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Abstract. We use agent-based simulation in a coordination game to analyse the possibility of 

market power abuse in a competitive electricity market. The context of this was a real 

application to the England and Wales electricity market as part of a Competition Commission 

Inquiry into whether two particular generators could profitably influence wholesale prices. 

The research contributions of this paper are both in the areas of market power and market 

design policy issues for electricity markets, and in the methodological use of large industry-

wide evolutionary simulation models. 

 

Keywords: Agent-based, Bertrand game, Coordination game, Electricity, Market power, 

Simulation. 

 

 
2



1. Introduction 

 

With the widespread restructuring of electricity industries, moderating the abuse of market 

power has become a persistent issue for the various regulatory agencies that have been 

appointed to manage these new competitive markets. For a number of plausible reasons, 

including preserving security of supply, and (or) enhancing privatisation returns, the 

restructuring of electricity markets has resulted, in most cases, in too few players to ensure 

market efficiency. Regulators have often inherited, therefore, the structural deficiency of 

imperfect competition. Under such circumstances, with one or more generating companies 

evidently possessing market power, monitoring conduct and setting a framework for 

preventing the abuse of market power is a major, on-going, methodological task.  

 

The specific motivation for the study reported here resulted from an initiative by the 

regulatory agency in Britain (Ofgem) to require all “significant” generators in the market to 

sign a market abuse licence condition (MALC), which was essentially a “good behaviour 

clause” in their licence to generate electricity. This had followed a decade of attempts during 

the 1990s to reduce market power structurally by enforcing divestiture of assets, with 

relatively little effect (at least by 1999) on wholesale prices, and was being sought (in 2000) 

ahead of the proposed New Electricity Trading Arrangements (NETA), which was introduced 

in 2001. Two generators had refused to sign the MALC on the basis that, in their argument, 

they could not exert a significant influence on market prices. One, British Energy (BE), was 

quite a large generator with over 10% market share, but being almost all baseload nuclear, 

claimed it rarely set market prices. The other, AES, had below 10% in market share. Because 

of this refusal to sign, the case was referred to the Competition Commission for analysis. This 

specific modelling challenge was therefore to assess, ex-ante, if such players could really 
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influence market prices profitably by attempting strategic withholding behaviour. Ofgem 

were clearly anxious that NETA would be introduced with strong restrictions to preclude high 

prices. 

 

Looking at the literature in electricity markets we notice that several topics have been the 

focus of debate: a) Market design, e.g., Allaz and Vila (1993), Borenstein and Bushnell 

(1999), Day and Bunn (2001), and Crampes and Creti (2001); b) Market structure evaluation, 

e.g., Sweetser (1998), and Borenstein, Bushnell and Knittel (1999); c) Analysis of market 

equilibrium, e.g., Green and Newbery (1992), Von der Fehr and Harbord (1993); and d) 

Exploitation of network constraints to gain market power, e.g. Hobbs (1986), Wei and Smeers 

(1999). In particular, developing a stylised oligopoly model of competition in the England and 

Wales (E&W) electricity market was achieved by Green and Newbery (1992) using the 

supply-function equilibrium techniques developed earlier by Klemperer and Meyer (1989). 

Since then, the supply function equilibrium has become one of the main analytical models 

used to create competitive price functions for imperfect electricity wholesale markets1. The 

supply-function equilibrium models have been the least stylised of analytical methods, 

however they do still assume that the supply functions are continuous, whereas in practice 

generating units are offered in discrete blocks. This limitation leads to a new stream of 

research that uses discrete supply functions, e.g. Von der Fehr and Harbord (1993), but again 

analytical constraints require considerable simplifications in the market structure. Moreover, 

the supply function equilibrium assumes that generators submit a complete function to the 

market, associating price to quantity. This was the case in the E&W pool, but it is less easy to 

envision it in a continuously traded bilateral market.  
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Furthermore, Rothkopf (1999) reminds us that the interactions within an electricity market 

constitute a repeated game, whereby a process of experimentation and learning changes the 

behaviour of the firms in the market. A computational technique that could reflect these 

learning processes and that could model the structure and market-clearing mechanism (with a 

high level of detail) would therefore appear to be necessary. This technique is agent-based 

simulation and provides the kind of modelling platform required for company specific market 

power analysis in practice, such as in the Competition Commission case motivating this 

study. 

 

The proposed introduction of NETA had already represented a good opportunity to test the 

usefulness of large-scale agent-based simulation to provide some insights on market design. 

Bower and Bunn (2000) studies the impact of the introduction of discriminatory pricing on 

the spot prices under a bilateral market: the agent-based platform enables a detailed 

description of the market, taking into account discrete supply functions, different marginal 

costs for each technology, and the interactions between different generators. Bunn and 

Oliveira (2001) follows that work by developing a simulation platform that represents, with 

much more detail, the way that market clearing in NETA was designed to function: a) It 

models the interactions between the Power Exchange (PX) and Balancing Mechanism (BM). 

b) It considers generators that may own different types of technologies. c) It considers an 

active demand side, incorporating suppliers. d) It takes into account the learning dynamics 

underlying these markets as a process by which a player selects the policy to use in the game 

by interacting with its opponents. 

 

In this work, we adapt and extend the Bunn and Oliveira (2001) NETA simulation platform to 

analyse if the two companies in the Competition Commission Inquiry had enough market 
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power to operate against the public interest. In this work, we specifically analyse the 

capability of these companies to increase market prices2. In order to answer the specific 

question regarding these companies’ conduct in the E&W electricity market, we need to take 

into account some of the important characteristics of electricity markets in general and of 

NETA in particular.  

 

However, although computational approaches have the capability of allowing the analysis of 

detailed market models with multiple agents to learn various strategic parameters, this can 

pose a major problem in understanding and explaining the outcomes of the evolutionary 

simulations. Therefore, in this paper, we first develop a stylised Bertrand game with 

constraints, which we use to explore the main strategic decisions faced by the generators in 

the market, and to motivate the issue of conduct evaluation. The aim of the stylised model is 

to clarify the exposition of our argument, and to show why, in order to understand more fully 

the processes governing the market behaviour, we need to use some carefully formulated 

computational simulations. See Staiger and Wolak (1992), Von der Fehr and Harbord (1993), 

and Crampes and Creti (2001), for Bertrand games in the electricity industry, and Kreps and 

Scheinkman (1983) for a game theory analysis. Our stylised Bertrand game adapts Crampes 

and Creti (2001) framework to a pay-as-bid auction with N-generators. 

 

The structure of the paper is as follows. In the next section, we describe NETA, as proposed 

for introduction in 2000. In section 3, we present the formulation of our agent-based 

simulation model for NETA prices. In section 4 we undertake some analysis of pricing and 

capacity withholding in a simplified market in order to motivate the need to use 

computational learning to evaluate conduct in a more realistic market model, which we do in 
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section 5. Section 6 addresses the important issue of the nature of equilibria that arise from 

agent-based simulation and section 7 concludes the analysis and case study. 

