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Abstract—Most computation-intensive industry applications
and servers encounter service-reliability challenges due to the
limited resource capability of the edge. Achieving quality data
fusion and accurate service reliability in edge computing for
IIoT requires continuous attention to design novel methods to
optimize the service-x execution cost. While existing systems
have taken into account factors such as device service execution,
residual resource ratio, and channel or link condition, the service
execution time, cost, and utility ratios of requested services
from devices and servers also have a significant impact on
service-x execution cost. In order to enhance service quality
and reliability, we design a 2-step Adaptive Service-X Cost
Consolidation (ASXC?) approach. This approach is based on the
node-centric Lyapunov method and distributed Markov mecha-
nism, aiming to optimize the service execution error rate during
offloading. The node-centric Lyapunov method incorporates cost
and utility functions, along with node-centric features, to estimate
the service cost prior to offloading. Additionally, the design of
the Markov mechanism-inspired service latency prediction model
assists in mitigating the ratio of offload-service execution errors
by establishing a mobility-correlation matrix between devices and
servers. In addition, the non-linear programming multi-tenancy
heuristic method design help to predict the service preferences for
improving the resource utilisation ratio. The simulations show the
effectiveness of our approach. The model performance enhance
with 0.13% service offloading efficiency, 0.82% rate of service
completion when transmit data size is 400 kb, and 0.058%
average service offloading efficiency with 40 CPU Megacycles
when the vehicle moves 60 Km/h speed in around the server
communication range. Our model simulations indicate that our
approach is highly effective and suitable to light-weight complex
environments.

Index Terms—Edge computing, Industry 4.0, non-linear
programming mutli-tenancy method, node-centric Lyapunov
method.
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I. INTRODUCTION

HE AUTOMOBILE industry is undergoing a significant

transformation through the use of Digital-Twin Technol-
ogy in computation-communication to meet the expectations
of Industry 5.0. This technology is facilitating the indeed-
development of an intelligent transportation system through
multi-functional sensors equipped with on-board computa-
tional units (OBU) and Road-side Units (RSU) [1] that cooper-
ate for effective communication and computation, resulting in
anew era of Edge-Vehicle technology. Additionally, Transport-
as-a-service (TaaS) has become increasingly prominent in
the vehicle service industry, with predictions suggesting that
by 2030, 95% of U.S passengers will utilize TaaS services
through autonomous electric vehicles [2].
Motivation: Assuming an Jetson Xavier NX GPU and lidar
are built into an automated vehicle, shown in Fig. |1} the Jetson
is programmed with Tensorflow to perform computation and
communication on sensor data input. The embedded model
is trained and tested on sensor data for further processing,
using two different modalities: centre-point (two-stage) and
SECOND (one-stage models), which achieved speeds of 39.2
Hz and 18.0 Hz, respectively. The primary challenge lies
in achieving inference accuracy within a reasonable time
frame for object detection and tracking services, given the
limited resources of edge devices. To address this issue, one
possible solution is to offload computation-sensitive services
to potential devices via WiFi or cellular networks provided
by mobile edge computing. While current systems have con-
sidered factors such as device service execution, residual re-
source ratio, and channel/link condition, resulting in moderate
accuracy, we believe that service execution time, cost, and
utility ratios of requested services from devices and servers are
also critical in determining the cost of service-x for effective
optimization of service cost. Vehicular edge computing (VEC)
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Fig. 1: Tracking simulation analysis on Jetson Xavier NX

is highly sought after in the automotive industry due to its
ability to offload computation-intensive services in distributed
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computing scenarios. This strategy reduces computation load
and improves system performance while maintaining adaptive
service reliability [3]. VEC has several advantageous sub-
domains, including autonomous driving [4]], driver assistance,
and accident prevention systems. Let’s discuss a few basic
scenarios illustrated in Fig. 2] regarding the major concern
of high mobility in vehicles within Intelligent Transportation
System (ITS).

1) Scenario 1: Involves two vehicles equipped with camera
and Lidar sensors respectively to record infrastructure
for surveillance. Both vehicles are associated with RSU-
1 within the region, and if one vehicle fails to receive a
response to its service request (object detection or object
tracking) within a synchronized time, it causes a delay
in service execution

2) Scenario 2: Involves a vehicle associated with RSU-2
within the coverage region, which has raised a service
request but not received a response, and has crossed the
current coverage region, entering the RSU-1 coverage
region. Both scenarios highlight issues with executing
the service and handover.

In this regard, an artificial intelligence techniques are

commonly used to meet the technology requirements of
vehicles, but resource limitations often hinder effective data
processing. In such cases, computation offloading is a viable
alternative for achieving desired targets of vehicular orches-
tration, where vehicles/devices allows to offload computation-
intensive services to servers which can observe in Fig. [3
subject to limitations on cost and latency-dependent processing
capabilities. Some of the challenges include:

1) Choosing a server to handle the service request.

2) Making a decision on whether to offload a portion of
the data that the current server is unable to process.

3) Estimating and distributing the necessary resources for
executing the service.

RSU-2 Coverage is 300m

RSU-1 Coverage is 300m

v
v

Fig. 2: Cloud-assisted Vehicle Edge-Orchestration

However, the service offloading issue has received global
attention from researchers and authors. It is similar to

NP-Hard and is addressed through a channel quality and ser-
vice offload optimization process [15], [6], utilizing Deep Rein-
forcement Learning (DRL)-influenced techniques and method-
ologies. Moreover, many existing methods assume that each
service request execution occurs within a window slot, whereas
in reality, devices and nodes are not static and may leave the
server range before completing their requested service. As a
result, servers must be conditionally cooperative to offload
and migrate computation-intensive services to achieve high
performance, posing two global challenges.

