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Abstract—A da Vinci robot endoscopic-camera gives surgeons
a magnified 2D view of the operating area, but additional time
is required to detect and estimate the location of the surgical-
instrument during an operation. The main focus and novelty of
this research is to develop a new virtual coloured marker-based
tracking algorithm for estimating the posture and orientation
of the instrument. Initially, the developed algorithm begins by
determining the coloured area of the instrument as reference-
contour. Followed by a new Virtual-Rotating Bounding Rectangle
(V-RBR) created over the reference-contour by meeting the min-
imum area of contour criteria. Additionally, a new Virtual Dy-
namic Multi-line Crossbar and a Virtual Static Graph (VDMC-
VSG) was constructed to trace the movement of V-RBR, which
helps to estimate the pose and angle of the targeted instrument in
2D during observations. V-RBR is considered as virtual coloured
marker, it avoids ambient illumination-related difficulties. The
proposed approach performed excellently in Gazebo-simulation
and the overall accuracy is 91.3 % obtained by comparing
with Robot Operating System (ROS)-based Transform measuring
system, which uses robot kinematics.

Index Terms—Image Processing, Robot Operating System,
Gazebo simulation, Surgical robotics

1. INTRODUCTION

Robotics is at the heart of current medical engineering. For
example, robotic surgery has been one of the most significant
technological developments in medical realm during the past
20 years. Similar to this, it is projected that in the next few
years, the field of Robotic-Assisted Minimally Invasive
Surgery (RAMIS) will grow greatly. The exceedingly complex
medical discipline known as (RAMIS) includes eye-hand
coordination difficulties, restricted mobility, and a restricted
field of wvision especially during laparoscopic surgery.
However, there are still many challenges. Suturing is one of
the most difficult tasks that surgeons felt during minimally
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invasive operations. An autonomous surgical robot must be able
to monitor and localise the tool during suturing. But
inaccuracies in tool trajectories occurs by robot or camera
miscalibration. Thus, it might cause tool slips and incorrectly
guide the tool, potentially leading to operation failures. Poor
tool trajectory, particularly when a tool manipulation, could
result in additional organ damage or leads to fail the suture
operation. Related work for this issue is discussed in section II.

The remaining parts of the paper are structured as follows:
section IIT presents the comprehensive development of the
proposed method, which is divided into three subsections
and accompanied by corresponding experiments. The analysis
of the experimental results is provided in section IV, while
section V serves as the conclusion of the paper.

II. RELATED WORKS

The suturing technique cannot be carried out autonomously
unless the surgical needle is identified and monitored through-
out the task. Therefore, many approaches for monitoring
surgical tool has been put forth during the past few decades.
To begin with the early stage, robot kinematics, computer
vision, and Bayesian state prediction were utilised to develop
a particle filter to track a surgical needle through sterco
endoscopic images [1]. Later that, a method was developed
to register the position of needle with respect to the needle
holder while accurately locating the instrument, based on how
an endoscopic camera is used [2].In addition, refined and
coarse detection modules were combined to develop a
convolutional neural network model for surgical instrument
identification in minimally invasive surgery videos [3]. A
reinforcement learning-controlled single- phase surgical tool
identification framework was constructed based on a sample
adaptive approach, as this process maintains higher



precision and constant speed [4]. Thereafter, a faster R-CNN-
based modified Anchoring Network was prepared to identify
the instrument during the key-hole operation [5]. A geometric
object descriptor-based multiple tool tracing architecture was
introduced for limited surgical tool data sets [6].

Moreover, Kalman filter was suggested to combine sensor
data with robot kinematics in order to identify and track
needles [7]. Recently, a modified TernausNet-16 network
model was proposed to track surgical tools automatically [8].
Thereafter, a fine tuned InceptionResnetV2 model was devel-
oped for automatic instrument detection during operations [9].
An improved pattered-based marker was designed to trace a
circular-type surgical instrument [10]. Through this research
study, it has been concluded that a simple approach is required,
which is detailed in section III.

III. PROPOSED METHOD

In this work, a simplified, robust approach is presented to
trace and estimate the posture and angle of the instrument in
2D during suturing tasks. The main contribution of this work
is developing an algorithm framework with;

o Virtually created a Virtual-Rotating Bounding Rectangle
(V-RBR) over the instrument, which can be considered
as a Virtual Marker (VM).