 

2. The New Electricity Trading Arrangements 

 

A good and detailed description of the way that NETA was originally designed to operate can 

be found in Ofgem (2000, March) and Ofgem (2000, April), and these references were used 

as the basis for our ex-ante modelling. NETA is based upon unadministered bilateral trading 

between generators, suppliers, traders and customers, which takes place in the forward 

markets before gate closure. The Balancing Mechanism (BM) works as a market where the 

System Operator (SO) buys and sells increments or decrements of electricity, from both 

generators and suppliers, in order to balance the system as a whole. However, individual 

generators and suppliers may be out of balance. During the Settlement Process (SP), the SO 

compares the contract positions (quantities contracted), plus whatever is bought or sold in the 

BM, with the actual position (quantities generated or consumed) for each one of the suppliers 

and generators (plant by plant) to calculate the Imbalances. The Imbalance may be a spillage 

(if a plant is generating more than it has contracted, or if a supplier is consuming less than it 

has contracted) or a top-up (if a plant is generating less than it has contracted, or if a supplier 

is consuming more than it has contracted). For both types of imbalances there is a price: if an 

agent is spilling it will receive as payment for the electricity generated the System Sell Price 

(SSP); if an agent is topping-up, it will pay the System Buy Price (SBP). The spread between 

the two prices is intended to provide a penalty for being out of balance: the SSP (SBP) is 

expected to be considerably lower (higher) than the prices in the forward markets. The day 

ahead, and within day, balancing schedules are presented in Table 1 that follows Ofgem 

(2000, April), pp. 160. 
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Table 1: Day ahead and within day balancing schedules 

The SO day ahead balancing process: 

1. By 09:00 publishes the day ahead demand forecast. 

2. By 11:00 receives the Initial Physical Notifications (IPNs). 

3. Calculates the available national plant margin or shortfall. 

4. Verifies system security given demand predictions, the submitted IPNs and planned transmission 

outage. 

5. By 12:00 issues the total system plant margin data to the market for the day ahead. 

6. Forecast constraint costs based on the estimated Final Physical Notifications (FPNs) and bid 

(offer) prices and volumes. 

7. If necessary calls the most economic Balancing Services contracts to ensure the system security.  

8. During the following 11:00 hours, receives updates of the Physical Notifications (PNs). 

9. By 16:00 publishes the revised national plant margin and zonal margin. 

The SO within day balancing process: 

1. Publish half hourly averaged demand forecasts for a defined period, until gate closure. 

2. As participants become aware of changes to their physical position they advise the SO. 

3. At defined times the zonal and national margins are reassessed and provided to the market. 

4. Undertake security analysis and reassess the requirements of Balancing Services contracts. 

5. At gate closure the PNs become FPNs and the SO will have received bids (offers) of the prices and 

volumes from the participants in the BM. 

6. During the BM the SO balances the system taking into account: technical constraints; dynamic 

operating characteristics of generation and demand balancing services. 

 

The SO starts the balancing process a day-ahead of time by publishing demand forecasts, both 

for the system as a whole and for each zone in the network. These forecasts are revised taking 

into account both the weather and the network conditions, and the Physical Notifications 

(PNs) by generators and suppliers. The SO also forecasts constraint costs based on the 
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estimated Final Physical Notifications (FPNs) and bid (offer) prices and volumes in the BM. 

If necessary, SO calls the most economic Balancing Services contracts to ensure the system 

security. Within the daily balancing process, the SO revises its demand forecasts, every half-

hour for each defined period, until gate closure. The participants may revise their physical 

notifications until gate closure. At gate-closure, the PNs will become FPNs and the SO will 

have received bids (offers) of the prices and volumes from the participants in the BM. During 

the BM, the SO will balance the system taking into account the technical constraints; dynamic 

operating characteristics of generation and demand balancing services, and uncertainty in 

demand. 

 

3. The NETA Model 

 

The basic structure of the model follows Ofgem (1999, July), Ofgem and DTI (1999, 

October), although the details of the BM reflect also the later revisions Ofgem (2000, March) 

and Ofgem (2000, April). However, to build a detailed model of the balancing process and of 

its interactions with the power exchange and futures market would present overwhelming 

complexities and so, for tractability, we adopted some simplifications:  

a) The transmission system was not modelled.  

b) We model only a typical day, taking into account some plant dynamics. The model is 

aimed at analysing the process of finding the equilibrium solution for the specific 

daily profile simulated.  

c) We have simplified the continuous nature of trading in NETA, and represented both 

the forward market and the BM as two, sequential, one-shot markets.  

d) Finally, our model assumes independence between generators and suppliers.  
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We have built the PX (that in the model represents both the forward bilateral market and the 

power exchange) using auctions namely the Single Call Market (SCM) (see Cason and 

Friedman (1997)). In the SCM each player submits a bid or offer price to an auctioneer. The 

bids and offers have a limit price and the maximum quantity that the trader is willing to buy 

or sell. The auctioneer calculates the market-clearing price. The clearing-price mechanism 

used by the auctioneer was slightly modified to reflect the NETA trading principles, with the 

agents paying the price bid or receiving the price offered, instead of paying (receiving) the 

clearing price. The same type of auction is also adopted in other models of electricity markets 

(e.g. Von der Fehr and Harbord (1993) and Nicolaisen, Petrov and Tesfatsion (2001)). An 

interesting characteristic of this type of auction is that the traders tend to reveal their true 

values and costs. 

 

The model is organised into trading days, or iterations. A trading day starts with the agents 

buying (selling) electricity in the PX. In these markets the suppliers try to buy, at a price as 

low as possible, the amount of electricity needed to fulfil their contract cover objective (the 

amount of electricity they want to buy in the PX). The generators try to sell at a price as high 

as possible, given their portfolio of plants, and the amount of electricity they want to save to 

sell in the BM. After the trading in the PX ends, each agent knows exactly how much it has 

sold (or bought) and it knows its FPNs, for each one of the hours. Overall, in each day 

(iteration) 48 auctions take place: in every hour, there is an auction in the PX and another one 

in the BM.  

 

Then, the trading in the BM begins. Each supplier has an expected demand, and is able to sell 

or buy in the BM, in order to avoid Imbalances. Each generator knows the amount contracted 

for each one of its plants and the system position, long or short, and decides if it desires to sell 
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or buy electricity in the BM. It is noteworthy that, given a certain “system position”, only a 

certain type of offers is accepted, increments or decrements. The trades in the BM occur 

between the SO and each one of the generators and suppliers offering (bidding) in the BM. 

The SO accepts bids or offers from suppliers only for arbitrage reasons, otherwise it takes the 

offers or bids from generators. After all the trading in the BM is finished, the final positions 

and imbalances (of each generator and supplier) are calculated. The imbalance prices and 

costs are then computed. The algorithm is described by the pseudo-code in Table 2. 

