
OLIVEIRA, F.S. 2008. A constraint logic programming algorithm for modeling dynamic pricing. INFORMS journal on 
computing [online], 20(1), pages 69-77. Available from: https://doi.org/10.1287/ijoc.1060.0218 

 
 
 
 

This is the accepted manuscript version of the above article, posted with permission from INFORMS. 
The published version of record is available from the journal website: 
https://doi.org/10.1287/ijoc.1060.0218 

This document was downloaded from 
https://openair.rgu.ac.uk 

A constraint logic programming algorithm for 
modeling dynamic pricing. 

OLIVEIRA, F.S. 

2008 

https://doi.org/10.1287/ijoc.1060.0218
https://doi.org/10.1287/ijoc.1060.0218


A Constraint Logic Programming Algorithm for 
Modeling Dynamic Pricing 

 
 

Fernando S. Oliveira 
Operational Research and Information Systems, Warwick Business School, Coventry CV4 7AL, U.K., 

Fernando.Oliveira@wbs.ac.uk 
 

We extend Lemke’s algorithm in order to solve a dynamic pricing problem. We identify an in-

stance in which Lemke’s algorithm fails to converge to the optimal solution (when an optimum 

does exist) and propose a constraint logic programming solution to this problem. We analyze the 

complexity of the extended-Lemke’s algorithm. Our analysis shows that, in the short-term, dy-

namic pricing can be used to improve resource management efficiency. It is also shown that dy-

namic pricing can be used to manage the long-term behavior of demand. 

 

Key words: analysis of algorithms, artificial intelligence, constraint logic programming, dynamic 

pricing, revenue management, simulation. 

 

 1



1.  Introduction 
Since Kincaid and Darling’s (1963) seminal work, dynamic pricing (a business strategy that ad-

justs prices in real time in order to increase profits) has become one of the most prolific research 

topics in operations research and management science. Dynamic pricing has been successfully 

applied in many service industries (e.g., McGill and van Ryzin 1999, Kimes 1989), such as air-

lines (e.g., Ladany and Arbel 1991, You 1999) and hotels (e.g., Bitran and Mondschein 1995), in 

which demand fluctuates heavily from day to day and month to month and capacity of a given 

resource is fixed, in order to increase profits by extracting value from the varying degree of dif-

ferent customers’ willingness to pay. Moreover, dynamic pricing has also been used in manufac-

turing for improving the management of perishable (e.g., Weatherford and Bodily 1992) and 

non-perishable (e.g., Federgruen and Heching 1999) inventories.  

In order to solve the dynamic pricing problem two main approaches have been used so far, 

dynamic programming (e.g., Bellman 1957, Bertsekas and Tsitsiklis 1996) and reinforcement 

learning (e.g., Sutton and Barto 1998, Kaelbling et al. 1996). In this paper we represent the dy-

namic pricing model as a nonlinear program which we solve using Lemke’s algorithm (Lemke 

1965).  

We show that under certain conditions the Lemke’s algorithm fails to converge to the correct 

solution. We develop an extended-Lemke’s algorithm, showing that it always terminates for the 

dynamic pricing model presented in this paper. We analyze the complexity of the algorithm, 

showing that the number of visited states (iterations of the algorithm) before the algorithm termi-

nates is a linear function of the number of periods in the planning horizon.  

The extended-Lemke’s algorithms is developed using constraint logic programming, which 

enables a straightforward generation of new optimal solutions by first imposing the set of con-

straints defining the optimum and then looking for solutions that verify this set of constraints. 

We have implemented our constraint logic programming algorithm using clp(r,q), see Holzbaur 

(1995), available under different Prolog programs such as SICStus Prolog, ECLiPSe Prolog, 

YAP prolog, among others. 

The challenge of this project was to identify how dynamic pricing can be used to improve re-

source management in the telecommunications industry (however, all the results presented in this 

paper can be generalized to other industries). The computational model developed in this paper 

 2

http://www.sics.se/ps/sicstus.html
http://www.ecrc.de/eclipse


aims to tackle this problem by illustrating how demand behavior, pricing policies and resource 

management interact in order to extract additional value from scarce resources. In other words, 

we aim to analyze the effects of market segmentation and price differentiation on resource man-

agement, by: implementing different prices at different times; reducing congestion times and 

charging the opportunity cost of using a given resource; analyzing how the interaction between a 

firm’s pricing strategies and the expected long-term behavior of demand; simulating the product 

life cycles and analyzing how prices of a given product change during its life time.  

Next, in section 2 we review some of the models of dynamic pricing in the literature and pre-

sent the life cycle vs. weekly revenue problem. In section 3 we present the model developed in 

this paper for revenue management. In sections 4 and 5 we present the extended-Lemke’s algo-

rithm and the simulation results, respectively. Finally, section 6 concludes the paper. 

2.  Models of Revenue Management 
Revenue management (e.g., Gallego and van Ryzin 1997, McGill and van Ryzin 1999, Cianci-

mino et al. 1999, Botimer and Belobaba 1999, Valkov and Secomandi 2000) uses market seg-

mentation and price discrimination as a tool to extract the highest possible income from custom-

ers (Wynter 2004, applies revenue management to the telecommunications industry, using pro-

portionally fair pricing). The increasingly dynamic nature of electronic commerce has produced 

a shift away from fixed pricing and toward dynamic pricing (Bichler et al. 2002). Bitchler de-

fines flexible pricing as including both differential pricing (in which different buyers may re-

ceive different prices based on expected valuations) and dynamic-pricing (in which prices and 

conditions are based on bids by market participants). Dynamic pricing, together with a better 

knowledge of demand, and at the same time a good management of supply contracts (Davenport 

and Kalagnanam 2001, Eso et al. 2001) is essential to improve cost efficiency.  