1) Optimizing data transmission overhead by reducing of-
floading decisions.

2) Choosing a potential device or server.

In order to enhance service quality, improve reliability,

and minimize data transmission rate overhead, we de-
sign a ASXC? approach. This approach entails the option
to either locally execute the service or select an appropriate
device or server for offloading the service and executing it
synchronously with the request. The main contributions are as
follows

1) Develop a 2-step ASXC? approach utilizing the node-
centric Lyapunov method and distributed Markov mech-
anism to optimize the rate of service and offload execu-
tion errors.

2) Design a node-centric Lyapunov method that incorpo-
rates cost and utility functions, as well as node-centric
features, to estimate the service cost prior to offloading
to the selected node.

3) Construct a Markov mechanism-inspired service latency
prognosticate model for each application request, which
includes constructing a correlation matrix between de-
vices and servers, to mitigate the ratio of errors in
executing offloaded services.

4) Employ a non-linear programming multi-tenancy heuris-
tic method to predict the service preferences for improv-
ing resource utilisation ratio.

The manuscript is organized as follows: Section

provides a brief explanation of the research gaps and
problem statements of existing approaches. Section|[ITI] presents
preliminaries of the proposed model. Section [[V| presents de-
tailed descriptions of the proposed system and its mathematical
models, including algorithm. Section [V] evaluates the simula-
tion outcomes, and Section concludes the manuscript.

II. RELATED WORK

This section discusses approaches for offloading services
that are both context-aware and Energy cost-efficient, as well
as their measurement factors.

A. Context-aware offloading:

The authors of [7] developed a joint offloading method that
utilizes both cellular and unlicensed channels to minimize
communication costs during offloading. They divided the
offloading communication process into two steps: vehicle-to-
RSU scheduling and Vehicle-to-Infrastructure scheduling. To
facilitate the service, they employed a two-sided acknowledge-
ment method that uses the unlicensed spectrum. For the latter,
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they utilized a DRL model for cellular channel utilization, and
while making service offloading decisions, they employed a
Double Deep Q-Network (DDQN). In [8], a knowledge-based
decision-making method is developed using three parameters:
targeted device status, speed, and performance status. In this
actor-centric architecture, the agent plays an important role,
like where the service should execute, by considering the
outcome of the method. However, the drawback is that reward
estimation of every timestamp causes the processing delay.
In [9], a deep deterministic policy gradient (DDPG) model
is developed for optimizing the offloading decisions based on
Signal Noise Ratio (SNR) quality as significant criteria and
minor is restricted to two-RSU count for service support to
avoid delayed communication. Eventually, in [10], the authors
designed an IoT-based traffic control environment to map
lightweight edge computation requirements. They optimized
resource allocation using the DDPG model.

B. Resource-aware Offloading

In [11]], a mechanism for reducing data size is developed
based on CNN models. It prioritizes offloading intermediate
data to an edge server to maximize the quality of service
experience. However, this approach does not take into account
the challenges posed by real-time environments.

In [[12], [13], a joint scheduling and computation offloading
(JSCO) method is designed using game theory, considering
service execution time, delay, and precedence order as its
components. A utility mechanism is employed to sort devices
in a predetermined order, resulting in a 54% reduction in
resource consumption for local computation and a 37% re-
duction for offloading-based service computation. However,
this strategy is not considered the signal quality during the
offloading process.

In [14], [15]], a Lyapunov-based service offloading method
is designed, considering CPU/cycles requirement and power
consumption as its components. It achieves a 64% energy
preservation rate compared to state-of-the-art models. How-
ever, this approach neglects the information regarding service
and communication channels. Some models also incorporate
offloading strategies based on energy harvesting [16] and
Dynamic Voltage and Frequency Scaling (DVES) [17] to
minimize computation and communication overhead.

In [18]], a multi-edge environment is considered to evaluate
the performance of the developed offloading method, focusing
on energy usage, service reliability, and delay. However,
this model has limitations in terms of vertical offloading
and mainly concentrates on vehicle-to-vehicle communication.
An alternate offloading technique is designed to trade off
execution delay and energy usage. A collaborative service
offloading model called greedy offloading and resource allo-
cation (GORA) method is proposed in [19], leveraging Q-
learning theory to optimize service cost while considering
delay and resource constraints. Traditional solutions tend to
be nonconvex and result in high complexity. To address this
challenge, the author incorporates queuing theory, resulting in
a 49% cost reduction. However, the model not be well-suited
for complex environments.

C. Channel-aware offloading

In [20], a three-tier architecture is proposed to ensure satis-
factory service reliability for end users by leveraging an LTE-
backhaul network with the goal of maximizing profit. While
the bandwidth allocation problem is convex, the optimization
process involving two-steps introduces unusual complexity.

A software-defined network is developed in order to en-
hance the device service experience, taking into account
service utility, edge utility, and channel security components.
Moreover, through privacy-aware channel selection [21], the
inherent uncertainty is effectively minimized, resulting in a
low ratio.

In [22], the authors tackle the NP-hard multi-vehicle service
offloading problem and employ game theory to address the
distribution challenge. Convergence time and device perfor-
mance play crucial roles in achieving the Nash equilibrium, but
should pay attention for concerns while designing offloading
strategy.

1) How many vehicles would benefit through offloading
strategy.