 

Table 2: NETA model pseudo-code 

For the number of trading days specified 

1. Suppliers predict demand for each hour 

2. Generators define which plants can run 

3. Generators offer in the PX 

4. Suppliers bid in the PX 

5. Trading in the PX and calculation of System Position in each one of the hours 

6. Generators and Suppliers offer (bid) into the BM 

7. Trading in the BM and calculation of imbalance prices 

8. Settlement Process: calculation of imbalances for each one of the suppliers and generators 

(plant by plant) 

9. Learning 

 

The conceptualised agents in the model represent generators (i.e. generation companies 

possibly owning several plants with different generation technologies) and suppliers (i.e. the 

agents purchasing from wholesale market in order to “supply” end-use customers). 
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At the end of each trading day, each agent tries to learn from the previous days’ accumulated 

experiences, evaluating the profit got in the PX and in the BM. Then it defines new policies to 

bid or offer in the PX and in the BM, in order to maximise its expected profit. Each agent has 

some general strategic objectives that it tries to achieve, namely profit maximisation and 

exposure to the BM. An agent learns to improve its performance by using a reinforcement-

learning algorithm: see Kaelbling et al. (1996), and Sutton and Barto (1998) for a survey on 

reinforcement learning. 

In our formulation, the following notation is used. Cij represents the short-run cost of plant j 

that is owned by generator i. POij, PObmij, (PBbmij) represent, respectively, the price offered 

in the PX and the price offered (bid) in the BM, by generator i for plant j. Qij , Qxij and 

QObmij (QBbmij) represent, respectively, the total electricity sold by plant j, the quantity sold 

in the PX and the quantity sold (bought) in the BM. PBi (PBbmi) represents the price bid in 

the PX (BM) by supplier i, and Si , Sxi, Sbmi (SObmi), Imbi represent, respectively, the market 

share, the quantity bought in the PX, the quantity bought (sold) in the BM, and the imbalance 

of supplier i. D and Pretail, PBbmi (PObmi) represent, respectively, the total demand at a 

certain time, the retailing price and the price bid (offered) by a supplier buying (selling) in the 

BM.  

 

The objective of each player is to maximise its (average daily) total profit, taking into account 

the assets it owns, the total demand and the behaviour of other players, and its objective for 

the BM exposure (BMXi). What is the intuition behind the BM exposure constraint? The 

significant gap between prices in the BM and in the forward and power exchange markets (the 

SBP (SSP) is significantly higher (lower) than the clearing price in the bilateral markets) acts 

as an incentive for suppliers to avoid the BM. A generator is less constrained by the BM 

system. If there is a shortage of electricity, it may sell in the BM (receiving the price offered, 
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if accepted by the SO); if there is excessive supply of electricity, the generator may also bid to 

reduce its generation (being paid the price bid, if accepted). So, why would a generator prefer 

to sell in the PX? First, baseload plant may prefer to sell its generation before gate closure due 

to its risk aversion against any interruption in continuous running. Second, since the suppliers 

have an incentive to trade in the forward and power exchange markets, the mid-merit 

technologies face a high demand in these markets. In contrast, it seems that the BM is the 

natural environment for expensive and flexible peak-plants looking for price spikes. Let us 

analyse separately the problem faced by generators and by suppliers. 

 

3.1. Generators 

 

A generator faces the problem of finding the best possible policy (how to price its plants), 

given the behaviour of competitors and of suppliers. Formally, a generator i tries to maximise 

daily profit ( ), equations (1), by iteratively learning the prices to offer (or bid) in the PX 

and in the BM (as a simplification, in this representation we assume that a generator is never 

imbalanced). The iterative process by which a generator tries to approximate the equilibrium 

represented by equations (1) is described by the pseudo-code in Table 3. 

iπ

 

(1)  

( ) ( ) (i ij ij ij
j

ij ij ij ij

ij ij
j

 = Qx . QObm . -QBbm .

.
Q = Qx +QObm QBbm

QObm +QBbm

ij ij ij ij ij ij

i

)Max PO C PObm C PBbm C

st

BMX

π − + − −

−

≤

∑

∑

 

 

The expected profits and acceptance rate in Tables 3 and 4 are computed by using 

reinforcement learning. In this algorithm, the learning is through the accumulated history of 
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previous plays. At each one of the iterations, a player updates the value of the expected profits 

and acceptance rates of each possible mark-up, and decides between following the best policy 

so far and exploring an alternative one. The full algorithm is presented and analysed in Bunn 

and Oliveira (2001). 

 

3.2. Suppliers 

 

Table 3: Pseudo-code for generator's learning algorithm 

For each plant in the portfolio:  

1. Verify that the objectives for the BM exposure. If they were not achieved, penalise the profit 

obtained. 

2. Given the daily profits in the PX and in the BM revise, for the mark-up used, the:  

   2.a) Expected profit in the PX and in the BM. 

   2.b) Expected acceptance rate in the PX and in the BM.  

3. Define the new offering policy for the next day. 

4. In the beginning of the next day. Define the quantities and prices offered for each plant, 

after knowing which plants are available, making sure that all the operational constraints are 

respected. 

 

A supplier tries to find the best possible policy (which price to choose), given the behaviour 

of the other players. Formally, a supplier i tries to maximise the total daily profit, equations 

(2), by learning iteratively the prices to bid (or offer) in the PX and in the BM, and at the 

same time respecting its objective for the BM. The iterative process by which a supplier tries 

to approximate the equilibrium represented by equations (2) is described by the pseudo-code 

in Table 4. 
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(2)  

( ) ( )
( )

( ) ( )

i retail i retail

i
i retail

i

i retail i retail
i

i

i i i i

i i

Sx . P bm . P
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Imb 0
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.
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i i

i i
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i
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PB S PBbm
ifSOb PObm SBP
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PB S PBbm
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SOb PObm SSP
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SOb

SOb BMX

π

 − + − +
 ≥+ + −


 − + − + <
+ −

− +
+ + ≤

 

 

Table 4: Pseudo-code for supplier's learning algorithm 

1. Verify that the objective for the BM exposure was achieved 

If not, penalise the profit obtained in the PX. 

2. Given the daily profits in the PX and in the BM revise the:  

    2.a) Expected profit in the PX and in the BM 

    2.b) Expected acceptance rate in the PX and in the BM 

3. Define the new bidding policy for the next day. 

4. In the beginning of the next day. After calculating predictions for demand, define the 

quantities and prices bid. 

