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Abstract-Teleoperation-based Robotic-Assisted Minimally In­
vasive Surgery (RAMIS) has gained Immense popularity in 
medical field. However, limited physical interaction between the 
surgeon and patient poses a significant challenge. In RAMIS, the 
surgeon operates the robotic system remotely, which can diminish 
the personal connection and raise concerns about immediate 
responsiveness to unforeseen situations. Additionally, patients may 
perceive RAMIS as riskier due to potential technological fallures 
and a lack of direct surgeon control Surgeons have identified 
accidental clashes between surgical instruments and tissues as a 
critical issue. This work presents a technique that measures the 
distance between a surgical tool and tissue by extracting feature 
points from a Static Virtual Marker (SVM) and employing a 
classic feature detection algorithm Fast Orlentedand Rotated Brief 
(ORB). Using a customized surgical robot and a ROS-based 
transform measurement system, this approach was successfully 
validated in the Gazebo simulation environment, offering safer 
surgical operations. 

Index Terms-Image Processing, Robot Operating System, 
Gazebo simulation, Surgical robot 

I. INTRODUCTION 

RAMIS, a growing surgical technique, offers several ad­
vantages over standard laparoscopy, such as reduced cognitive 
load, increased dexterity, improved precision, ergonomics, 
tremor control, movement scaling, and enhanced visual per­
ception [1]. However, these benefits come with limitations 
on mobility and vision range, making the surgical process 
chsllenging. Restricted visibility adds cognitive strain and 
increases the risk of collisions and tissue injuries [2]. To 
address this issue, a successful approach is necessary [3], which 
is presented in this research work. This paper organised as 
follows: after the introduction section I, related work for this 
problem is discussed in section Development of algorithm 
described in three sub section with experiment under section 
ill. Section IV describes the validation method with result and 
the conclusions are drawnin the section V. 
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II. RELATED WORKS 

Instances with a comparable range of relevance are collected 
for this research. To begin with, minimise clashes between 
moving tools and tissue in nasal surgery, Prohibited Region 
Active Constraints (ACs) utilising Vector Field Inequalities 
(VFI) and expanded on it by presenting the ACs framework 
[2]. Later that, a spontaneously annotated training data-set 
and an enhanced position-prediction deep-learning framework 
with visual-based marker-less position estimation method hss 
been presented It quantifies the position of surgical tool shafts 
using a monocular endoscope [4]. Additionally, an Prohibited 
Region of Virtusl Fixtures (VF). A marker-less instrument 
tracking approach is used to present an Extended Kalman 
Filter (EKF) for position calculation, which assures a more 
reliable application of VF on the instrument by integrating 
kinematics and vision data [5]. Thereafter, a modified 
Anchoring Network was created using FR-CNN to identify 
the tool during the key-hole pro- cedure [6]. For certain 
surgical tool data sets, a multiple tool tracing architecture 
based on geometric object descriptors was presented [7]. 
Moreover, an automated tracking sys- tern for surgical 
instruments has been presented using an improved 
TernausNet-16 network architecture [8]. Recently, for 

automated instrument recognition during operations, a highly 
optimised InceptionResnetV2 model was created [9]. 
Instrument collisions are prevented by imposing a repellent 
force on the surgeon. Although harm to tissues may result 
from unintentional current flow in the patient's anatomy. 

ill. PROPOSED METHOD 

In this research, a new approach is developed to prevent ion 
between surgical tool and organ by estimating the distance 
between them for RAMIS is presented. The contributions are 



o Created a new Static Vrrtual Marker (SVM) inspired by 
the April tag. 

• Developed a algorithm frame structure with integration 
of classic feature detection method for estimating the 
distance between the tissue and the surgical tool. 

A algorithm flowchart for easier comprehension is illus­
trated in Fig. I. In initiation part, the node (algorithm) be­
gins with extracting each frame from live video, when it is 
activated. This live video is obtained from the carnem in the 
simulation environment. It then begins with the initial stage 
of processing. 