2) Offloading strategy should be implemented when the
combined energy consumption and execution delay are
below the threshold value.

D. Energy-aware Offloading

In [23]], a DRL-based scheduling strategy is developed to
meet the requirements of RSUs within communication range,
while also being energy-efficient. However, the use of non-
secure channels can lead to unreliable scheduling and inade-
quate energy consumption. In [24], a service scheduling policy
is developed for optimizing energy usage among multiple
RSUs, which showed significant improvements in network
lifetime, service execution rate, and delay reduction. Global
agents or base stations performed service scheduling using this
approach. In [25]], developed a Energy-efficient mode selection
and resource allocation (EMSRA) model using deterministic
policy gradient method to optimise the joint computation-
communication issues based on queuing theory, still require
attention to meet the requirements of complex-light-weight
networks. In [26], a cost-effective server localization (CESL)
approach utilizing spectral clustering theory is developed to
address the server localization challenge, thereby enhancing
network performance. Additionally, they introduce a cost-
aware collaborative task execution (CACTE) strategy, lever-
aging reinforcement learning, to minimize service execution
costs while conserving resources (as mentioned in [27]).
However, both methods demonstrate remarkable performance
ratios and prove optimal for heterogeneous lightweight envi-
ronments.

Therefore, we design a ASXC? approach tackle the concerns
at hand. It aims to enhance service quality and reliability by
utilizing the node-centric Lyapunov method to break down
the cost optimization problem into sub-issues based on node
cost and utility functions, as well as node-centric features.
Furthermore, a distributed Markov model employment helps to
formulate the service-x cost strategy, considering the mobility-
correlation between devices and servers. A detailed description
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is added in the following sections with theoretical and math-
ematical proofs.

III. PRELIMINARIES OF PROPOSED WORK

In this section, the preliminaries of the proposed method
is defined. Let’s consider an edge computing orchestration
shown in Fig@ where kK =1,---, K RSU-based servers to
meet the service latency constraints of application services
denoted as 7 = 1,--- ,I from vehicles/devices j =1,---,J.
Offloading the computation-intensive services to servers based
on resource-constraints and the frequency of invocations is
a challenging task to meet their application deadlines. The
further constraints are described in bellow sections.

A. Service Tuple

Lets consider two scenarios for service offloading by fol-
lowing Little’s law [28] based on M/M/1 queuing method.
The first scenario involves searching for nearby potentially
computation-rich vehicles to accommodate the services, while
the second scenario involves searching for a nearby server that
is not overloaded. In both cases, the search is based on three
resource factors: computation capacity Ay, residual bandwidth
By, and storage capacity C, which are formulated as a tuple
Ay, B, Ck. Each service is defined by A;,T;, D;, where A;
is the required computation capacity to execute the requested
service 7, 1; is the maximum time slots, and D; is the data
size.

B. Communication Cost

Let us assume the communication cost is denotes 7 ()
which calculates based on amount of offloading input data cost
v;j 41 (OBU-2-OBU), bandwidth cost h§-7 j+1 (OBU-2-OBU)
as follows. Similarly, v;f-’ « (OBU-2-RSU), bandwidth cost h; A
(OBU-2-RSU).

N (D) = i T+ (L= py) - 25
J 3.k
where p; ;. offloading decision binary variable, p; = 0 refer
the service execution at cloud, else the execution at server.

J+1

C. Computation Cost

Let us assume the computation cost is denotes ¢ (i) which
calculates based on service resource requirements gaz. j+1 and
. . t >
device resource capacity N; ;; as follows

t

t
. @ @5k
V(i) = pj - riﬁl + (1= pjik) Ni
G+ Jk

The service latency cost is defined as follows
D (0) = n(0) + 206 () + (0= 2) 6 (0] 4a0)

Similarly, the complete service execution cost including la-
tency and energy usage cost is defined as follows

TE) =G T'H)+0-6G)-C

where (; is the weight of service completion time which is
the tuning parameter plays important role in maintaining the

trade-off between latency and energy usage. A larger ( refers
the service ¢ is latency sensitive; otherwise, the service is more
energy usage sensitive. C;, T' (i) refer energy usage and latency
cost, respectively.

Note: The communication between devices and servers uti-
lizes the Orthogonal Frequency-Division Multiple Access
(OFDMA) digital modulation scheme. In cases where multiple
vehicle devices are connected to a single server, the communi-
cation channel is divided equally among the devices to prevent
latency. To address service latency, each channel slot handles
service requests, and inter-connected communication utilizes
service offloading strategies, such as partial or full offloading
(illustrated in Fig. [3), when the device requesting the service
goes beyond the communication range.
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Fig. 3: Service offloading strategies

D. Problem Formulation

Definition 1. Service offloading occurs when the cost of
executing the service is below the threshold value while still
meeting latency constraints. This is expressed in the following
formulation.

min Z T (i)

iel

ey
Subject to

C; : Energy cost Z (ka < Cffhr
keK

Jik
i,thr

C, : Computation cost Z gpg’k <N
keK

Cs : Communication cost Z Uf’k < h{’fhr
keK
Cy : Binary offloading variable p;e{0,1} Viel ,VjeJ

The aim of designing adaptive offloading strategy is to
minimise the service execution cost subject to the listed
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constraints and the same theme is illustrated in Figld] This
model is derived based on two factors like energy cost and
latency. The server capacity must be higher than the requested
service requirement capacity to ensure proper functioning. The
probability of service offloading p; ;1 1);,x is used to derive the
local computing queue, which is based on the service arrival
rate x; and can be calculated as X\ = (1—pj 1) - x;-
To estimate the offloading queue X7 of the server, which
is based on the service arrival rate yj, the probability of
service acceptance by the server pjj is taken into account.
This probability is determined by considering factors such as
latency, resource, and storage capacity, and can be expressed
as fjk-