 

4. Conduct evaluation, multi-equilibria and learning 

 

We now look more closely at the issue that motivated this study, namely how to evaluate the 

conduct of a given generator. It is worthwhile to note that we are not so much interested in 

analysing if a certain market design, or structure, leads to competitive equilibrium: Instead we 

want to analyse whether a certain player, by its conduct, may find it profitable to price and 

withhold capacity strategically, in order to increase wholesale electricity market prices. 
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For this analysis, following Crampes and Creti (2001) we use a one-shot Bertrand game with 

capacity constraints, that we extend to the analysis of a pay-as-bid (each player pays the price 

bid or receives the price offered) N-players setting. This model is developed on the following 

assumptions: a) There is only one market, the power exchange (so that we can disregard the 

interactions with the BM). b) Each generator only owns one type of technology, characterised 

by a certain short-run production cost, assumed constant. c) Demand is inelastic, D. d) N 

generators a, b, …, N, with short-run generation costs Ca, Cb, …, CN, and capacities Ka, Kb, 

…, KN. e) D is such that  and if K
N

i
i a

K D
=

>∑ s is the capacity of the smallest generator, 

. f) There is a maximum price, 
N

i
i a

K D K
=

< +∑ s P , that any generator is allowed to charge. 

 

The Bertrand game with capacity constraints is a two-stage model. In the first stage, a 

generator chooses the amount of capacity available and, in the second stage, it chooses the 

price offered. 

 

Let us start examining the situation where, in the first stage, all the generators decide to make 

all their capacity available. In the second stage of the game, each generator needs to decide if 

it wants to sell all its capacity, undercutting the prices offered by its competitors, or if it offers 

the highest possible price P , exchanging quantity for price.  

 

Let us assume that a generator i decides to offer P , then its profit can be represented by 

equation (3). 

(3) ( ).i j
j i

D K P Cπ
≠

 
= − − 
 

∑ i  
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However, if generator i decides to undercut the price offered by the other generators in order 

to sell its full capacity, the profit function is represented by equation (4). 

(4)   ( ).i i i iK P Cπ = −

 

At equilibrium, generator i prefers to charge the maximum price if and only if 

( ) (. .j i i i
j i

D K P C K P C
≠

 
− − ≥ 

 
∑ )i− . Solving this equation in order to get Pi we compute the 

upper bound ( iP ) on Pi such that it is better for generator i not to undercut its competitors, 

equation (5). 

 

(5)  

( ).

i i

j
j i

i i
i

P P

D K
P P

K
≠

≤

 
− 

 = −
∑

iC C+

 

 

This means that if, in order to sell its full capacity, a generator i has to undercut its rivals’ 

offers by offering a price above ( iP ), it should do so, otherwise, if the undercutting price is 

lower than ( iP ) it should offer the maximum price, P . Without loss of generality, let us 

assume that for all i M  ≠ iP < MP . 

 

Let us analyse the properties of this Bertrand game with capacity constraints3. In this one-shot 

game, how would a generator choose its offer price, given that the capacity was defined in the 

first stage? Next, we show that every player can earn a risk-free profit in a possible outcome 

of the game (see Proposition 1). Further, in Proposition 2 we show that this game has no Nash 
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equilibrium (proofs for both propositions are in the Appendix). Then, by using the security-

payoff criterion proposed by Von Neumann and Morgenstern (1972)4, we analyse the 

implications of the risk-free payoff on the behaviour of generators.  

 

Proposition 1: In the one-shot pay-as-bid Bertrand game with capacity constraints, all the 

generators earn the maximum security-payoff when generator M offers the maximum price 

and the other generators undercut the upper bound of generator M; i.e. MP P=  and 

i MP P ε= −  for every i  is the solution at which every agent is earning its maximum 

security-payoff. 

M≠

 

Proposition 2: In the second-stage (after the capacity available is revealed) of the one-shot 

pay-as-bid Bertrand game with capacity constraints defined above there is no Nash 

equilibrium. 

 

This simple example shows two very interesting characteristics of security-payoff solution for 

the Bertrand competition with capacity constraints. a) Generators tend to charge prices well 

above marginal costs, if the market structure allows it. b) Capacity and marginal costs interact 

to define the pricing strategy of the players. In the example above the highest price is charged 

by generator M but this is not necessarily the one with the highest marginal cost. 

 

Moreover, from equation (5) it is trivial to show that if any of the players, or some of them, 

jointly decide to reduce the available capacity in such a way that i
i

K D=∑ , then each 

generator, at equilibrium, can offer the maximum price, i.e. ...aP = = NP P= . When will a 

generator withhold capacity? The answer is, whenever this behaviour leads to higher profits. 
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In our example, assuming the security-payoff solution, the players’ profits are described by 

equation (6).  

(6)   
( )

( )
.    for all    

.

i i M i

M i i
i M

K P C i M

D K P C

π

π
≠

= − ≠

 = − − 
 

∑
 

 

Next, Proposition 3 (for which proof is in the Appendix) shows that if a generator has the 

capability of withholding capacity it may be possible for this generator to increase the 

security-payoff that can be earned by every generator in the industry. In this case, we analyse 

the interactions between the decisions in the first and second stages of the Bertrand game with 

capacity constraints.  

 

Proposition 3: Let Ki,  and '
iK '

MP  stand for, respectively, the full and reduced capacity of 

generator i, and the upper bound of generator M, when generator i decreases its capacity to 

. Assuming the maximum security-payoff solution of the Bertrand game with capacity 

constraints, a player  can increase its security-payoff by unilateral capacity 

withholding if and only if 

'
iK

 i M≠

P  is such that '.M i
j M

j M M

C CD K K K
P C≠

  −− + < < 
− 

∑ i iK . 

 

Hence, Proposition 3 shows that in the conditions defined unilateral capacity withholding may 

increase the security-payoff that can be earned by a player, leading to higher prices (for the 

maximum security-payoff solution) above the ones predicted by the Bertrand model with full 

capacity available (as MM PP >' ).  
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As our analysis shows, the profit margin is not a good indicator of abusive behaviour. Assume 

that a player i decides to withhold capacity which leads to a generator j to increase its offera 

price such that it has the highest profit margin. In this case the market abuser is generator i 

and not generator j. Thus, the task of identifying individual market power is a challenging 

one, and the regulator tends to look at capacity availability as the observable variable that 

indicates abusive behaviour by a certain generator (as in bilateral contracts prices are private 

information).  

 

Furthermore, this model also justifies why, in repeated games, we need to take into account 

learning behaviour to analyse the possible solutions of the game. In a repeated game, a player 

may try to learn the propensity of the generator M to undercut its prices. Thus, different 

solutions can emerge given the different risk propensities of the players. Which solution 

prevails? How do the players arrive at it? This is where learning theory enters by postulating 

that, in repeated games, a possible equilibrium solution may emerge from an iterative learning 

process, by trial and error, where a player tends to revise its pricing behaviour in order to 

maximise profit. It is noteworthy that Roth and Erev (1995), Feltovich (2000), and Sarin and 

Vahid (2001) show that learning models predict better than the Nash equilibrium how people 

behave. 

 

Finally, the aim of this simple Bertrand model is to motivate the analysis of the capacity 

withholding issue. Even in a situation where capacity is very tight and where each player 

owns only one type of technology, it may be possible for capacity withholding to be a 

profitable strategy. The model presented is clearly restrictive as it assumes that there is only 

one marginal generator, that a generator only owns one type of technology, and that there is a 

known maximum price. Even such a model does not have an equilibrium solution. The use of 

 
20



agent-based simulation, as presented next, enables the researcher to develop models of the 

electricity industry that are more realistic than the ones achieved by analytical game theory. 

