 − E(aMt0 )− eM

′
t0 + E(aM ′

t0 )
)
≥

∑
t1

(
eM

′
t1 − E(aM ′

t1 )− eMt1 + E(aMt1 )
)
, then the con-

tribution to profit be
∑T

t=1

(
dIt p− (oMt + oIt )λ0

)
does not change, as it is not affected by

the new reallocation of resources.

Proof of Proposition 5.6. From equation (4) the profit contribution equals

E
(∑T

t=1

(
dIt pt − (oMt + oIt )λ0

))
. Let us assume that under fixed pricing, pt = pt0 =

p for all t, the optimal profit contribution is greater than under dynamic pricing, i.e.,

E
(∑

t̸=t0

(
dIt p− (oMt + oIt )λ0

))
+E

(
dIt0p− (oMt0 + oIt0)λ0

)
≥

E
(∑

t̸=t0

(
dI

′
t pt − (oM

′
t + oI

′
t )λ0

))
+E

(
dI

′
t0pt0 − (oM

′
t0 + oI

′
t0)λ0

)
, where the

′
is used to clar-

ify that the demand and overtime work change with dynamic pricing. Let us further
assume that pt = p is actually the optimal policy, so that p can also be adopted by
the dynamic pricing policy and the inequality simplifies to E

(
dit0p− (omt0 + oIt0)λ0

)
≥

E
(
dI

′
t0pt0 − (oM

′
t0 + oI

′
t0)λ0

)
. As p is the optimal price for t with demand E

(
dIt
)
it is
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not the optimal price for t0 as E (dit0) ≥ E
(
dIt
)
and there is at least one pt0 such that

E
(
dit0p− (omt0 + oIt0)λ0

)
< E

(
dI

′
t0pt0 − (oM

′
t0 + oI

′
t0)λ0

)
.

Proof of Proposition 5.7. From equation (4) the expected profit contribution at time t
equals E

(
dIt pt − (oMt + oIt )λ0

)
, which is equivalent to E

(
dIt pt

)
−E

(
oMt + oIt

)
λ0, which can

be rearranged as E
(
dIt pt − oIt

)
− E

(
oMt

)
λ0. If under dynamic pricing pt < p the profit

contribution will decrease, given the binding constraint E
(
Sj
t

)
= L̄βj

(
ejt − E

(
ajt

))
for

j = i,m at time t and therefore this is not the best decision. If the optimal price is such that
pt > p the profit contribution from installations E

(
dIt pt − oIt

)
increases, and if additionally

the price increase is such that E
(
dIt (pt)

)
< kIt , then from equation (1f) an additional num-

ber of kIt − E
(
dIt (pt)

)
technicians is allocated to maintenance services, decreasing the lead

time to LM
t =

SM
t

βM(eMt −aMt +max(kIt−E(dIt (pt)),oMt ))
.
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