Possible constraints, including cost and latency, that may
arise when executing a service request, are illustrated in Fig.
[ The decision threshold level is denoted as Max. In line
with the aspiration of edge computing to achieve high system
performance and service reliability, local computing is always
preferred, even if the energy cost violates the energy threshold
value. Partial offloading is preferred when both constraints
exceed the threshold value and the average latency violation
rate is high. On the other hand, full offloading is preferred
when both factors show abnormal violation rates. Generally,
the characteristics of the policy for offloading service requests
by vehicles and the policy for accepting offloaded service
requests by servers are partially similar.

Theorem 1. Minimising the offload-service completion cost
issues is similar to NP-hard.

min Z T (i)
i€l
Proof. Our aspiration is to optimise the service execution
window time with low cost. Let’s assume, the offloading cost
can be projected as 0 —1 Knapsack problem, and the knapsack
problem is NP-complete likewise, the services treated as items,
and the offloading gain which we treated as item rank or
weight (recommend to refer our previous contributions [29])
should be less than the server rank and weight with respect to
the capacity. Therefore, targeted issue is NP-hard since 0 — 1
Knapsack problem is NP-complete. (]

IV. ADAPTIVE SERVICE-X COST CONSOLIDATION BASED
SERVICE OFFLOADING

In this section, the objective function is formulated in detail
by splitting it into subsections as follows.

A. Lyapunov based Cost Optimization

In this subsection, the selection of local computing, full, and
partial offloading is derived based on the status of vehicle de-
vice including consistent cost, utility factors evaluated with the
base of node-centric lyapunov method as follows. Moreover,
the same communication model [3] is used for communication
between devices and servers.

L+ 097
t — thgQ ¢)p Qg 5
(np)

v

2

The energy consumption of the requested service is estimated
based on several factors, including the channel bandwidth
capacity represented by F, the transmission energy of the
vehicle device denoted by ¢,,, as well as the Gaussian noise
power and channel gain, denoted by np and gﬁ’v respectively.

£§,j+1|j,k = pik- (65 + &x)+ (1 —pjx) €§°k (3)
Moreover,
o __ Ic 1 Ic po Ie _ D;
& =2 § +( *CCZ)(EZ +& )’fi —fuc'wil
J.J+

where x;6{0,1} indicates the binary decision variable for
reusing the local computing data during the partial offloading
execution process, here 0 indicates reusing the locally executed
data; else 1. Therefore, the partial offloading is defined as
follows

gt t
e e (P arin ) e Y
Gtk = Sue Ny po " Tt

J,Jj+1 J,J+1

Similarly for full offloading,

t
D; [ .

fo _ J v J,J+1 t i

Jd 15k Cue - N + o Bty + Eeloud " WA, | By | Cx
5 J 55J

The energy usage of a service request is calculated using
the following notation: &I represents the energy consumption
(EC) for local computing, v;J +1]5, Tepresents the amount of
offloading data, f}i ° 41, Tepresents the energy consumption
for offloading communication, &,. represents the unit cost of
EC, and &4 represents communication energy usage base-

station or cloud.

J K
cl=> > [‘“ “Ggrain b Wayso,  $po L) @
j=1k=1

where p; ;1 1|.,; represent the probability of service offloading
with binary, a; and b; denote the energy weights during
local execution and service offloading, respectively, taking into
consideration the channel EC. Similarly, wzk‘ By |Cr denotes
the cost of each resource unit, and Ly, represents the predicted
server load.

B. Linear-programming based multi-tenancy model for utility
optimization

In this subsection, the linear-programming based multi-
tenancy model is formulated based on service and server util-
ity, since this two factors play vital in mapping the offloading
process. Basically, the sequential process in the traditional
single-tenancy model fails to meet latency constraints, because
of not balancing the trade-off between resource usage and
low latency. As a solution, the employing a multi-tenancy
model achieves an optimal resource distribution using a linear
stochastic algorithm, resulting in a higher utility ratio. The
server and service utility factors are derived as follows.
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1) Server Utility: In our mapping strategy, the service
request cost and its utility is estimated prior allocation to
enhance the offloading efficiency when the server is not
overloaded. The classification of over-load and under-load
servers are derived as follows.

0<6, <05

is overloaded for
server = .
is not overloaded for

In the iterative process, the probability of server utility is
calculated as follows.

~ 1
O = ;
INORS (pj,j+1|j,k - ’"ixk\Bmck)

Where p; G115,k refer execution-cost by vehicle for the of-
floaded service, % 1B Cr refer server usage cost. When the
service is offloaded, the estlmated cost payable by the Vehicle
for effective execution is as follows

(&)

ot
JJ+1\Jk

(6)

Pjj+1ljk = 0- 57 X
JJ+1UJC

The estimated usage cost of the server includes receiving,
executing, and reverting process towards a requested vehicle,
including service migration when the vehicle moves out of
the communication range. In this estimation, ny represents
the number of devices connected to the server, and vj JERTINS
represents the amount of offloading data.

I
:Zw@)

For further information, please refer to [30], [31], where 8
represents the weight factor, which calculates for each server
based on its rank.