 

5. The AES-British Energy case 

 

In this section we present the experiments used to analyse the capability of AES and (or) BE 

to influence the wholesale electricity prices. In Table 55 we present the market shares of the 

eight largest generators in the E&W electricity market (in 2000). 

 

Table 5 : Generation Industry 

Capacity of each Company (% of Total, 59 GW) in 2000 

 Total Nuclear Large 

Coal+CCGT 

Small Coal +OCGT + 

OIL + Pump. Storage 

PG 16.5  17.8 24.9 

NP 13.9  14.8 22.5 

BE 12.4 58.1 7.1  

Edison 10.6  9.1 30.7 

TXU 9.7  10.5 14.7 

AES 7.8  9.2 6.8 

EDF 4.7 27.8 1.8  

Magnox 3.9  5.1  

Others 20.5 14.1 24.7 0.4 

     

Total GW 59 7 45 7 

 

We split the generation capacity owned by each generator into three categories, taking into 

account the degree of flexibility and running times of each technology: - Nuclear plants, 
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baseload technology running continuously. - Large Coal and CCGT, the mid-merit 

technologies. - Small Coal, OCGT, Oil and Pumped storage, the peak plants.  

 

As shown with the simple example in the previous section, a generator’s pricing behaviour is 

a function not only of the technologies owned (the marginal costs), but also of its market 

share. Hence, it is important to look at the relative market share of each generator, in each 

type of technology, in order to understand its strategic position. Thus BE had 58% of the 

Nuclear6 generation capacity installed in E&W (and 7.1% of the mid-merit capacity), while 

AES owned both mid-merit (9.2% of mid-merit capacity) and peak plant (7.8% of peak 

capacity).  

 

The market shares for the retail supply business (in 2000) are presented in Table 6.  

 

Table 6: Supply Industry 

Peak Demand 50 GW in 2000 

Market Share of each Company (%) 

London Electricity 12.2 PG 10.2 

Eastern 11.2 Scot. & Southern   9.9 

NP 10.2 Others 40.7 

 

If we only take into account the market share, the supply business was less concentrated than 

the generation business. The biggest player was London Electricity with 12% of market share.  

 

The detailed agent-based model was applied to the full system of E&W, as it existed in 2000. 

Some small gensets were aggregated and overall the model was specified with 80 gensets, 

owned by 24 generators who sell power to 13 suppliers. Each supplier is an active agent in the 
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model and is assumed to have a 10% forecasting error on its BM exposures. The total 

capacity in the system was 59 GW, and three demand profiles for winter (with peaks 49 GW, 

48 GW and 45 GW) and one of summer (with three maintenance scenarios 14 GW, 12 GW 

and 10 GW) were used. The demand profiles are presented in Figure 1. 
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Figure 1: Demand profiles. Lines W1, W2 and W3 stand for winter demand with a peak of 
49, 48 and 45 GW respectively. Line S stands for summer demand with a peak of 35 GW. 

 
Active trading between generators and suppliers was simulated as a multistage process 

through a PX (that works as a proxy for all the forward bilateral markets) and a BM. Settle. 

All the comparative experiments have simulated 50 iterations (trading days) of the algorithm 

and the results were averaged over the final 10 days. In most cases, the evolution of prices 

seemed to settle around a stable position after the initial learning, by about 50 iterations.  

 

We have simulated 6 different Strategies for AES and (or) BE in relation to making capacity 

available, under 6 different Scenarios. In strategy ST1, AES and BE offer their full capacity. 

In strategy ST2, AES saves capacity for the BM (480 MW). In strategy ST3, BE saves 

capacity for the BM (490 MW). In strategy ST4, AES saves capacity for the BM (480 MW) 

and closes a Drax genset (645 MW). In strategy ST5 BE saves capacity for the BM (490 MW) 
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and closes an Eggborough genset (480 MW). Finally, in strategy ST6, AES saves capacity for 

the BM and closes a genset, and at the same time BE saves capacity for the BM and closes a 

genset, i.e. strategies (4) and (5) combined. Regarding the possible scenarios, we have three 

winter day scenarios 1, 2, and 3 with a peak demand of 49 GW, 48 GW and 45 GW, 

respectively; and three summer demand scenarios, 4, 5, 6, with a maintenance outage of 14 

GW, 12 GW and 10 GW, respectively.  

 

Each one of these scenarios was repeated twice with small differences (that is with different 

random impacts or with different maintenance levels for some plants). We started by 

comparing the average prices of the six strategies (under the twelve simulations). As expected 

by the theoretical Bertrand model with constraints, in our simulations the average PX price 

and SBP are higher than the marginal costs (even with full capacity available). 

 

Hence, we can conclude that the E&W wholesale electricity market had a structure that would 

give rise to prices above marginal costs, and therefore non-competitive. This implies the 

existence of market power in the traditional sense (capability to rise prices above marginal 

costs) that results from the overall structure of the industry. In this sense, it is the joint 

behaviour of all players in an imperfect market, profit maximising without explicit collusion, 

that results in the higher prices, to the extent that is not possible to say that any individual 

player is abusing market power. If, however, a player seeks to alter the market structure by 

deliberately withholding capacity, then the regulatory perspective has clearer grounds for 

identifying individual market power abuse. 

 

How can we evaluate the capability of AES and BE to manipulate market prices through 

capacity withholding? As shown in the simple model of the previous section, we need to 
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compare the prices under strategies ST2, ST3, ST4, ST5 and ST6 with the prices under 

strategy ST1, i.e., we need to evaluate the performance of the market when the players 

withhold capacity with its performance when full capacity is available. 

 

Unfortunately, this task is not as straightforward as in the Bertrand stylised analysis. In the 

NETA computational model, we have to take into account the presence of multiple equilibria, 

and the effects of learning, which make the analysis quite challenging. In order to analyse the 

results of the simulations we compare the different simulations using t-statistics (for pooled 

samples). If the t-statistic associated with a certain strategy (ST2, ST3, ST4, ST5 or ST6) is 

higher than 2.2 (the critical value for 5% significance level with 11 degrees of freedom) then 

that strategy has a significant impact on prices or profits7, otherwise there is no statistical 

evidence that the particular strategy has an impact on prices and or profits. The t-statistics for 

the PX price (PXP), the SSP and the SBP are presented in Table 7.  

 

Table 7 : t-statistics for market prices 

 
 Strategies 

 ST2 ST3 ST4 ST5 ST6 

PXP 1.12 2.21 2.61 2.37 3.55 

SSP 0.23 0.83 1.92 0.26 1.7 

SBP -0.15 0.95 0.75 1.98 1.5 

 

The experiments show that AES and BE have enough market power to increase the PXP to 

levels above the normal prices resulting from the full capacity strategy ST1. Nevertheless, 

these players have no capability to influence the SSP or the SBP. The BM prices tend to be 

more dependent on random impacts and path dependencies than on the manipulation attempts 
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by AES and (or) BE. Therefore, we have statistical evidence, through our simulations, that 

AES and BE can behave as price makers, but is that synonymous of higher profits? Can they 

profit from capacity withholding?  