A case in which dynamic pricing can play an important role is when demand fluctuates cycli-

cally throughout a year, a week, or even a day (for example, in electricity retail markets it is pos-

sible to buy electricity at different prices for peak and low demand prices).  

A short-term application, within the telecommunications industry, is the management of the 

workforce which serves customers by maintaining networks and repairing faults. The typical be-

havior of repair volumes during a week is presented in Figure 2.1.  

 3



0

500

1000

1500

2000

Mon
day

Tue
sd

ay

Wedn
es

day

Thu
rsd

ay
Frid

ay

Satu
rda

y

Sun
da

y

N
um

be
r o

f J
ob

s
 

Figure 2.1: Repair Volumes during a Typical Week 

 

Another application is to model the entire life-cycle of a product. The life-cycle of a product 

is a representation of the number of units of the product sold at each unit of time (usually a year): 

a typical life-cycle is presented in Figure 2.2.  

 

0

25

50

75

100

Time

Ta
ke

-u
p 

(%
)

 

Source: Ofcom 

Figure 2.2: Life Cycle in the Telecommunications Industry 

 

The life-cycle analysis can be applied, for example, to several products in the telecommuni-

cations industry, as illustrated in Figure 2.2. The problem faced by a firm is the management of 

demand over time, as the first customers will tend to be more willing to pay a higher price (inno-

Innovators Early
Adopt
ers 

Early 
Majority 

Late 
Adopters 

Late 
Majority 

PVR & VOD 
MP3 Players 
WiFi homes 

WiFi hot-
spots 
DBA radio 
 

3G mobile 
Broadband 

Digital TV 

GSM mobile

 4



vation or product driven) and the customers buying the product at the later stages of the prod-

uct’s life cycle will have a lower willingness to pay (price driven). Therefore, the firm needs to 

choose between short-term and long-term profits.  

3.  Modeling Dynamic Pricing 
In this section we describe the short and long-term models, including the equations and the proc-

ess of parameterization. We use the following notation: N,  the number of periods in the planning 

horizon; t, any given period in the planning horizon; Qt, number of units produced at period t; Pt, 

average price at period t; Ct, cost of producing one extra unit at period t; Π , total profit during 

the entire planning horizon. 

The goal of a firm is to maximize the profit received during the planning period (the weekly, 

monthly or yearly profit). The total profit earned during the planning horizon is represented by 

equation (3.1), in which  represents the variable cost in t and  represents the total reve-

nue in period t.  

ttQC ttQP

  (3.1) (∑
=

−=Π
N

t
tttt QCQP

1

)

The price in period t, which is chosen by the firm, depends on the total demand at that period 

(which is the classical model) and, at the same time, it depends on the prices and demand of the 

other periods within the planning horizon (it is assumed that customers are price takers). There-

fore, the demand for units in each one of the t periods can be represented by function (3.2): for 

products in which a higher price decreases demand 0<ttb . Each one of the parameters bjt repre-

sents the impact of a price change at time j on the quantity demanded of a given product at time 

t. This equation shows that prices of the different periods interact to define the demand level at a 

given time t: by increasing (or decreasing) the price at any other period the number of customers 

searching for a given product or service at period t will also change.   

 t = 1,…,N   (3.2) NNtttttttt PbPbPbPbbQ ++++++= ......22110

Demand is therefore assumed exogenous: this corresponds to an assumption that the firm has 

some degree of market power, for example resulting from product differentiation, in the services 

of products modeled. (Different bs are associated to different degrees of competition.) In the 

limit this may correspond to a monopoly. (In this paper we consider a firm that has the monopoly 

 5



in the products modeled. However, this demand function would also work with imperfectly 

competitive markets, for as long as the parameters are stationary within the time period mod-

eled). 

We tend to solve the system in the inverted form, in which prices are represented as inde-

pendent variables. Hence, we use the system of equations in (3.3) to represent the inverted de-

mand in the planning horizon: for products in which a higher price decreases demand 0<tta .  

 t = 1,…,N   (3.3) NNtttttttt QaQaQaQaaP ++++++= ......22110

Each one of the parameters ajt represents the impact of a demand change at time j on the 

price at time t. This equation shows that demand changes in any period leads to price changes in 

period t.  Equation (3.3) can be represented more compactly by equation (3.4). 

∑
=

+=
N

j
jjttt QaaP

1
0   t = 1,…,N    (3.4) 

Plugging equation (3.4) into equation (3.1) we can re-write the profit function as equation 

(3.5) which can be used in the optimization problem. 

∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
−+=Π

N

t
ttt

N

j
jjttt QCQQaQa

1 1
0     (3.5) 

Before proceeding to describe the rest of the model we would like to look more carefully at 

the inverted demand function, equation (3.4), by describing how, through its parameterization, 

we can use this model to capture very different types of dynamic pricing problems, i.e., by dis-

cussing the typical choice of parameters for  when tj ≠ .  jta

In the typical case of weekly demand, for example, one would expect the increase in produc-

tion (and a decrease in price) in a given day to decrease the number of units sold during the rest 

of the week. In this case,  will be in the range .  jta 01 ≤≤− jta

However, in the case of yearly demand, for example, when analyzing the life cycle of a given 

product, one would expect that an increase in production (and a decrease in price) in the early 

years of the life of a product, may lead to a higher growth of the consumption of that product in 

the future. This effect may also be observed at a monthly level, for example, and it is one of the 

main reasons for promotions. In this case,  will tend to be non-negative, . jta 0≥jta

Additionally, we define a set of constraints which the firm follows when defining its pricing 

policy. We analyze two of the most common constraints: available capacity (number of workers 

 6



or machinery) and price caps. In both of these constraints we have considered a low and an upper 

bound: a) there is a lower bound in the case in which management wants to keep a minimum 

level o production per day, or want to ensure that the resources are used every day, even if this 

implies incurring a loss; b) for a similar reason, management may feel that the price should not 

fall below a given threshold, as this may signal low value to its customers. 

Let Mt and Kt represent, respectively, the lower and the upper bound for capacity constraint. 

In this case, equations (3.6) represent the lower and the upper bounds. 

 t = 1,…,N   (3.6) tt MQ ≥ tt KQ ≤ 

tPtPMoreover, let  and  represent, respectively, the lower and the upper cap for the price. In 

this case, equations (3.7) represent the lower and upper price caps. 

tt PP ≤  t = 1,…,N   (3.7) tt PP ≥  

This is quite a hard problem to solve, as equation (3.5) is nonlinear. We need to use a specific 

algorithm to optimize the total profit: we use Lemke’s algorithm (Lemke, 1965) to solve this 

problem. 

However, as shown in section 4, for some parameters Lemke’s algorithm fails to converge. 

Therefore, in order to solve this problem, we have extended this algorithm to handle multi-stage 

problems with price and capacity constraints. Next, section 4 describes the basic Lemke’s algo-

rithm. We prove that it may fail to converge and we describe how we have extended it in order to 

tackle this problem. 

4.  Extending Lemke’s Algorithm 
In order to solve this model we start by computing the Lagrangian and deriving the set of equa-

tions to be solved. 

4.1 Deriving the Optimality Conditions 

In order to derive the optimality conditions we need to define the slack variables: , t = 1,…, 

N, slack variables for the minimum capacity constraint; , t = 1,…, N, slack variables for the 

maximum capacity constraint; 

M
tS

K
tS

, t = 1,…, N, slack variables for the minimum price constraint; P
tS

P
tS , t = 1,…, N, slack variables for the maximum price constraint. 

 7



Moreover, each one of the slack variables has an associated shadow price, representing the 

value of a unit of the scarce resources: , t = 1,…, N, shadow prices for the minimum capacity 

constraint; , t = 1,…, N, shadow prices for the maximum capacity constraint; 

M
tλ

K
tλ

P
tλ , t = 1,…, N, 

shadow prices for the minimum price constraint; P
tλ , t = 1,…, N, shadow prices for the maxi-

mum price constraint. Equations (4.1) and (4.2) redefine the capacity constraints and the price 

caps by using the respective slack variables. 

   t = 1,…,N  (4.1) 0=−+ t
M
tt QSM 0=−− t

K
tt QSK

t

N

j
jjtt

P
t PQaaS −+= ∑

=1
0     t = 1,…,N  (4.2) 

∑
=

−−=
N

j
jjttt

P
t QaaPS

1
0     t = 1,…,N  

By computing the derivative of the Lagrangian in order for each one of the quantities we ob-

tain equations (4.3). 

 

For t = 1,…,N: 

0.2
1111

0 =−+−++++− ∑∑∑∑
==

≠
=

≠
=

P
j

N

j
tj

P
j

N

j
tj

K
t

M
t

N

tj
j

jtj

N

tj
j

jjtttttt aaQaQaQaCa λλλλ   (4.3) 

Furthermore, in order to ensure that every solution of this system of equations is optimal, we 

need to add the complementarity conditions, which establish the relationship between the slack 

variables and the shadow prices, see equations (4.4). 

For t = 1,…,N: 

0=M
t

M
t Sλ       (4.4) 0=K

t
K
t Sλ

0=P
t

P
t Sλ0=P

t
P
t Sλ   

Finally, in order for the system to be complete, we need to add the nonnegativity constraints, 

equations (4.5). For t = 1,…,N: 

 0≥tQ

0≥P
tλ0≥M

tλ , , 0≥K
tλ 0≥P

tλ ,      (4.5) 

0≥P
tS0≥M

tS , , 0≥K
tS 0≥P

tS ,  

 8



In conclusion, in order to optimize the profit represented by equation (3.5) subject to the con-

straints (3.6) and (3.7) we need to solve the system of equations represented by equations (4.1) to 

(4.5). As the complementarity conditions, i.e. equations (4.4), are nonlinear, we still have a sys-

tem of nonlinear equations. In order to solve this system by using Lemke’s algorithm we first 

need to relax the system of equations.  