2) Service Utility: The service utility calculation is de-
fined based on predicted-communication cost 77 (¢ 7 (1), predicted—

Tfax,g\Bk\ck X wi&leuCk + Brlog (14 ny) (7)

computation cost ¢ (1), data similarity ratio g (i) of i*" service
as follows.

-~ 1

0; = ®)

(4) + 1 (4) + p (i)

)

The processing data similarity ratio calculation is defined
based on number of input (ind) and distinct (did) data as
follows

1
l—i-e*m

did

o (i) = ©)
Service mapping among the servers is carried out based on
utility ratio (i.e., the classified services list (please refer [30],
for classification details) and suitable servers are sorted
based on the utilities to avoid service completion hiccups for
accomplishing the targeted offload efficiency and completion
ratio) to meet the application deadlines. Lets derive the of-
floading issues in context-perspective as follows

Theorem 2. Assume a vehicle is prepared to offload the ser-
vice, the predicted resource size required for efficient service
execution is as follows.

¢
o aibuchl, 1 95411k
Vig+ilk = - 7 2
log, (ai&m + biw%k‘Bk‘Ck) | /] (np)
(10)

Proof. Assume, p;; = 1 and Eq. [§] is derived based on Egs.
617410| as follows where y = a;&},. + biw'y, g, (o,

5 7 uch ¢
g ——= _ af Euc (11)
v, . gt
J,J+114,k _ Zigtllgk
log <(”p)2+”5.1+1j,k> Ty
To assess the greater than zero value 9 (U,‘Sk> >0, let
J,i+1li.k
again apply partial derivation
5 iSuc !
82 ( - k ) _ af hguc (12)
Yj,i+114,k

2
+1]j,k t
log, ( et Uj,j+1|j,lc)

Here, the value of Eq. [T2] is greater than zero. Our goal is
to minimize the cost of the service offloading request, while
keeping the server resource unit cost constant. To achieve a
finite resource size for the service offloading request, and to
ensure that the server capacity is high, we set the value of Eq.
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11{to zero. So, O t‘si" = 0, and the service offloading

Yii+114,k
request policy is derived as follows
aiguchfztw i
= + @i + biwly, By 00
Z3.3+115.k
logs ( (np)? +UJ J+114, k)
_ @i€uchtle L G (13)
i J 2
log, (aiffm + biwAk'|Bk|Ck) IJ| - (np)

_
= Y4115,k
Therefore, R.H.S= L.H.S, where the derivation confines that,

the requesting service cost is low with maximum server utility.
O

Corollary 1. Optimizing the cost of service migration is
a crucial aspect, especially when a device moves out of
communication range, as this helps to improve server utility.
The service allocations are stored in a matrix format, which
can be represented as follows:

t pi - PT
P = | o e (14)
Py - P

Fig. [5] depicts the significance of service migration when
the vehicle requesting the service moves beyond the commu-
nication range of the responding server. In such scenarios, op-
timizing communication cost becomes crucial, which involves
considering factors such as distance, the resource potential of
the targeted server, utility rate, and trade-offs between vehicles.
This approach helps to achieve high performance and service
reliability. For instance, if devices requests a service from
server; but moves out of the region, servers is selected based
on the above constraints.

7,1 _ €
(Ck k+1> - it
Z ek k+1

it
Ck,k+1

kEK (15)
k k+1 Z pli xC T'r‘ans X 5k
keK
, vEl oxd eD;) " k#k+1
Tty = | Probue X B (ED1) 2 K # (16)

0; otherwise

Migration occurs when the value of o ((C bk +1) for the server
exceeds 0.5; otherwise, a nearby node 1s recursively searched.
The Lyapunov optimization approach maintains a balance
between server usage ratio and service queue consistency. The
Lyapunov utility method can be defined as follows:

= 41 Cy + X5 + L a7

Theorem 3. The nonsuccessive service ratio @ is a other
crucial factor in determining server performance, as stated in
Corollary-1, which outlines the following derivation for server
performance.

q;fk(Cﬁz +Xjr + Lr <

K
1 (18)
Z (qﬁ»,ké}; + By — w},) + Tl log (v§7j+1|j7k>

k=1

Proof. To maximize utility and minimize costs, it is essential
to ensure that the server storage capacity, communication
costs, and satisfaction of Eq. E] are all met, along with the
nonsuccessive service ratio. It is worth noting that optimizing
the utility and cost of communication can be achieved by
maintaining a server storage capacity (By) that is nearly equal
to the nonsuccessive service queue.

K

< (4548% + B — wt)

k=1

¢! kCoh + X2n + Ly (19)

The server has to fulfil the below condition to maintain the
consistent sustainability of server usage.

SN @ AC + X + L <

teT ke K
< t 1 t
> (0k+Bi) + e (”j,j+1u,k> (20)
k=1
K o t t—1
Xj,k (5k — 0y, ) t
k=1

When there is no service migration (responsive server itself
has completed the service execution), and the system utility is

quj, C Xk + L <

teT ke K

1 t
K| log (”j,j+1\j,k> 1)

When nonsuccessive service ratio w@?, is equal to zero, then
the performance is

DD dhaCii gt L <

teT ke K

K
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A
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O

Algorithm 1: Node centric-heuristic Approach

input : server set {k =1,---, K}, vehicle device set
{j=1,---,J}, services set{i = 1,--- , I}
output: Cost effective service offloading
1 Let @2, # 0, gh, # 0, €£C #0, &, p. ;¢{0,1},
Vi1 7 0 0 7 0
2 for each j € J do
3 Estimate energy consumption