 

In order to analyse the profitability of each strategy (ST2, ST3, ST4, ST5 or ST6) we compare 

AES’ s and BE’ s profit contributions under each one of these strategies with their profit 

contributions under the full capacity strategy ST1. Again, we analyse the profitability issue 

using t-statistics for the pooled samples. We compare the change in profit for each strategy 

(when compared with strategy ST1), under each scenario. 

The t-statistics in Table 8 show that only when both players simultaneously withdraw 

capacity from the market (and save capacity for the BM) can they profit from price 

manipulation. These results seem to suggest that profitable price manipulation appears to be 

harder than expected by the standard market power literature in electricity markets. 

 

Table 8: t-statistics for AES' s and BE' s profits 

 Strategies 

 ST2 ST3 ST4 ST5 ST6 

AES -0.09 1.77 1.31 1.61 2.29 

BE -1.03 0.32 0.58 1.57 3.04 

 

6. Equilibrium Analysis 

 

Finally, in order to improve our understanding of the simulation results, let us analyse the 

trajectory of PXP prices. Given the theoretical intuition of section 4, we would expect to 

encounter two types of price regimes in the NETA model: 
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a) Whenever the capacity constraint is so tight that several generators may increase 

their offers well above marginal costs, we would expect a regime displaying non-convergent 

behaviour. In this regime, the players need to learn to coordinate their behaviour in such a 

way that implicitly, by trial and error, they learn the pricing strategy that gives higher profits. 

However, Staiger and Wolak (1992) shows that collusion is easier in high demand regimes. 

b) Whenever there is an upper bound on the maximum price, the uncertainty regarding 

the maximum price is drastically reduced (see Von der Fehr and Harbord (1993)). 

 

One possible way to analyse the equilibrium properties of the NETA model is to repeat an 

experiment several times, and check if the prices converge. Similarly, we could run the 

experiment for a longer period and analyse if prices converge. This was done by undertaking 

an extensive analysis of the basic scenario of a winter day with peak demand of 49 GW, and 

total capacity of 59 GW. The experiment was repeated 10 times and, in each one of the runs, 

400 trading days were simulated.  

0 
10 
20 
30 
40 
50 
60 
70 
80 

400 trading days 

Pr
ic

e 
(£

/M
W

h)
 

average 
maximum 
minimum 
difference 

Figure 2: Price behaviour in an hour with high demand (45 GW). The series max, avg, 
and min stand for, respectively, the maximum, the average, and the minimum prices in the 10 
runs of the simulation at any of the 400 iterations. The series dif represents the difference 
between the max and the min of the 10 runs of the simulation, for each one of the 400 
iterations. 
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In Figures 2 and 3 we analyse the price behaviour in the 10 runs of the model by presenting 

the average, the maximum, the minimum, and the difference between maximum and 

minimum prices of the 10 different runs, for each one of the 400 iterations simulated. 

 

The analysis of Figure 2 suggests that average prices converged to equilibrium. For example, 

at 50 days, we have prices between £18.6/MWh and £34.1MWh, with an average of 

£24.6/MWh. At 400 trading days the prices range from £17.6 to £22.7/MWh, with an average 

of £19.8/MWh. This corresponds to an hour of high (45GW), but not peak, demand; and with 

59 GW of capacity available, prices achieve an apparently stable, but still significant, mark-

up. 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 

400 trading days 

Pr
ic

e 
(£

/M
W

h)
 

average 
maximum 
minimum 
difference 

Figure 3: Price behaviour in the hour with peak demand (49 GW). The series max, avg, 
and min stand for, respectively, the maximum, the average, and the minimum prices in the 10 
runs of the simulation at any of the 400 iterations. The series dif represents the difference 
between the max and the min of the 10 runs of the simulation, for each one of the 400 
iterations. 

 

On the other hand, Figure 3 suggests that for the peak demand hours the process presents two 

distinct periods. In the first one, prices tend to increase steadily. In the second period, the 

average price stabilises and the difference between maximum and minimum starts to have a 

more unstable behaviour, with increasing variance, and no convergence. Thus, this seems to 

be closer to the first type of regime where the maximum price can be influenced by the 
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players’ expectations, and where it is harder to coordinate behaviour. This leads to higher 

prices and unstable behaviour. 

 

7. Conclusions 

 

We submit a stylised model of the interactions in an electricity market (modelled as a 

Bertrand game with capacity constraints) where we show that even when all generators offer 

their full capacity, and even if the total capacity available is higher than total demand, prices 

can be much higher then marginal costs (proposition 1). In proposition 2, we show that 

unilateral capacity withholding may lead to increased profits and misevaluation of market 

power abuse, in certain circumstances. 

 

Our research question is the evaluation of the conduct of an individual generator. In the case 

under study Ofgem, the E&W regulator, was worried about the possibility of AES and BE 

having the capability to profitably manipulate market prices.  

 

In order to test if AES and BE could manipulate the bilateral markets or the balancing 

mechanism, and (or) the interactions between them, we simulated several scenarios aimed at 

producing increased prices, for these generators’ possible behaviour. A first contribution of 

these simulations is to show that the structure of the E&W electricity market was such that 

prices would significantly tend to rise above marginal costs, even without considering other 

technical constraints such as ramping rates and transmission. Regarding the specific questions 

raised by the Competition Commission, our experiments show that:  

- BE alone, and BE simultaneously with AES, may significantly increase the Power 

Exchange prices. 
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- AES alone cannot significantly influence the wholesale Power Exchange prices. 

- The System Sell Price and the System Buy Price cannot be significantly influenced by 

the strategies implemented by AES and (or) BE. 

- Only when acting simultaneously may the firms profit significantly from capacity and 

price manipulation. 

 

The Competition Commission concluded that it would not be against the public interest for 

the market to operate without modifications of the licence provisions of AES and BE to 

include a clause seeking to preclude Market Abuse, mainly on the basis of the awkward 

principle of this as a regulatory instrument. (Competition law was considered sufficient, by 

itself, to deal with market abuse, if it did become apparent.) 

 

Overall, the agent-based simulation technique enabled substantial insight to be gained into the 

behaviour of the new wholesale electricity market in 2000, before its introduction in 2001. 

This technique enabled the modelling of complex adaptive behaviour in an environment with 

possible multiple equilibria, with heterogeneous agents and price uncertainty. This shows that 

models having the functional capability to represent the type of learning occurring in real 

electricity markets can be used to model the processes underlying the equilibrium selection 

and behaviour coordination in complex electricity markets. 