4.2 Relaxing the System of Equations 
We use a version of Lemke’s algorithm that relies on the concept of homotopy. We start by find-

ing a feasible solution of a relaxed system of equations. We then iteratively modify and resolve 

the system until a solution of the original system is reached, or this system is classified as having 

no solution.  

The relaxation process implies the modification of equations (4.1) to (4.3), the definition of a 

dummy variable Z, the addition of equations (4.6) to our system of equations, and the introduc-

tion of an additional dummy variable B, defined in equation (4.7), which is used to relax equa-

tions (4.2) and (4.3). 

       (4.6) 1≤Z0≥Z

The dummy variable B is positive and can be computed by the system of equations (4.7). In 

reality the algorithm will work as long as we choose a B such that there is an initial solution for 

the system of equations. This is just one of the possible procedures to obtain B. However, the in-

tuitive idea of fixing B to a large value may not work as the value chosen may not be large 

enough in certain cases and as the solution of the system may have problems with numbers that 

are too large. This happens if one uses constraint logic programming to solve the system of equa-

tions.  

For t = 1,…,N:    

1)0,min()0,min().0,min(2
11

+−−−= ∑∑
≠
=

≠
=

N

tj
j

jtj

N

tj
j

jjttttt KaKaKaB   (4.7) 

then  

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑∑
==

N

j
jjt

N

j
jjtN QaQaBBB

11
1 ,,,...,max . 

First we modify equations (4.1) by multiplying the minimum quantity by Z, to ensure that 

there is always a solution for this equation. We then obtain a system of equations (4.8). 

 9



  t = 1,…,N  (4.8) 0=−+ t
M
tt QSZM 0=−− t

K
tt QSK

Then, we relax equations (4.2) using the dummy variables Z and B to obtain a system of 

equations (4.9) which is always true.  

( ) ( ) ∑
=

+−+−=
N

j
jjttt

P
t QaZPaZBS

1
01  t = 1,…,N  (4.9) 

( ) ( ) ∑
=

−−+−=
N

j
jjttt

P
t QaZaPZBS

1
01  

The last set of equations to be relaxed by using the dummy variables Z and B is (4.3). The 

new system of equations (4.10) always has a solution.  

For t = 1,…,N:          (4.10) 

( ) ( ) 021
1111

0 =−+−++++−+− ∑∑∑∑
==

≠
=

≠
=

P
j

N

j
tj

P
j

N

j
tj

K
t

M
t

N

tj
j

jtj

N

tj
j

jjtttttt aaQaQaQaZCaZB λλλλ  

We now have a set of relaxed equations which under certain initial conditions can always be 

solved. These equations are (4.4), (4.5), (4.6), (4.8), (4.9) and (4.10). 

4.3 From Lemke’s to Extended-Lemke’s algorithm 
As we have shown, the system of equations (4.4) is nonlinear. In order to solve these equations 

we need to replace the nonlinear by linear equations by fixing the slack variables or the shadow 

prices to zero. This is the basic idea of Lemke’s algorithm: to define which variables are fixed to 

zero so that the relaxed system has an initial solution. 

The Lemke’s algorithm proceeds as follows: 

Step 1: Given our relaxation of the original equations, an initial procedure to solve the re-

laxed system is to: 

a) Fix the production quantities to the maximum 

For t = 1,…,N:       (4.11) tt KQ =

b) Fix to zero the shadow prices for the minimum capacity, and for the maximum 

and minimum prices 

0=P
tλFor t = 1,…,N:   , 0=M

tλ 0=P
tλ ,    (4.12) 

c) Fix to zero the slack variables for the maximum capacity 

For t = 1,…,N:       (4.13) 0=K
tS

 10



Step 2: Solve the system of equations having Z as an independent variable and choose the 

value of the non instantiated variables in order to maximize Z.  

Step 3: Decide termination. If Z = 1 the algorithm terminates, as the optimum has been found 

and returns the value of each one of the  and Pt as a solution. However, if Z <1 the algorithm 

proceeds to Step 4. 

tQ

Step 4: If the algorithm does not terminate, then for t = 1,…,N and for each pair j of shadow 

price and slack variable,  and , such that both  and , we change to zero the 

variable that, in Step 2, was not instantiated (and we leave non-instantiated the variable that, in 

Step 2, was equal to zero).  Go to Step 2.  

j
tλ

j
tS 0=j

tλ 0=j
tS

In the case of our model, we can be more precise in the description of Step 4.  For t = 1,…,N, 

and for each , P
tλ 0>P

tλ
M
tλ

P
tλ , , if , 0>M

tλ 0>P
tλ ,  these variables and the corresponding 

slack variables , 0=P
tλ0=M

tS 0=P
tλ PPMj ,,=,  are not changed. However, if for any  we 

have  and , then we set  to zero and leave  not instantiated.  0=j
tλ 0=j

tS j
tS j

tλ

In the case of the maximum capacity constraint: for t = 1,…,N, each shadow price  

and the correspondent slack variables  are not changed. However, if  and , 

then we set  to zero and leave  not instantiated.  

0>K
tλ

0=K
tS 0=K

tλ 0=K
tS

K
tλ

K
tS

We can now show that, under certain parameters, Lemke’s algorithm fails to converge to an 

optimal solution even when such solution exists. By analyzing equation (4.10) and the initial 

conditions (4.11) and (4.13) we can see that there is a failure when  ( )M
tλ ( )P

tλ
P
tλ

K
tλ and   are not 

instantiated, even though there may be a solution. Proposition 4.1 formalizes this result.  