« Additionally, a Virtual Dynamic Multi-line Crossbar with
a Virtual Static Graph (VDMC-VSG) constructed virtu-
ally, which tracks the instrument in 2D view.

A detailed explanation is given in three sub sections about
the algorithm flowchart shown in Fig. 1.

A. First stage of processing

When the node (algorithm) starts, it initiates to extract each
frame separately from live video data, which is obtained from
camera in Gazebo simulator. During the start of the processing
phase, each frame is converted from RGB to HSV. Merging
the hues of red, green, and blue leading to the creation of
the RGB colour model. HSV is the result of combining hue,
saturation, and value, or brightness. Hue, which is described
as an angle with a dimension of 0 — 360°, symbolises the
nature and characteristics of a hue. Saturation is the technical
term for colour intensity. The colour’s contrast, often known
as brightness or a representation of value, means that moving
from RGB to HSV frames enables better processing to identify
instruments in diverse lighting conditions, shadows, etc. The
thresholding strategy was applied to select the tool’s colour
from the HSV frame in order to construct a binary frame. The
targeted objects are shown in white with a black backdrop
scene.

B. Second stage of processing

Thereafter, coming to the next processing phase, binary
frames are helpful for measuring the first contours of the
targeted object since they only capture the tool’s area and
keep them in a first loop for later processing. If the instrument
region is more than 90 pixels within the first loop then V-
RBR is created over the instrument after obtaining centroid

coordinate for the instrument. The centroid coordinates for
the instrument, from the centre of mass, X. and Y., has been
determined in (1) and (2);
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where K; is the total number of pixels that match the instru-
ment, and X;, Y; are the location value of ‘" pixel in x, y
direction on Screen Plane. Technically, V-RBR is considered
a static, non-scale-changeable Virtual Marker (VM), which
helps to avoid zooming in and out issues. Then it moves on
to the further stage of processing after constructing a VM
over the tool. Here, it follows the actions that were taken
in the initial stage of processing, including transforming the
RGB to HSV frame, choosing the VM’s colour from the HSV
frame, obtaining binary frames using the threshold approach,
and grabbing the VM by treating it as a second contour to
keep in the second loop for final phase of processing.

C. Final stage of processing

Final processing phase begins with calibrating the VM
position if the VM area is greater than 100 pixels. An 8-
bit RGB camera with a 640 x 480 resolution was used in
this research. Due to this, the position of the VM within the
Screen Plane always appears in pixels and the VM coordinates
are obtained using (3) and (4);
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After obtaining centroid coordinates for VM, pixel-to-
centimetre conversion is determined as in (5) and (6):

o _ Lo VM ewgiaa #2580 s (5)
: 100
1= VM., * 254
Sy = o — 0.0245¢m (6)

The height and width of the screen are represented, respec-
tively, by S, and Sy,,. The locations of the VM on the tool
in the screen’s height and width are represented by V Mg,
and V' My,,, respectively. The Screen Plane (SP) to the Global
Plane (GP) x and y axis coordinates has been calibrated using
(7) and (8);

Sswisp_ap = —(0.0036 (S2,))+ (0.7938 * (Ss.)) — 0.0403
(7
Sshisram = —(0.0068 % (52,)) + (0.0395 % (Ss4)) — 0.4439
€))

The VM on the instrument’s position is calibrated to the
GP’s x and y-axis coordinates, which are represented by the
Sswisp_cpy a4 Sshsp_gp), Tespectively. Following this, a
vertical and horizontal dynamic line were developed virtually
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Fig. 1. Algorithm flow chart of proposed approach with three stage of processing for developing the Virtual-Rotating Bounding Rectangle and Virtual Dynamic

Multi-line Crossbar with a Virtual Static Graph.

to track the posture of the VM on the instrument in 2D.
Additionally, a Virtual-Fit Line (V-FL) was created to estimate
the angle of the instrument through VM, which was also
converted from radian to degree as follows;

UV—FL = % )
Uv_rr = [Xv_rr, Yv_rL] (10)
Yawis = [0,1] (1)

DP = [Yaais] - [Uv—ri] (12)

Rsp = cos™ ' x (DP) = Radian (13)
Rgp = (rollsp * (1i0)) = Degree (14)

The following characters (VV_FL, | My _pLl, Uy_rr, DP,
Rgp) are representation of vector’s direction, vector’s mag-
nitude of displacement, unit vector for V-FL, dot product
and rotational angle value of instrument in SP. Finally, a
Static Virtual Graph (SVG) is constructed, which visually
represents the « and y axes directions. After processing those
three phases, followed by an illustration of the produced
algorithm’s result, as shown in Fig. 3. Here, the combination
of virtual horizontal, vertical line and V-FI is represented as
Virtual Dynamic Multi-line Crossbar. This VDMC-VSG aids
to trace and predicts the precise position and angle of tool in
2 Dimension. Thus, tasks performed by the surgeon during a
surgery are reduced.