A. First phase of processing 
Each frame is transformed from RGB to HSV in the initial 

stage of processing. The RGB colour model was developed by 
combining the shades of red, green and blue. Hue, saturation, 
and value or brightness, are combined to form HSV. Hue, 
which may be chamcterised as an angle with a range of 

0 - 360", represents the character and quality of a colour. 

Colour intensity is referred to as saturation. The contrast of 
the colour, commonly referred to as brightness or represents 
value. According to this, switching from RGB to HSV frames 
allows for improved processing to recognise objects in various 
lighting situations, shadows, etc. In order to create a binary frame, the thresholding approach was used to choose the 
colours of the objects (both tissue and instrument) from the 
HSV frame. It depicts the background scene as black, with the 
targeted items as white. By capturing the tissue and instrument areas alone and maintaining them in a first and second loop 
for subsequent processing, binary frames are supported to 
calculate the first and second contours of the targeted item. 
If the tissue area is bigger than 50 pixels under the first loop, 
the tissue location is calibrated for further processing. From 
the centre of mass, the centroid coordinates for the tissue, Xc 
and Y0, have been determined in; 

x' = �!;,xJ 
c K1 ' 

(1) 

(2) 

where K; is the total number of pixels that match the tissue, 
and X; and Y; are the x and y coordinates of the i'' pixel on 
the screen plane. In this research, an eight-hit RGB camem 
with an 640 x 480 resolution was employed in the simulation 
environment. As a resnlt, wherever the targeted item (tissue) 
presents inside the screen plane, its location is shown in pixels. 
The pixel-to-centimetre conversion is obtained using: 

1-� • 2.54 
S SW(pi,el) = Q 0245 sw1 = 

100 . em, 

1 - T.h, . I) • 2.54 
S - .... - 0 0245 sh, - lOO - . em. 

(3) 

(4) 

The characters Ssw; and s.,, represent the width and height 
of the screen, respectively. Tsw and T., are the positions of 
the targeted item (tissue) in the width and height directions of 

the screen. The x and y axes coordinates are calibmted from 
the Screen Plane (SP) to the Global Plane (GP), which are 
determined below: 

Bsw(SP-GP,) = -(0.0036•(S�w1))+(0.7938•(Ssw,l)-0.0403, 
(5) 

Ssh(sP-GP,) = -(Q.QQ68•(S�h,))+(0.0395•(Ssh1))-0.4439, 
(6) 

The location of the targeted item in terms of screen width and 
height is calibrated to the GP's x andy axes coordinates, which 
are denoted by SswcsP-aP,> and SshcsP-GP;.J, respectively. 
Following that, in the last phase of processing, the calibmted 
position of the tissue is used. Before proceeding to standard 
feature detection processing, under the second loop. It checks 
the instrunient region, if the area of the instrument is greater 
than 100 pixels, a Static Virtoal Marker (SVM) is overlayed 
on the instruruent by obtaining the centroid coordinates of the 
targeted instrument, it has been determined in; 

x2 = ��,x; c K2 ' 

B. Second phase of processing 

(7) 

(8) 

Simple definitions of image feature points include dark spots 
in bright areas and bright spots in dark areas, or contour points. 
These features are highly significant in the picture. Finding 
points for features is accomplished using the Fast Oriented 
and Rotated Brief (ORB) [1] method with a fast approach. 
Fast's fundamental concept is to identify standout points. To 
perform this, first it compares a point with its surroundings, 
and if it differs significantly from the majority of them, choose 
it as a feature point. 