 

Proposition 4.1 The Lemke’s algorithm fails to solve the dynamic pricing model presented in 

sections 4.1 and 4.2 when, in a given iteration of the algorithm, a capacity constraint and a price 

cap are both binding. 

 

( )M
tλ ( )P

tλ
P
tλProof: In equations (4.10) the variables  K

tλ  and   have the same sign.  In Step 1 

all , 0=P
tλ0=M

tλ 0=P
tλ , , and  . If a solution is not reached then, in Step 4: 0≥K

tλ

 11



a) any  will be kept non-instantiated. If simultaneously, for at least one of the peri-

ods j, the slack variable for the price cap is equal to zero, then, in the next iteration  

0>K
tλ

P
jλ  is 

non-instantiated. Next, in Step 2 the algorithm fails to instantiate all the non-instantiated 

variables, as we have a system with more variables than equations. Finally, if Z is not 

equal to zero the algorithm fails in Step 4 as some of the variables are non-instantiated. 

b) any  will be kept instantiated to zero and the respective shadow price  will be 

kept non-instantiated. If simultaneously, for at least one of the periods j, the slack vari-

able for the price bottom is equal to zero, then, in the next iteration  

0=M
tS M

tλ

P
jλ  is non-

instantiated. Again, in Step 2 the algorithm fails to instantiate all the non-instantiated 

variables, as we have a system with more variables than equations. Finally, if Z is not 

equal to zero the algorithm fails in Step 4 as some of the variables are non-instantiated. 

Q.E.D. 

 

As two shadow prices are non-instantiated, when we maximize Z both of them should be 

driven to zero, but since they have the same sign the system fails to instantiate these variables.  

This failure of the Lemke’s algorithm is a very important one as in several industries (and not 

only in telecommunications), such as electricity markets, for example, we have products for 

which capacity is limited and prices regulated. Moreover, firms may also have a minimum level 

of resource utilization they need to maintain during a day of work (for instance in order to keep 

up workers’ moral) and at the same time they may not wish to lower the product price below a 

certain level (as it may reduce the perceived value of the product). In both these cases, the dy-

namic pricing model cannot be solved using Lemke’s algorithm. 

This failure leads us to look into ways of improving this algorithm. In order to solve the 

problem we need to identify which one of the non-instantiated variables can be fixed to zero. We 

implement a step-by-step procedure which sets each one of these variables to zero (one at a time) 

and tests if the system has a solution. If at least one solution exists then we fix that variable to 

zero and proceed to Step 2. The procedure only fails if none of the non-instantiated variables can 

be set to zero, which means that there is no solution (see Proposition 4.3). Table 4.1 summarizes 

the extended-Lemke’s algorithm for our dynamic pricing model. 

 

 12



 

Table 4.1: Extended-Lemke’s Algorithm for Dynamic Pricing 

Step 1: Initialization. 

1.a) Define the dummy variable B  

For t = 1,…,N:      1)0,min()0,min().0,min(2
11

+−−−= ∑∑
≠
=

≠
=

N

tj
j

jtj

N

tj
j

jjttttt KaKaKaB

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑∑
==

N

j
jjt

N

j
jjtN QaQaBBB

11
1 ,,,...,max . 

1.b) Define the system of equations 

,  1≤Z0≥Z

For t = 1,…,N:  

0=−+ t
M
tt QSZM ,  0=−− t

K
tt QSK

( ) ( ) ∑
=

+−+−=
N

j
jjttt

P
t QaZPaZBS

1
01  

( ) ( ) ∑
=

−−+−=
N

j
jjttt

P
t QaZaPZBS

1
01  

( ) ( ) 0.21
1111

0 =−+−++++−+− ∑∑∑∑
==

≠
=

≠
=

P
j

N

j
tj

P
j

N

j
tj

K
t

M
t

N

tj
j

jtj

N

tj
j

jjtttttt aaQaQaQaZCaZB λλλλ  

0. =P
t

P
t Sλ0. =M

t
M
t Sλ , ,0. =K

t
K
t Sλ 0. =P

t
P
t Sλ ,  

0≥P
tS0≥P

tλ0≥tQ , , , 0≥M
tλ 0≥K

tλ 0≥P
tλ , , , , 0≥M

tS 0≥K
tS 0≥P

tS ,  

 

1.c) Define the initial conditions  

0=P
tλFor t = 1,…,N:    , , 0=M

tλ 0=P
tλtt KQ = , , , Z = -1 0=K

tS

 

Step 2: Maximize Z subject to the equations in 1.b) 

2.a) For all t and PPMj ,,= , such that  and , set  to zero and leave  not in-

stantiated.  

0=j
tλ 0=j

tS j
tS j

tλ

2.b) For all t  if  and ,  set  to zero and leave  not instantiated.  0=K
tλ 0=K

tS K
tλ

K
tS

 13



 

Step 3:  

3.a) If Z = 1 terminates and goes to step 6, with Z =1.  

3.b) If Z<1 proceed to Step 4. 

 

Step 4:   

4.a) If Z increased in the last iteration, go to Step 2 

4.b) Otherwise, a cycle is found. Proceed to Step 5. 