D. Experiment

A customised surgical robot model with one Endoscopic
Camera Manipulator (ECM) and Patient Side Manipulator
(PSM) was created and imported to the Gazebo simulation
platform with the setup environment depicted in Fig. 2 to
assess the effectiveness of the proposed approach. Dilation
and erosion blur filters have been used to assess the area of
contour size under various depth ranges of the surgical tools
in dynamic pictures, as indicated in the Table. I.

TABLE I
TESTING THE CONTOUR RANGE UNDER DIFFERENT BLUR SCENES AND
DEPTH RANGES

Type of Blur | Zoom range (cm) | Area of contour
Erosion 140 91
Erosion 120 98.5
Erosion 70 125.5
Dilation 140 91
Dilation 120 98
Dilation 70 126.5

This test shows that for each blur filter, the resulting area of
contour size is not constant at various depth ranges of surgical
tools. This is a crucial justification for building a non-scale-
changeable VM over the surgical tool. It acquires uniform,
constant pixel values. Finally, using this different approach
helps to monitor the instrument in 2D and estimate its pose
and angle. The whole procedure is described in the preceding
section, and the results are displayed in Fig. 3.

IV. VALIDATION AND RESULT

To validate the proposed work, it is required to conduct
a comparative analysis between proposed work with existing
research work for validation purpose. However, the given



Fig. 2. Customised surgical robot model in simulation environment with
setup.

Fig. 3. Visual output of Virtual Dynamic Multi-line Crossbar with a Virtual
Static Graph and Virtual-Rotating Bounding Rectangle.

commands to the surgical robot for motion trajectory is
unique. Thus, the obtained data from the proposed work is
completely different from existing research work. For this
significant reason forward kinematics were employed to verify
the proposed work. Here, the position and angle of each joint
are determined via the Denavit-Hartenberg (DH) method. A
DH chain diagram is first created (see Fig. 6) using a set
of coordinate frames that are positioned on all joints of the
customised surgical robot, as seen in Figs. 4 and 5. As a result,
it is simple to acquire and use DH parametric values in the DH
table for PSM, depicted in Table. II. Link length, link twist,
link offset and joint angle are denoted as these DH parameters
a;—1, ;—1, d; and 0;. Additionally, the acronyms T'F, BF,
and RF' stand for Target Frame, Base Frame, and Reference
Frame, respectively.

Matrix values were obtained for all joints of the PSM from
the DH parametric values in the DH table. The next step is to
execute Homogenous Transformation Matrices (HTM), which
are done by employing cross-multiplication on all joints of the
matrices from the target frame (surgical tool) to the reference
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\

Fig. 4. PSM with coordinate frame. Fig. 5. ECM with coordinate frame.
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Fig. 6. DH-chain diagram for customised surgical robot from base frame to
target frame and reference frame.
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TABLE 11
DH-TABLE FROM RF 1O TF
Link Joint-Type | a; | a; | d; 0;
RF — BF Fixed 0 0 0 0
BF — PSM; Prismatic A 0 dy 0
PSMys - TF Rotation 0 5 0 613

frame (camera), as shown below. Additionally, ECM joints
are kept in a consistent position to achieve a steady camera
viewpoint. Consequently, it is not required to acquire matrices
for all joints in the ECM.

0 0 0 O
0 0 0 O
55 =10 0 0 o (15)
0 0 0 O
1 0 0 [
01 0 0
TPSM1 00 1 dl (16)
0 0 0 1
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where s6; and cf;, respectively, stand in for sinf; and cos6;,
correspondingly. Additionally, I; stands for the link length,
while d; symbolises the prismatic junction. The transformation
between TF and RF is performed as follows (18);

(18)

TTF = T * TJ{DEMH(

(‘JO) * TPle (q1) * q13)

The joint ¢; (revolute or prismatic joint) is concerned with
the joint ¢ (¢+ = 1, 2,..., n), and the result of the cross
multiplication is (19);