 

Furthermore, as we assume a constant demand profile for each scenario of the game, the 

simulation may be perceived as an iterative approach to compute the solution of the one-shot 

game. However, since the rewards are learned by interacting with others (and discounted from 

past experience), these repetitions of the game may change the perceptions an agent has of the 

others. The learning algorithm aims at capturing this evolutionary process, which may open 
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the door to implicit collusion. This outcome can only be achieved in repeated games. Finally, 

however, it is plausible that, since this learning process occurs in a stable environment where 

agents iteratively adapt their behaviour to specific conditions, the potential for strategic 

coordination can be over-estimated by this type of modelling. In real markets the players have 

to learn in an environment where demand, fuel costs, and transmission constraints reshape the 

system continuously, which makes behaviour coordination harder to achieve. 
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APPENDIX 

 

Proof of Proposition 1: (a) Players i .  M≠

From equation (5), it follows that each generator may offer a price in the range [ ]PPi , . Then, 

together with condition e)  and ∑  and the assumption that for all 

 

N

i
i a

K D
=

>∑
N

i
i a

K D K
=

< + s

i M≠ iP < MP , it follows that any generator i  can ensure that its full capacity is sold by 

offering in the range 

M≠

,i MP P ε −  . Finally, by equation (4) it follows that by offering MP ε−  

each generator i earns the maximum security-payoff.  

(b) Player M.  

It follows from equation (5) that generator M may offer a price in the range ,MP P  

D>

. 

However, if additional conditions are considered, i.e., condition e) ∑  and 

 and the assumption that for all i M  

N

i
i a

K
=

N

i
i a

K D K
=

< +∑ s ≠ iP < MP , then as any player i may offer 

a price in the range [ ]PPi , , it follows that the maximum security-payoff of generator M is 

earned when it offers P . Please note that, given the conditions above, if any generator i M  

offers 

≠

P  as well, then M’s payoff increases as it still sells at the price P  and, depending on 

the rationing rules, it may increase, but not decrease, its output.  

 

Proof of Proposition 2. In Proposition 1 it was shown that every generator i  offers in the 

range 

M≠

[ ]PPi , , and that generator M offers in the range ,MP P   , where iP < MP < P

M

, for all 

. Then, since by Proposition 1 it is known that, for every generator the price i M≠ i ≠

MP ε−  gives these players the maximum security-payoff, it follows that they actually offer in 
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the range ,MP ε − P  as the price MP ε−  dominates the offers in the range ,i MP P ε −  . We 

now have a matrix game played between each generator  and generator M. Each player 

i may decide to offer the price that gives him the security payoff 

i M≠

MP ε−  or to offer in the 

range ,MP Pε ε + − 
8 that, by equations (4) and Proposition 1, leads to a higher payoff than 

the security-payoff (but also to a higher risk). On the other hand, generator M may offer P , 

which by Proposition 1 gives at least the security-payoff, or it may offer in the range 

,MP P ε −   that, by equation (5), leads to increased payoffs if the player undercuts the price 

offered by at least one of its opponents (otherwise it leads to lower payoffs). Now, let us 

analyse the best-response (BR) behaviour of the players: 

, Pε −

,MP Pε−

a) If every generator  offers i M≠ i MP P ε= −  then M’s BR is MP = P , by Proposition 1. 

b) If at least one generator i  offers M≠ i MP P ε ∈ +   then M’s BR is : 

by equation (5). The BR strategy of all other generators j such that 

M iP P ε= −

j i M≠ ≠  is to 

offer j iP P ε= − : by equation (4) and the possible offering range ,P PεM −   .  

c) If generator M offers MP = P  then the BR of every player i  is to offer M≠ iP P ε= − : 

by equation (4) and the possible offering range    . 

d) If generator M offers ,M MP P P ε∈ −  then the BR of every player i  is to offer 

: by equation (4) and the possible offering range 

M≠

i MP P ε= − ,M εP P −  . 



In this matrix game there is no Nash equilibrium as any of M’s BR to the strategic choices of 

every player i leads at least one of these players to change its behaviour: by a) and c) or by b) 

and d). Similarly, a player i’s BR to the strategic behaviour of M and of all other players 

j i M≠ ≠  leads to changes in the behaviour of these players: by a) and c) or by b) and d).  
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Proof of proposition 3. By equation (4), a player  can increase its security-payoff 

through capacity withholding if and only if 

 i M≠

( ) (' ' .i M i M iK P K P C− ). iC− > . Then we can define 

'
MP  as a function of MP  using equation (5), getting ( )

'

. i
M

M

Ki KP C
K
−= + −'

M MP P . Replacing 

this expression in the profitability condition, we get a condition for profitability depending 

only on P  and MP , i.e. ( )
'

. i
i M M

M

KP C
K

− + − 0>C P . Using equation (5), we can get the 

profitability condition as a function of P  only, i.e. 'K D .M i
i j

j M M

C CK K
P C≠

  −> − + 
− 

∑ M

i

                                                

. Finally 

: by definition of capacity withholding.  '
iK K<

 
NOTES 
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comments of two anonymous reviewers.  

1 Anderson and Philpott (2002, a, b) analyse the optimal behaviour of a generator offering a 

supply function under uncertainty. 

2 The Competition Commission defined market power as the ability of a generator, acting 

independently, to raise prices consistently and profitably above competitive levels. 

3 In the following analysis, we also assume that when two or more generators offer the same 

price a rationing rule is applied. A commonly used rationing rule is the proportion of the 

available capacity, i.e., each generator offering the same price serves a proportion of the 

residual demand equal to the percentage it owns of the total capacity owned by the generators 

offering that price. Other criteria may also be used such as efficient rationing, i.e., the demand 

is served by the generators with the lowest marginal cost. 
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4 This solution may be supported by experimental evidence from Van Huyck et al. (1990) and 

Cooper et al. (1990) that report experiments in which the equilibrium converges to the 

security-payoff. 

5 A good source of information on the history of the electricity sector in the UK is the 

Electricity Association: - A brief history of the UK electricity sector (Electricity Association, 

2000 a). - A list with a description with all the plants in the UK (Electricity Association, 2000 

b). - Company ownership (Electricity Association, 2000 c). - And finally an analysis of the 

industry’s evolution during the 90’s (Electricity Association, 1999). 

6 Salama (1997) presents a case study on British Nuclear Fuels (BNFL) analysing the impact 

of market deregulation on corporate culture and objectives definition. 

7 For the t test, we pre-tested for normality and could not reject the hypothesis of normality 

for the sample distribution of the differences, for both prices and profits, using the 

Kolmogorov-Smirnov test for normality. The overall conclusions for both prices and profits 

were also corroborated with Wilcoxon nonparametric tests. 

8 The price  is dominated by the price  as a generator i ensures to sell all its 

capacity without loosing any profit, since . Similarly, the price  is dominated 

by , as shown in proposition 1, since by the rationing rule player i sells less when 

generator M also offers , without compensating the quantity reduction by higher prices as 

. 