 

Step 5:  

5.a) Start from the first non-instantiated shadow prices for the minimum production, ,  and 

then repeated for the non-instantiated shadow prices for the maximum production, :  

M
tλ

K
tλ

For all non-instantiated shadow prices for the production (  and ) : M
tλ

K
tλ

   - Set the shadow price to zero  

  -  If there is no solution, leave the variable not instantiated  

  - Otherwise, if there is a solution fix that shadow price to zero 

- Go to the next non-instantiated shadow price 

 

5.b) If at least one of the non-instantiated variables in Step 5.a) was fixed to zero, go to Step 2, 

keeping equal to zero the variables instantiated in 5.a).  

 

5.c) If no non-instantiated variable was fixed to zero, the algorithm terminates. Go to Step 6 with 

Z < 1.  

 

Step 6:  

If Z = 1: Return for t = 1,…, N, Qt and Pt 

If Z < 1: Return “There is no solution.” 

 

The main difference between the extended and the simple Lemke’s algorithm is in Step 5, by 

treating the instance of the problem in which two or more shadow prices are simultaneously non-

 14



instantiated. The use of constraint logic programming is crucial for this step of the algorithm, as 

we iteratively assert values to the non-instantiated variables until we find a feasible solution.   

We now prove that the extended-Lemke’s algorithm converges to the solution of the dynamic 

pricing model if there is one (Proposition 4.2), and that it correctly returns that there is no solu-

tion (Proposition 4.3). 

 

Proposition 4.2 When there is a solution of the dynamic pricing model, if the Lemke’s algorithm 

fails to converge for the reasons in Proposition 4.1, then the extended-Lemke’s algorithm will 

converge to the solution of the dynamic pricing model. 

 

Proof: If there is a solution then there is a set of variables , , , 0≥M
tλ 0≥K

tλ 0≥P
tλ0≥tQ , 

0≥P
tS0≥P

tλ , , , 0≥M
tS 0≥K

tS 0≥P
tS , , for t =  1,…, N, which solves equations (4.10) for Z 

= 1.  When in a given iteration of the Lemke’s algorithm we have Z<1 and two of the shadow 

prices are non-instantiated (for example  and P
tλ

K
tλ ) then, as the price and capacity constraints 

are orthogonal, at least one of these shadow prices is equal to zero. Therefore, by iteratively in-

stantiating these shadow prices a new solution for the system is found. Hence, when there is a 

solution for the problem and the Lemke’s algorithm fails for the reasons in Proposition 4.1, the 

extended Lemke’s algorithm succeeds.         Q.E.D. 

 

We now prove that the algorithm returns the correct answer when there is no solution.  

 

Proposition 4.3 When there is no solution for the dynamic pricing model, the extended-Lemke’s 

algorithm returns ‘no solution’. 

 

Proof: We need to prove that when there is no solution the algorithm always reaches Step 

5.c). Since there is no solution Z is always less than 1. Therefore, the algorithm follows from 

Step 2 to Step 4. Now we need to prove that eventually a cycle is reached. There are 4N shadow 

prices in the dynamic pricing problem. This means that the pivoting process in Step 2 has a finite 

number of possible points to examine. Since a solution will never be found, it will take a finite 

number of iterations for a cycle to be reached.  If in step 5.a) an improvement is reached, then the 

 15



new Z can change but, as there is no solution, a new cycle will eventually be reached such that, 

after a finite number of iterations.  We are now in step 5.c): the algorithm terminates and returns 

‘no solution’.            Q.E.D. 

5.  Simulations and Complexity 
In this section we use the extended-Lemke’s algorithm to simulate the dynamic pricing model, 

analyzing its complexity. In order to analyze the complexity of the extended-Lemke’s algorithm 

we have simulated one hundred and twenty thousand different problems which were randomly 

generated.  The results are presented in section 5.1. 

5.1 Complexity of the extended-Lemke’s algorithm  
In these simulations we assume a linear demand, Pt = 1500-Qt, for every period t.  We have 

tested several different planning horizons (seven, twelve, twenty-four, thirty-six, forty-eight and 

sixty periods), for each one of these time periods we have generated ten thousand different prob-

lems. We have tested two different types of problems, one in which a problem randomly gener-

ated is likely not to have a solution, and a second one in which the problems always have a solu-

tion. We have therefore generated a total of one hundred and twenty thousand problems.   

In the first set of experiments (which is presented in Figures 5.1 and 5.2.a)) we have ran-

domly generated the following problems that are not likely to have a solution: a) maximum pro-

duction capacity was generated between 500 and 1,500 units; b) minimum generation capacity 

was set between zero and 500 units; c) maximum prices were generated between £500/unit and 

£1,500/unit; d) the marginal costs were randomly generated between £0/unit and £200/unit.  

In the second set of experiments (represented in Figure 5.2.b)) we have relaxed some of the 

constraints in order to ensure that the problems would always have a solution. We have randomly 

generated problems as follows: a) maximum production capacity was set between 1,000 and 

1,500 units; b) minimum generation capacity was generated to £0/unit; c) maximum prices were 

generated between £500/unit and £1,500/unit; d) the marginal costs were set to £0/unit.  