The ORB algorithm combines the Binary Robust Indepen­
dent Elementary Features (BRIEF) descriptor and the FAST 
key-point detector. The scale pymmid picture is transformed 
to prepare it for feature extraction by employing the ORB 
method. Genemlly, it takes a 16-pixel round with the digits I 
to 16 marked circnlarly which is created by the FAST method 
to locate the key-points that start with mndom points on the 
initial inspection. After locating the key points, Harris Comer 
was utilised to determine the optimum N points. To locate the 
crucial location, an intensity centroid is employed. The picture 

patch's grey value, referred to as the centroid, serves as the 
weight centre [1]. The following defines a moment of image 
patching; 

mpq = LxPy•I(x,y). (9) 
xy 

Following the discovery of the key-point [1], the centroid 
intensity method of orientation searches is used and described 
as follows; 

C= (mw, mo1 ) , 
moo moo 

0 =arctan (m01, mw), 

(10) 

(11) 



Final stage of processing 
--------- ...... 

�---L--� ' 
\ 

Fig. 1. Algorithm flow chart of proposed approach with three stage of processing for overlaying the Virtual Static Marker and developing Virtual Dynamic 
line for euclidean distance estimation. 

where C(x, y) is the object's centroid, m00 is moment level 

zero (the object's region), and m10 and m01 are moment 

level one. The fundamental concept is to arbitrarily choose 

numerous sets of points near the feature points. They are 

contrasted in terms of their gray-scale values to create a binary 

feature description. The BRIEF approach is used to acquire 

binary descriptors following the acquisition of key-points. The 

initial pixel and second pixel in each sample pair are compared 

using BRIEF [1]. Initial pixels have a value of 1 if they are 

brighter than second pixels; otherwise, they have a value of 0. 

The binary test T is defined below: 

T(p;x,y) = 

{ l,p(x) < p(y) 
O,p(x) "2 p(y) 

(12) 

where p(x) and p(y) represent the intensity values at pixel 

x and y, is used to carry out this operation. There will be 

256 pairings created after repeating this method. A binary 

descriptor has 32 dimensions when 256 bits are split by 1 

byte. To create a binary vector, choose at random n sets of 

points (xi, Yi). A "descriptor" refers to a vector that identifies 

an image feature. An example of a BRIEF descriptor is to find 

the feature descriptors direction. The description now includes 

the direction data for the feature point represented in (11). 

Identify a 2 x n matrix Q at any location (xi , Yi) as follows: 

fn(P) = L 2
i- lT (p; Xi, Yi), 

l:S::i:S::n 
(13) 

where (xi, Yi) are the pixel test point [1]. The guided matrix 

is created as follows via conversion from the picture patch 

orientation f) to the associated rotation matrix Re: 

Q = 

[ X1, X2, X3, ... , Xn ] ' 

Y1 , Y2, Y3, · · · , Yn 
(14) 

Qe = ReQ, (15) 

The feature descriptor is: 

(16) 

The correlation between two features in the input and goal 

images is measured by descriptor distance. Since a binary 

string serves as the description of the ORB feature, the 

hanllling distance metric is used. Finding the feature point 

in the target picture with the shortest Hamming distance for 

every feature point in the reference image will determine if 

the two feature points are matched. The k-Nearest Neighbours 

(KNN) technique is used to quickly produce a large number 

of feature sets in order to increase the effectiveness of two 

supplied feature sets. Let Pti = Ptl, Pt2, ... , Ptn represent 

the collection of feature points in the goal picture It+ 1, and 
let Pri = Prl, Pr2, ... , Prn represent the collection of feature 
points in the template picture ft. 

The KNN method is then merged with the brute-force 

matchers for k = 2, which results in the identification of two 

closest neighbours in the train picture for each descriptor in the 

query picture. By using a straightforward selection approach, 

it aids in the removal of outliers, just as the ratio test does. 