& ik = Pik - (f%c + 5?,k) + (1= pjk) €%

4 Estimate final energy cost of each service
s | Cl=
J K . ‘
.. Y g . v . .
Z 2 [al £j7j+1lj’k +bi WAy Bx|Cy, Ppo - L |3
j=1k=1
6 Estimate server usage cost to execute the service as
follows
i —
T | TayBilor =

T ‘ i )
D iz ¥ (4) X Wy, 1Below T Brlog (1 + ny);
8 # Estimate the final cost T ();

. . ik
9 | while Y (i) < T, (i) do

10 Estimate server utility
1 Ok = — L ;
F(1)+(Pj,jer,k*Tixk\Bmck)
12 Estimate llpkkquallty Vi 1k llismg Eq
e S0 0,5, i,5,k,7
13 if 6, <0, IV s < i then
14 Offload the service to nearby server;
1 K
I 1
At —
15 Update P iniin = AR
Py - P
16 end
17 else
18 Go to step-3 and iterates till the selection
of suitable server with targeted value.
19 end
20 end
21 end

Therefore, always the server performance is dependent on
amount of services arrived and nonsuccessive ratio. Algorithm
[T] outlines a method for improving system performance and
service reliability by using node-centric measurements to
determine service offloading decisions. The first line defines
communication and energy consumption factors, while the
second line checks the status of all devices based on demand.
The third line defines the energy consumption factor, and line
5 predicts the cost of each service, along with the server usage
cost, which is evaluated using line 8. If the threshold value is
met, server utility is estimated using line 11, and all servers
within vehicle communication range are checked using line
12. If more than two servers can accommodate the service,
the residual resource capacity is examined to make a decision,
taking into account vehicle directions in the simulation. Line
14 updates the matrix for the next service execution to evaluate

global decisions. If a server is not finalized, the process
continues to iterate from line 3.
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Fig. 6: Service cost-effective device selection for service

offloading learning

C. Mobility impact on offload-service execution

In this subsection, vehicle mobility impact is formulated
based on vehicle density, speed, direction, communication
range, and service cost to optimise the average offloading
efficiency. The primary reason for the lack of success in
service offloading objectives is the high mobility of vehicles,
leading to data transmission failures or disturbances when
the server’s execution time is prolonged [32]. Therefore,
ensuring a short transmission time for the link has become
crucial in designing a cost-effective service offloading strategy,
which is one of the main goals addressed in this article. To
achieve this, the article explores the application of frequency-
modulated continuous (FMCW) and multiple frequency-shift
keying (MFSK) waveform techniques, taking into account the
vehicle speed and the average time required to move out of
the server’s range. The mathematical derivation of the short
transmission link time is presented as follows.

R+,
|5¢5 = 55111
R+, 411k

-

Vig+1lik = @9
' ' for s, < seiyq

|25 =541/ 7= ik

When the direction of vehicles are not same, the transmission
channel link quality

R2 — (Y5 — Yjr1ik) + Tk

A 24
Vj.5+115.k |%j+%j+1|k| 24

Where 7]7 115k is transmission link between j** vehicle,

)

4 + 1*" vehicle or between j*" vehicle, k" server over the
network. Here, »; is speed of jt" vehicle, R indicates coverage
range, w;, wjiq), is the distance between vehicles and
server, respectively; the Euclidean distance is used to calculate
distances among vehicles and servers as well. In this scenario,
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we select the offloading device based on a specific condition:
the probability of service execution elapsed time being less
than the probability of transmission link time.

D. Functionality

A systematic approach is followed to design the decisions
about computation offloading. This process involves allocating
a specific channel time for two groups divided by their queue
length and required resources based on service and server
utility ratios for effective service execution. Computation-
intensive services are permitted to offload, while the remaining
services are executed locally due to limited computation
resources on the edge server, as can observe in Fig@ Once
an edge device is authorized to offload, a joint resource
provision method is initiated to evaluate the server utility and
anticipated resource rate for the service execution. The queue
waiting for service length and antenna usage components are
used to leverage each device’s performance in our simulation.
The utility weight factor is used to prioritize the energy
preservation and execution delay of the channel.
Subsequently, our model has developed in which the base
station acts as the agent and the vehicular network as the
environment. The agent received input on the RSU profile,
including the remaining battery backup, vehicle distance from
the RSU, connected devices, and service waiting time. If the
RSU offloaded the service to a vehicle, the reward estimated
the transmitted service size in bits, and the energy required
to receive the service was also evaluated. Here, the RSU is
reliable for satisfying requests when the requested vehicle is
left the RSU range or if the concerned RSU is not completed
the download request.

E. Complexity analysis

In this subsection, our algorithm complexity is derived
as follows. The algorithm [I] is with three primary objec-
tives, each have its own complexity. For instance, selecting a
potential server based on delay-sensitive service complexity
is O(n), while sorting the services according to latency
demand, complexity is O (nlogyn). Therefore, the overall
complexity is like O (nlogyn) + O (n) Let’s consider that
each server, denoted as k, can provide services from multiple
devices, represented by j. The estimation of each server’s
capability, denoted as [, is performed multiple times. The
count of communication request and response events for each
service execution determines the communication overhead of
the server, which is represented by g, based on latency
demand. The approximate space complexity can be calculated
as = kX (o + 20x) X = 3k-0r- The complexity of STOA
models are defined like O (n?)+O (nlogyn) for Static scheme
[14] , O (n® +n) for Game-based [12], O (n?®) + O (n) for
GORA [19], O (n*) 4 O (n) for EMSRA [25], respectively.