In Figure 5.1, in order to illustrate the outcome of these simulations, we present the fre-

quency distribution for the experiments with a planning horizon of seven periods, for the type of 

problems in which a solution is very unlikely to exist (this figure represents the frequency distri-

bution for the number of states visited in 10,000 randomly generated experiments with seven pe-

 16



riods each). In this case, the distribution for the number of states (i.e., a state is defined by the 

shadow prices that are set equal to zero) visited before the algorithm terminates has a mean of 

8.1 states and a standard deviation of 1.8 states, with a minimum of four states and a maximum 

of fourteen states.   

 

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of States

Fr
eq

ue
nc

y 
(%

)

 
Figure 5.1: Frequency Distribution for the Number of States Visited  

 

The results for all these experiments are summarized in Figure 5.2. The mean number of 

states visited until the algorithm terminates is a linear function of the number of periods in the 

planning horizon. (The same conclusion is true for the worst and best cases.) In experiments 

5.2.b), in which a solution always exists, the mean number of visited states is higher than in ex-

periments 5.2.a)  

 

 

 

 

 

 

 

 
7 12 24 36 48 60

Mean

Best-case

Worst-case

0

20

40

60

80

100

7 12 24 36 48 60

Number of Periods
(a)

N
um

be
r o

f S
ta

te
s 

0
10
20
30
40
50
60
70
80
90

7 12 24 36 48 60

Number of Periods
(b)

Figure 5.2: Complexity of the Extended-Lemke’s Algorithm.  

(a) Most or all cases have no solution. (b) All cases have solution. 

 17



Next, we illustrate the policies computed by the algorithm for two different dynamic pricing 

problems.  

5.2. Examples of Dynamic Pricing 
We have simulated two different sets of experiments. The first set (entitled short-term simula-

tions) presents an application of dynamic pricing to the management of weekly production as an 

attempt to illustrate how dynamic prices can shift demand between different days of the week. In 

the second set of experiments (entitled long-term simulations) we apply dynamic pricing to the 

management of the production over several years. In both sets of experiments we use seven peri-

ods. 

Let us look at the results of the short-term simulations. In this these simulations we assume 

that, at any given time: a) Demand decreases by one unit for each pound increase in price. b) An 

increase in the production in a given day reduces the demand during other days of the week. c) 

The cost of an additional unit of production was set to zero and the minimum production for each 

day was also set to zero. d) Demand is higher during the first few days of the week. 

In experiment 1: a) maximum production capacity was set to 600 units; b) maximum price 

was set to £500/unit. In experiment 2: a) maximum production capacity was set to 600 units; b) 

Maximum price was set to £1,000/unit. In experiment 3: a) maximum production capacity was 

set to 300 units; b) maximum price was set to £1,000/unit. 

 

400

450

500

550

600

650

700

750

800

1 2 3 4 5 6 7

Time

Pr
ic

es
s Exp_1

Exp_2
Exp_3

 
Figure 5.3: Prices per Time Period 

 

 18



As shown in Figure 5.3, by using dynamic pricing, the maximum price increased up to 50% 

during the first day of the week (assumed to have higher demand). The new prices were never 

less than the £500/unit which was the maximum price in experiment 1 (Exp_1), and the introduc-

tion of a tighter production constraint increased the price by about £50/unit in the first two days 

of the week. 

Dynamic pricing has implications for the level of demand. As shown in Figure 5.4, demand 

decreases during the first three days and increases during the last three days of the week, as we 

move from experiment 1, with a price cap of £500/unit, to experiment 2 (with a price cap of 

£1,000/unit), and experiment 3 (with a price cap of £1,000/unit and a tighter production con-

straint). 

 

0

100

200

300

400

500

600

1 2 3 4 5 6 7

Time

Q
ua

nt
iti

es Exp_1
Exp_2
Exp_3

 
Figure 5.4: Demand (Production) per Time Period 

 

A conclusion from these experiments is that, when it is possible to shift demand from one 

day to another, dynamic pricing tends to generate production loads that are more even through-

out the week, and therefore more efficient. Next we analyze the experiments for the long-term 

model.  

We now look at the results of the long-term simulations. In these simulations we assume that 

demand in any given year is a negative function of the average price in that year and a positive 

function of the production during the previous year. More specifically, we assumed that, at any 

given time: a) demand decreases by one unit for each pound increase in price; b) the firm keeps a 

given proportion of its customers from the previous year. As in the previous experiments, the 

 19



cost of an additional unit of production was assumed to be zero, and the minimum production for 

each year was also assumed to be zero. 

In experiment 1: a) The maximum production capacity was set to 3,000 units during the first 

4 years and set to 6,000 units during the 3 last years; b) there is no maximum price; c) the firm 

keeps 50% of its customers from the previous year. In experiment 2: a) the maximum production 

capacity was set to 3,000 units during the first 4 years and set to 6,000 units during the 3 last 

years; b) there is no maximum price; c) the firm keeps 90% of its customers from the previous 

year. In experiment 3: a) the maximum production capacity was set to 3,000 units during all the 

7 years; b) there is no maximum price; c) the firm keeps 90% of its customers from the previous 

year.  

Figure 5.5 shows that to have lower prices in order to gain market share and increased future 

profits can be an optimal policy. Moreover, investment in capacity has important impacts on the 

pricing policy. Finally, in these experiments, higher capacity leads not only to higher production 

but also to higher prices, as in period seven of Exp_2. These results are highly dependent on the 

parameter for customer loyalty. 