If a possible set is accepted or rejected, it depends on the 

ratio between the distances of the nearest and second-nearest 

matching features. The match is excluded from further investi­

gation if the ratio is greater than the predetermined threshold, 

which is typically 0.75 chosen for better performance. The rest 

of the matches are inliers and are arranged according to how 

far apart the descriptions are from one another. The Random 

Sample Consensus (RANSAC) method is used to get the best 

homography transformations between the feature points while 

keeping the most appropriate pairings and removing other 



excessive pairings [10]. The homography matrix H between 
Pri and Pti is written as follows: 

�::J [ �; ] , (17) 

where u;, v;, and (U;, v;) are the corresponding pixel locations 
for features Pti. Pri and typically one of the nine matrix 
components is assigned a preset nnity value (H33 = 1),leaving 
the rest of the eight components unknowable. It results in 
the decision that a minimum of four inlier sets (ml, m2) are 
necessary. 

The upcoming stages will provide more information on the 
RANSAC method. After setting the total count of optimal 
pairings to zero, it randomly select four pairs to use as the first 
inputs in the postore prediction system for matrix H calculation 
[10]. For the rest (h- 4) matching sets, the prediction error 
t!.d; (j = 1, 2, ... , h- 4) is calculated as follows; 

t!.d; = [ �; ] - H [ �; ] (18) 

The j'h matching pair is identified as an inlier if t!.d; > 3; 
if not, it is eliminated as an outlier. Additionally, to boost 
outlier elimination, the robust RANSAC method is employed. 
To discover the appropriate features in the train picture for the 
collection of featores in the query picture, such as comers. A 
poly-line drawn by utilising the perspective transformation, if 
the homography H is successfully acqnired. This process aids 
for detecting the features of an object. 

C. Final phase of processing 
After creating a poly-line over the perspective transforma­

tion of detected features, it proceeds to the final stage of 
processing. Here, it repeats the same method that are followed 
in the first stage of processing, like converting RGB to HSV 
frame, selecting the colour of the poly-line from HSV frame, 
obtaining binary frame with the aid of the threshold method, 
and grabbing the poly-line by considering it as a 3rd contour to 
retain in the 3rd loop for further processing. If the area of the 
poly-line is larger than 100 pixels, then it starts to calibmte the 
location of the poly-line, just like calibmting the location of 
tissue in the SP, which is performed in first stage of processing. 
Similarly, if area of the poly-line over than 100 pixels then 
location of poly-line is reqnired to be calibrated, which are 
determined as follows; 

_.K, y;3 ya= L.Jili 
e Ka ' 

1-P * 2.54 
S SW(pig::e') = 0 0245 sw, = 

100 . em, 

S = 1 -Psh<•••••> * 2.54 = O 0245 sh2 100 . em, 

(19) 

(20) 

(21) 

(22) 

S,W(SP-G">) = -(0.0036*(S�w, ))+(0. 7938*(S,w2) )-0.0403, 
(23) 

S,h(SP-G">> = -(0.0068*(S�h,))+(0.0395*(S,h,))-0.4439, 
(24) 

where Psw and Psh stand for the positions of the poly-line 
over the targeted item in the directions of screen width and 
height. Here, targeted item is SVM, which is overlayed on 
the instrument. Thereafter, euclidean distance is estimated 
between calibrated location of tissue and instrument, which 
are determined as follows; 

Xe = ((Ssw(SP-G">)) - (8,W(SP-GC1) )), (25) 

Ye = ((S,h(sP-G">)) - (Ssh(sP-GC,))) , (26) 

edi•P(SP) = y'(Xe)2 + (Ye)2, (27) 

where Xe and Ye denote the x and y axes of the SP, and ed;,p 
represents the Euclidean distance between the tissue and the 
surgical instrument. The virtual output is shown in Fig. 2. 

D. Experiment 
To test the efficacy of the proposed approach, a customised 

surgical robot model with one Patient Side Manipulator (PSM) 
and one Endoscopic Camem Manipulator (ECM) was devel­
oped and imported to the Gazebo simulation platform with 
the setop environment shown in Fig. 2. An abundance of 
blur filters were applied to test the area of contour range 
and available feature points on surgical instrument in dynamic 
frames, which are shown in the Table. I. 