Riiy Riz Riz ps

R R Ros p
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where k = {1,2,3} and j = {1, 2,3}, and Ry, indicates the
rotational components of the final outcome matrix. P, P,,
and P, stand for location vector elements in the x, y, and
z axes, respectively. The values from the suggested approach
SP are given in centimetres. However, results from the GP
are in metres and were obtained by using forward kinematics.
These values has been calibrated and translated from metres
to centimetres as follows in (20) and (21);

0.099 — p.(meter)

z timeter) = 20

ps(centimeter) 100 (20)
.043 — t

py(centimeter) = 0.045 1%6(7”6 er) (21

Thereafter, these rotational components, Ro3 and Rasj3, are
utilised to obtain rotational values, which are part of Euler
angles. Additionally, the rotational values of the respective
joints in GP are calibrated to match the rotational values in
SP, which are all determined as follows;

R

Rap = tan™ '« (ﬁ> = Radian (22)
R
180

Rap = Rap * (—) = Degree (23)
T

Rop_sp = 0.0812% (Rgp)® + 2.8828  (Rgp) + 20.89
(24)

where R(gp_sp) denotes the calibration of rotation value
from GP to SP and R represents the rotation value.
Furthermore, there is a chance for errors since calculating
the entire robot’s kinematics, whether manually or by coding,
is a very laborious operation. The Robot Operating System
(ROS) provided a module called Transform Measuring System
(TF) to address this problem. Selecting the reference and target
frames enables the operation of inverse and forward kinematics
for any type of robot, regardless of the number of joints.
The suggested approach needs this kind of absolute data to
be validated. As shown in Figs. 7, 8 and 9 the efficacy of
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the suggested approach is verified with absolute data. The
blue plot shows the estimated value utilising the suggested
approach, while the red plot shows the absolute value, which
is determined by conducting forward kinematics.

To obtain some additional data like velocity and acceler-
ation, single and double differentiation are performed from
displacement values (w.r.t time in seconds) in both SP and
GP, which are determined as follows;

A(Sswisp_cpy)
SP _ (sP-GP) >
v & (25)
A(Sshisp_cp)
ySP' — (SP-GP) 2
v 7 (26)

dt
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P d(gy) (32)
The following characteristics are (v3 ", vy, vG¥, V5P, a3T,
agp , agl, a? 7y, which represents the velocity and acceler-

ation for the x and y axes in both SP and GP. Additionally,
as seen in Fig. 2, the suggested approach performed more
accurately in the simulation platform beyond the anticipation.
The position, velocity and acceleration of surgical needle w.r.t
time in seconds as shown in Figs. 7 and 8. The angular
rotational value of surgical needle w.r.t time (seconds) is
represented in Fig. 9.

For evaluating the accuracy of proposed approach perfor-
mance, the coefficient of determination (R2) is used (33);

n 2
R? = (1 - Z;I(f—y)> % (100)
iy —y')?
where y/ is the average (mean) absolute value, f; represents
the estimated value, y; represents the absolute value, and n
signifies the number of values.

Accuracy of each element (displacement, velocity, accelera-
tion and rotation angle) and the overall performance accuracy
are summarized in Table. III. In this research, the complete
work is conducted on a virtual machine-based Ubuntu 18.04

(33)

TABLE III
ACCURACY VALIDATION BETWEEN ESTIMATED AND ABSOLUTE VALUES

List of position direction and angle | Accuracy range (percentage)
Xaxis 93.86
Yaxis 80.92
Rotational(angle) 99.32
Overallaccuracy 91.36

version with a 6-core processor and 16 GB of RAM. For
simulation, Gazebo 9.0 with ROS 1 were used in this research,
with Python 2.7 as the programming language.

V. CONCLUSION

In robotic surgery, real-time observation of surgical instru-
ment tracking is quite difficult task. Surgery is getting in-
creasingly challenging for surgeons, especially when it comes
to needle tracking. Therefore, a new visual system-based
approach is developed in order to track and predict the needle’s
orientation and location from the camera point of view with
the help of the developed V-RBR as Virtual Marker. The
data obtained from the proposed approach demonstrates the
potential to train automated surgical robots to perform proce-
dures with reduced errors, thereby alleviating challenges faced
by surgeons. However, the proposed approach may encounter
challenges in real-world scenarios. The future objective of
this research is to develop a more dependable model utilizing
neural networks to address the issues inherent in real-life
situations.
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