V. SIMULATION RESULTS

In our simulation, the environment is enabled 5 servers,
10-25 devices. Each server has a radius of 250 m. Each
device is randomly dispersed within a communication range of

approximately 3 servers, covering an area of 1000 x 1000m.
The wireless channel mode is employed for efficient commu-
nication in this setup, and a bunch simulation parameters are
listed in Table [II

Fig. illustrates the relationship between service drop-
ping ratio and average service size. We can see our model
achieves the lowest dropping ratio compare to SOTA models.
Our model dropping ratio is increased from 2 x 106 service
size though it is less than 0.8% as continues increase in size.
The relationship between number of vehicles and offloading
efficiency is shows in Fig. [7(b)] indicating that our approach
achieves better offloading efficiency compared to SOTA ap-
proaches. We noticed that, offloading efficiency is increased
better as the increase of vehicle density due to regulating
the server computing capacities to optimize the workload.
However, existing approaches prioritize energy optimization
in respective resource usage rates rather than conceding la-
tency in this scenario. Fig. shows the latency analysis
report while the offloading request increase eventually. The
vehicle density [10-40] is considered in initial simulation
where latency rate is significantly efficient, but the latency
increases as the device count rises for G-based model, becasue
the server assets are not fully utilized under high offloading
ratio, even when considering high density rate and service
arrival rates. Fig. shows the relation between energy

TABLE I: Simulation parameters and their values

Parameter | Value Parameter | Value
server configuration vehicle configuration
transmit power | 30 dBm | transmit power | 23 dBm
CPU frequency | 50 GHz | CPU frequency | 3 GHz
antenna gain 8dBi antenna gain 3dBi
receiver noise 9dB receiver noise | 5dB
Parameter Value
delay weights u; 0.6+%
Packet size [100,300]kb
thermal noise power -114dBm
energy coefficient 10=25
energy usage weights 1-u;
server cache capacity 5Gb
service-size 15-20 Mb
time variance 4.5x107%s
total bandwidth 20MHz
vehicle mobility speed [60,80]km/h
path-loss model, d in km 128.1+37.6log,
radius 250m
CPU cycles of each service [10,30]Megacycles

usage and service count based on active devices, revealing
a significant drop in energy usage when the server count
increases. The energy usage is drastically reduced even as
the service arrival rate and offloading rate rise because the
Lyapunov method effectively controls the exploration and
exploitation ratio for optimizing resource utility. Furthermore,
the device is constrained by connecting less than three servers
(<3) for avoiding resource starvation. In many cases, services
that require limited computing capacity have been offloaded to
the server for efficient execution in SOTA models. However, it
should be noted that the communication latency increases due
to the instability of the device communication range during
the response catch from the server towards sub-services. Fig.
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[8] presents the performance analysis of state-of-the-art (SOTA)
models across four different measurements. Fig. [8(a)| shows the
relation between the rate of service completion and vehicle
density. Our model achieves better rate of completion perfor-
mance than other models as the vehicle density continues to
increase. However, the EMSRA achieves better results than
our model when the vehicle density ranges from 10 to 20.
Additionally, the GORA model achieves better results with
a density range of 30 to 40 because they have used graph
theory to optimize latency and the offloading design strategy.
Similarly, Fig. B(b)| shows the relation between service cost
and size. In this case, the GORA model achieves a constant
cost from a size of [3—4.5]x 10°. However, our model achieves
better cost performance than the SOTA model for sizes ranging
from [0.5 — 4.5] x 105, and the G-based model performs even
better than the other two models as the service size increases.

Fig. showcases the analysis of server processing capa-
bility. The proposed method demonstrated a lower usage of
computing resources due to an effective resource requirement
prediction mechanism based on the node-centric Lyapunov
method using a Markov decision approach. However, the
demand for G cycles/s for the proposed method, GORA, G-
based, and static methods was 21%, 20%, 23%, and 30%,
respectively, when the task size is 4 x 10%. As the task size in-
creased for SOTA models, the resource demand scale changed
significantly. Moreover, in Fig. [8(d)] the analysis of uplink
frequency usage using packet size is depicted. The proposed
method achieved a low average frequency demand for a service
offload size of 1MB, specifically for small-sized data packets.
Conversely, the uplink frequency demand for SOTA models
increased as expected. For instance, for a 1IMB data size, the
demanded frequencies for the proposed method, GORA, G-



IEEE TRANSACTION ON , VOL. XX, NO. XX, XXX 2023

based, and static methods were 1.52MHz, 2.56MHz, 3.5MHz,
and 3.6MHz, respectively.  Fig. presents the analysis of

TABLE II: Computation-Communication tuning parameters
analysis of our model

C ication-based Comp -based
Transmitted | Average Offloading Rate of CPU Cycles | Average Offloading
data (kb) Efficiency Completion | (Megacycles) Efficiency

100 0.4 0.94 10 0.17
150 0.36 0.93 15 0.26
200 0.31 0.92 20 0.32
250 0.27 0.91 25 0.29
300 0.22 0.90 30 0.27
350 0.18 0.84 35 0.16
400 0.13 0.82 40 0.058

TABLE III: Overall performance of SOTA models when k=4,
[20-25] devices, transmitted data 560kb.