TABLE I 
COMPARISON BETWEEN FEATURE POINTS AND CONTOUR RANGE UNDER 

DIFFERENT BLUR SCENES 

Type of Blur Detected features count Area of contour 
Erosion 7 221 
Dilation 2 219 
Gaussian 7 215 
Median 3 215 

Bilateral 3 218 

Through this test, the obtained number of feature points of 
surgical instruments in dynamic frames is unfortunately lower 
than anticipation for each blur filter. Nevertheless, the area 
of contour range of the surgical instrument is not less than 
200 pixels in each blur filter. This is a significant justification 
to develop and overlay SVM on the contour of the surgical 
instrument. It is a non-scale-changeable SVM, which helps to 
obtain a greater number of feature points. Finally, this different 
approach succeeded in estimating the distance between tissue 
and SVM; the whole algorithm is explained in the previous 
section and final output shown in Fig. 2 with simulation 
environment. 

IV. VALIDATION AND RESULT 
A comparison study between the proposed work and re­

cently published research has to be carried out in order to 
verify the suggested work. The instructions provided to the 
surgical robot for movement trajectory are special, though. As 



Fig. 2. Customised surgical robot model in simulation environment with 
proposed approach. 

Fig. 3. PSM with coordinate frame. Fig. 4. ECM with coordinate frame. 

a result, the proposed work's data are entirely distinct from 

those of earlier research. Therefore, forward kinematics was 

chosen to validate the proposed approach. Here, the Denavit­

Hartenberg (DH) technique is used to determine each joint's 

location and angle. To begin with, a DH chain diagram is 

drawn (shown in Fig. 5) based on a group of coordinate frames 

aligned over each joint of the customised surgical robot, as 

shown in the Fig. 3 and Fig. 4. Thus, DH parametric values 

are easily obtained and deployed in the DH table for PSM, 

shown in Table. II. These are the DH parameters ai-l> ai-l• 
(}i and di, which represent link twist, link length, joint angle, 

and link offset. In addition, Reference Frame, Target frame 

and Base Frame are represented by the abbreviations of RF, 

TF and BF, which are used in Table. II and cross multiplication 

of each matrices. 

TABLE II 
DH-TABLE FROM RF TO TF 

Link Joint-Type ai ai 
RF-+BF Fixed 0 0 

BF-+ PSM1 Prismatic h 0 

PSM12-+ TF Rotation 0 7r 
?. 

di (}i 
0 0 

dl 0 

0 (}13 

From DH parametric values in the DH table, matrices for 

each joint of PSM are extracted. Thereafter, Homogenous 

Transformation Matrices (HTM) are carried out by performing 

P:�--------?M·LS 

ECM·L6 / t I 
ECM-L2 ECM-L3 ECM-L4 t./_

/ �-Lll � ...... , 
/}---}---� r PSM·L9t P

�
M·

r/ : ;r
M·Lg 

. t/ , t / r r 1 1 
ECM·L

x-
ECM·L� I 

. 

_t � 
I t PSM·L7 t PSM·L

;t--
ECM·L10 

� }---�-�M·L4 �
-

p.Ls 
: I 

PSM·L 0 L // PSM·L2 PSM·L3 "}----�-L6 PSM·L11-I )-� PSM-LS Camera Link 
Tool Link (Reference Frame) 

: [Axis representation in color (Target Frame) 
I -x 

):: -v Base Frame 
-z World Frame 

Fig. 5. DH-chain diagram for customised surgical robot from base frame to 
target frame and reference frame. 

cross-multiplication of each joint of matrices from reference 

(camera) to target frame (surgical instrument), has determined 

below. Moreover, ECM joints are maintained in a standard 

posture to obtain a stable camera perspective. Thus, it is not 

necessary to obtain matrices for each joint in ECM. Various 

transformations between individual frames are defined by; 