MP MP ε−

M MP P ε≈ − P

P ε−

P

P P ε≈ −

 
35



 
36



References 

Allaz, Blaise, and , Jean-Luc Vila. (1993). “Cournot Competition, futures markets and 

efficiency.” Journal of Economic Theory 59 (1), 1-16. 

Anderson, Edward J., and Andrew B. Philpott. (2002, a). “Using Supply Functions for 

Offering Generation into an Electricity Market.” Operations Research 50 (3), 477-489. 

Anderson, E. J., and A. B. Philpott. (2002, b). “Optimal Offer Construction in Electricity 

Markets.” Mathematics of Operations Research, 27 (1), 82-100. 

Bower, John, and Derek W. Bunn. (2000). “A Model-Based Comparison of Pool and Bilateral 

Market Mechanisms for Electricity Trading.” The Energy Journal, 21 (3), 1-29. 

Borenstein, Severin, James Bushnell, and Christopher R Knittel. (1999). “Market Power in 

Electricity Markets: Beyond Concentration Measures.” The Energy Journal, 20 (4), 65–88. 

Borenstein, Severin, and James Bushnell. (1999). “An Empirical Analysis of the Potential for 

Market Power in California’s Electricity Industry.” The Journal of Industrial Economics, 

XLVII (3), 285 – 323. 

Bunn, Derek W. and Fernando S. Oliveira. (2001). “Agent-based Simulation: An Application 

to the New Electricity Trading Arrangements of England and Wales.” IEEE Transactions 

on Evolutionary Computation, 5 (5): 493-503. 

Cason, Timothy N., and Daniel Friedman. (1997). “Price formation in Single Call Markets.” 

Econometrica, 65 (2), 311-345. 

Cooper, Russel, Douglas V. DeJong, Robert Forsythe, and Thomas W. Ross. (1990). 

“Selection Criteria in Coordination Games: Some Experimental Results.” The American 

Economic Review 80 (1), 218-233.  

Crampes, Claude and Anna Creti. (2001). “Price Bids and Capacity Choice in Electricity 

Markets.” Working paper. 

http://www.idei.asso.fr/English/ECv/CvChercheurs/PageEcvCreti.html 

 
37



Day, Christopher J., and Derek W. Bunn. (2001). “Divestiture of Generation Assets in the 

England and Wales Electricity Market: A Computational Approach to Analysing Market 

Power.” Journal of Regulatory Economics 19 (2), 123-141. 

Electricity Association. (1999). “The UK Electricity System.” www.electricity.org.uk. 

Electricity Association. (2000, a). “Electricity Companies in the United Kingdom – a brief 

chronology.” www.electricity.org.uk. 

Electricity Association. (2000, b). “List of Power Stations.” www.electricity.org.uk. 

Electricity Association. (2000, c). “Who owns whom in the UK electricity industry.” 

www.electricity.org.uk. 

Feltovitch, Nick. (2000). “Reinforcement-Based vs. Belief-Based Learning Models in 

Experimental Asymmetric-Information Games.” Econometrica 68 (3), 605-641. 

Green, Richard G., and David Newbery. (1992). “Competition in the British Electricity Spot 

Market.” Journal of Political Economy 100(5), 929-953.  

Hobbs, Benjamin F. (1986). “Network Models of Spatial Oligopoly with an Application to 

deregulation of electricity generation.” Operations Research 34 (3), 395-409. 

Jing-Yuang, Wei, and Yves Smeers. (1999). “Spatial Oligopolistic Electricity Models with 

Cournot Generators and Regulated Transmission Prices.” Operations Research 47 (1), 

102-112. 

Nicolaisen, James, Valentin Petrov, and Leigh Tesfatsion. (2001). “Market Power and 

Efficiency in a Computational Electricity Market With Discriminatory Double-Auction 

Pricing.” IEEE Transactions on Evolutionary Computation 5 (5), 504-523.  

Ofgem. (1999, July). “The New Electricity Trading Arrangements.” [Online]. Available: 

http://www.ofgem.gov.uk/. 

Ofgem/DTI. (1999, October). “The New Electricity Trading Arrangements, Ofgem/DTI 

Conclusions Document.” [Online]. Available: http://www.ofgem.gov.uk/. 

 
38



Ofgem. (2000, March). “Settlement Administration Agent User Requirements Specification.” 

[Online]. Available: http://www.ofgem.gov.uk/. 

Ofgem. (2000, April). “NGC Incentives Under Neta.” [Online]. Available: 

http://www.ofgem.gov.uk/. 

Kaelbling, Leslie P., Michael L. Littman, and Andrew W. Moore. (1996). “Reinforcement 

Learning: A Survey.” Journal of Artificial Intelligence Research 4, 237–285. 

Klemperer, Paul D. and Margaret A. Meyer. (1989). “Supply Function Equilibria in 

Oligopoly under Uncertainty.” Econometrica 57 (6), 1243-1277. 

Kreps, David M. and Jose A. Scheinkman. (1983). “Quantitative Precommitment and 

Bertrand Competition Yield Cournot Outcomes.” The Bell Journal of Economics 14 (2), 

326-337. 

Roth, Alvin E. and Ido Erev. (1995). “Learning in Extensive-Form games: Experimental Data 

and Simple Dynamic Models in the Intermediate Term.” Games and Economic Behavior 8, 

164-212. 

Rothkopf, Michael H. 1999. “Daily Repetition: A Neglected Factor in the Analysis of 

Electricity Auctions.” The Electricity Journal, 61-70. 

Salama, Alzira. (1997). “Privatization and culture change: British Nuclear Fuels case study.” 

Energy Policy 25 (3), 293-304. 

Sarin, Rajiv, and Farshid Vahid. (2001). “Predicting how people play games: A Simple 

Dynamic Model of Choice.” Games and Economic Behavior 34, 104-122. 

Staiger, Robert W., and Frank A. Wolak. (1992). “Collusive Pricing with Capacity 

Constraints in the Presence of Demand Uncertainty.” The RAND Journal of Economics, 23 

(2), 203-220. 

Sutton, Richard S., and Andrew G. Barto. (1998). Reinforcement Learning: an Introduction, 

MIT Press. 

 
39



Sweetser, Al. (1998). “Measuring a dominant firm’s market power in a restructured electricity 

market, a case study of Colorado.” Utilities Policy 7, 243-257. 

Van Huyck, John B., Raymond C. Battalio, and Richard O. Beil. (1990). “Tacit Coordination 

Games, Strategic Uncertainty, and Coordination Failure.” The American Economic Review 

80 (1), 234-248. 

Von der Fehr, Nils-Hendrik M. and David Harbord. (1993). “Spot Market Competition in the 

UK Electricity Industry.” The Economic Journal 103 (418), 531-546. 

Von Neumann, John and Oskar Morgenstern. (1972). Theory of Games and Economic 

Behavior, Princeton: Princeton University Press.  

 
40


	coversheet_template
	BUNN 2003 Evaluating individual market
	References