Model Latency Service Average Rate
[ms] dropped ratio | offloading efficiency | of completion
G-based[12] 896 0.79 0.45 0.21
GORA[19] 931 0.86 0.56 0.39
CESL|26] 823 0.81 0.72 0.56
EMSRA[25] 889 0.83 0.36 0.45
CACTE[27] 790 0.78 0.18 0.67
Pro 329 0.76 0.12 0.81

data computation with respect to the number of iterations. The
sub-figures illustrate the data computation time in different
scenarios, where the k value scales from 3 to 5. Fig
showcases the average data size (in bits) to be shared over the
network. It is evident that the data size significantly increases
from the first iteration, and from the sixth iteration onwards,
there is consistency in size. The proposed algorithm aims to
reduce the cost by leveraging the device/RSU measurements
before selecting potential RSUs for consistent frequency, and
minimizing computation-communication overhead. The use
of the node-centric Lyapunov method has had a significant
impact on performance due to its ability to predict service
costs during service offloading. Additionally, the distributed
Markov model is effectively generalized the correlation be-
tween devices and servers and construct the coefficient matrix
to facilitate effective offloading. The non-linear programming
multi-tenancy heuristic method is played a crucial role in
optimizing the resource utilization rate based on the service
preference prediction method and the results are represented
in Tablelll] and Table [Tl

A. Convergence Analysis

In this subsection,the convergence of the proposed method
is analyzed in the context of the proposed environment, and
its characteristics are discussed earlier in this section. In
order to facilitate effective communication among connected
devices, the transmission links are randomly generated with a
probability range of [0.7, 1]. The DMDP-inspired algorithm
aims to achieve an efficient convergence ratio by gathering a
set of actions and responses from the environment, as depicted
in the figure below. Fig. 0] depicts the performance analysis
of the proposed environment with 1000 iterations considering
partial coverage connectivity range [0.70,0.95] and offloading
strategy. The other side shows an average error analysis based

on vehicle mobility for offloading strategy analysis. The pro-
posed method achieved the desired convergence ratio within
400 iterations with a coverage of 0.95%. It exhibited a low
error failure rate, meeting the application latency requirements
compared to state-of-the-art (SOTA) methods. In Fig. we
observe the convergence analysis of the proposed environment
under different coverage ranges. As the number of interactions
increases, the rewards count also increases. However, beyond
400 iterations, the reward count stabilizes when r is set to
0.89 and 0.94 (high coverage range). Conversely, the rewards
continue to increase with an increase in the iterations count.

Fig. O(d)| presents the error analysis with maximum positive
mobility (+6dBm) for both the proposed method and SOTA
methods. The proposed method achieved a low failure rate
in meeting the latency deadline for the application service.
This accomplishment is attributed to leveraging node-centric
measurements, such as service execution cost and execution
time, based on the vehicle’s direction, range, and speed. The
average mean error rates for the proposed method, GORA, G-
based, and static methods were 0.55%, 1.5%, 1.9%, and 2.2%,
respectively.

B. Tuning parameters analysis

This subsection describes the proposed model performance
based on server residual computing capacities, impact of speed
on data transfer and their required CPU cycles to execute the
offload services.

1) Vehicle mobility impact: Let’s assume that the device
density is defined based on speed [33], and more than 50%
of vehicles require RSU assistance to execute the services. In
other words, as the vehicle density increases, the offloading
requests also increase and decrease, as observed in
The rationale behind this change is that when the speed is
low and the density is high, it leads to exceeding network
load. Subsequently, when the speed increases, the density
reduces, resulting in low resource usage due to fewer offload-
ing requests. Additionally, the vehicle speed range [40-100
Km/h] is amended to illustrate and map real-time scenarios.
Compared to state-of-the-art (SOTA) models, our model ex-
hibits better offloading efficiency and service completion ratio
while increasing vehicle speed and increasing server capacity
(Fig[IO(a)), since the density and environment load depend
on each other (as density increases, the environment load
increases).

2) Computing capacity impact: Continuing from the above
section, we are currently analyzing the offloading efficiency
and service completion ratio based on server computing ca-
pacity. We observe that the offloading efficiency exceeds as
the capacity increases because the time required to complete
the service is reduced due to the increase in server computing
power. However, the EMSRA completion ratio and offloading
ratios are better than other models but still do not provide
satisfactory performance compared to our model. Additionally,
our model has a service completion ratio of 0.859%, which
is still not satisfactory for video sharing over the network
in smart transportation environments (see references

[10(D).
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VI. CONCLUSION

In this article, we examined the service computation and
offloading strategy problem by the proposed ASXC? approach
for fog environment. At first, the objective function is assessed
to measure the node-centric functionality to enhance the
network performance with cost-effectiveness, high utility, and
service reliability. The node/device centric service cost pre-
diction facilitates the efficient mapping of services to suitable
servers during offloading. The service cost estimation is played
a crucial role in enhancing the system performance by 0.13%
service offloading efficiency, 0.82% rate of service completion
when transmit data size is 400 kb, and 0.058% average service
offloading efficiency with 40 CPU Megacycles when the vehi-
cle moves 60 Km/h speed in around the server communication
range. The non-linear programming multi-tenancy heuristic
method is played in enhancing the server utility efficiency
compared to state-of-the-art approaches by scheduling services
and managing resources to prevent service execution issues.
The deployment of a distributed Markov model is influenced
the policy convergence ratio of service offloading strategy
by assessing the required resources to execute the arrived
service requests within the latency constraints. The status of
the server is continuously estimated, and the correlation matrix
coefficients are continues update to assess server feasibility.
The deployment of Lyapunov method is effectively balanced
server usage and service queue stability to optimize service
offloading to meet the application deadline.
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