[� 

[� 

,.,PSM12 _ [���; 1TF - 0 
0 

0 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

0 

�] 

0 
0 
0 

0 

�] 

0 
1 dl ' 

0 1 

-sOrF 
cOrF 

0 
0 

(28) 

(29) 

(30) 

where sin(}i and cos(}i are represented by the abbreviations s(}i 
and cOi, respectively. Additionally, di represents the prismatic­

joint and li denotes the link-length. The transformation be­

tween TF and RF has determined as; 

,.,RF TRF( ) TBF ( ) ,.,PSM12 ( ) 1TF = BF Qo * PSM1 Ql * · · · * 1TF Q13 · (31) 

When it comes to the joint i (i = 1, 2, ... , n), the joint 

variable is Qi (revolute or prismatic joint) and the final output 

of the cross multiplication as follows; 

[Rn 

r,RF- R21 
TF - R31 

0 

R13 Pxl 
R23 Py 
R33 Pz 

' 

0 1 

(32) 

where the rotational elements of final output matrix are repre­

sented by (k and j = 1 , 2, and 3), respectively, and by Rkjs· 
Location vector elements in x, y and z axes are represented 

by Px, Py. and Pz· 



The values from the proposed approach (SP) are in centime­
tres. However, values from the (GP) are in metres, which are 
obtained by performing forward kinematics. Those values are 
calibrated and converted from metre (m) to centimetre (c108), 
has been determined as follows; 

( ) 
0.099- Pz(m) 

Pz ems = 
100 ' 

( ) 
_ 0.043- p71(m) 

Py ems -
100 ' 

(33) 

(34) 

(35) 

Moreover, there is a likelihood of making mistakes because 
it is a hugely cumbersome task to derive the whole robot 
kinematics calculation manually or through coding. To trou­
bleshoot this issue, the Robot Operating System (ROS) pre­
sented a package named Transform Measuring System (TF). 
It enables the performance of forward and inverse kinematics 
for any sort of robot with respect to the number of joints by 
simply choosing the target and reference frame. 

This type of absolute data is required to validate the pro­
posed approach. Therefore, the effectiveness of the proposed 
approach is compared with absolute data, as depicted in the 
Fig. 6. The red plot represents the absolute value, which 
is obtained by performing forward kinematics, and the blue 
plot denotes the estimated value using the proposed approach. 
However, there are continuous buffering during simulation, 
which results in minor gaps between absolute and estimation 
value, shown in Fig. 6. It could be resolved in future by utilis­
ing high computing system. To evaluate the accuracy range of 
the proposed approach, the coefficient of determination (R2) is 
used to analyse values between absolute and estimation using 

R2 = (1 - I:�=1 (!� = y!):) * (100). (36) 
L:i=l(y. y) 
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Fig. 6. Comparison between absolute and estimation value for euclidean 
distance. 

Here y' is the average (mean) absolute value, fi represents 
the estimated value, Yi represents the absolute value, and 
n signifies the number of values. Through this calculation, 
the overall accuracy is 78%. Moreover, this research work 
was completely performed on a virtual machine-based Ubuntu 
18.04 version with 16 GB of RAM and a 6-core processor. 
Python 2.7 was used as a programming language, and Gazebo 
9.0 with ROS 1 was used for simulation. 

V. CONCLUSION 

In this work, presented a different approach to estimate the 
distance between surgical instrument and tissue by extracting 
features from the SVM using the classic ORB-based features 
detector. The proposed approach is tested and validated with 
a developed customised surgical robot model in a Gazebo 
simulation environment by comparing it with a ROS-based 
transform measuring system. Through this, the proposed ap­
proach performed well in terms of precision in the simulation 
environment, and the accuracy range is 78%. However, the 
proposed approach might faces issues in real world. The 
future plan for this research is to estimate the stitching-pulling 
and knot-tying forces by developing a neural network based 
solution. 
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