 

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 3 4 5 6 7
Time

Pr
ic

es
s Exp_1

Exp_2
Exp_3

 
Figure 5.5:  Prices per Time Period 

6.  Conclusions and Discussion 
We have shown that dynamic pricing can be used to improve short-term resource manage-

ment and as a strategic tool, capable of influencing the long-term behavior of customers.  

 20



Furthermore, we have shown that the Lemke’s algorithm can be used to solve dynamic pric-

ing problems. However, as it fails to converge to the optimal solution under certain conditions, 

we have extended it, by using constraint logic programming. We have analyzed the complexity 

of the extended-Lemke’s algorithm, showing that its complexity is a linear function of the num-

ber of periods in the planning horizon. Furthermore, we solved several examples of the dynamic 

pricing model, illustrating how capacity constraints, price caps, and the different parameters for 

the short-term and long-term demand functions influence the optimal pricing policies.  

Finally, in the models presented in this paper, we model only one firm which uses dynamic 

pricing to manage its customers, whose behavior is represented by a static demand function. This 

corresponds to an assumption that the firm has market power, for example, resulting from prod-

uct differentiation, in the services and products modeled, and that the demand function is station-

ary during the planning period. Another important application of Lemke’s algorithm can be the 

solution of dynamic pricing games (as in Kephart et al. 2000), which are not covered in this pa-

per. 

References 
Bellman, R. 1957. Dynamic programming. Princeton University Press 

Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena Scientific, Bel-

mont, Massachusetts. 

Bichler, M., J. Kalagnanam, K. Katircioglu, A. J. King, R. D. Lawrence, H. S. Lee, G. Y. Lin, Y. 

Lu. 2002. Applications of dynamic pricing in business-to-business electronic commerce. IBM 

SYSTEMS JOURNAL 41 (2) 287-302. 

Bitran, G. R., S. V. Mondschein. 1995. An Application of Yield Management to the Hotel Indus-

try Considering Multiple Day Stays. Operations Research 43 (3) 427-443. 

Botimer, T. C., P. P. Belobaba. 1999. Airline Pricing and Fare Product Differentiation: A New 

Theoretical Framework. Journal of the Operational Research Society 50 1085–1097. 

Ciancimino, A., G. Inzerillo, L. Palagi. (1999): A Mathematical Programming Approach for the 

Solution of the Railway Yield Management Problem. Transportation Science 33 168–181 

Davenport, A., J. Kalagnanam. 2001. Price Negotiations for Direct Procurement. Research Re-

portRC22078, IBMResearch, Yorktown Heights, NY 10598. 

 21



Eso, M., S. Ghosh, J. R. Kalagnanam, L. Ladanyi. 2001. Bid Evaluation in Procurement Auc-

tions with Piecewise Linear Supply Curves. Research ReportRC22219, IBMResearch, York-

town, Heights, NY, 10598. 

Federgruen, A., A. Heching. 1999. Combined Pricing and Inventory Control under Uncertainty. 

Operations Research 47 (3) 454-475.  

Gallego, G., G. J. van Ryzin. 1997. A Multiple Product Dynamic Pricing Problem with Applica-

tions to Network Yield Management. Operations Research 45 (1) 24–41. 

Holzbaur, C. 1995. OFAI clp(q,r) Manual. Edition 1.3.3, Austrian Research Institute for Artifi-

cial Intelligence, Vienna, TR-95-09, http://www.ai.univie.ac.at/clpqr/. 

Kaelbling, L. P., M. L. Littman, A. W. Moore. 1996. Reinforcement Learning: A Survey. Jour-

nal of Artificial Intelligence Research 4 237–285. 

Kephart, J. O., J. E. Hanson, A. R. Greenwald. 2000. Dynamic Pricing by Software Agents. 

Computer Networks 32 (6) 731-752. 

Kimes, S. E. 1989. A Tool for Capacity-Constrained Service Firms. Journal of Operations Man-

agement 8 (4) 348-363. 

Kincaid, W. M., D. Darling. 1963. An Inventory Pricing Problem. Journal of Mathematical 

Analysis and Applications 7 183-208. 

Ladany, S. P., A. Arbel. 1991. Optimal cruise-liner passenger cabin pricing policy. European 

Journal of Operational Research 55 136-147. 

Lemke, C. E. 1965. Bimatrix equilibrium points and mathematical programming. Management 

Science 11 681-689. 

McGill, J. I., G. J. van Ryzin. 1999. Revenue Management: Research Overview and Prospects. 

Transportation Science 33 (2) 233–256. 

Sutton, R. S.,  A. G. Barto. 1998. Reinforcement Learning: An Introduction. MIT Press. 

Valkov, T. V., N. Secomandi. 2000. Revenue Management for the Natural Gas Industry. Energy 

Industry Management 1 (1). 

Weatherford, L., S. Bodily. 1992. A Taxonomy and Overview of Perishable-Asset Revenue 

Management: Yield Management, Overbooking, and Pricing. Operations Research 40 (5) 

831-844. 

Wynter, L. 2004. Optimizing Proportionally Fair Prices. Telecommunication Systems 27 (1) 67-

83. 

 22

http://www.ai.univie.ac.at/clpqr/


You, P.-S. 1999. Dynamic Pricing in Airline Seat Management for Flights with Multiple Flight 

Legs. Transportation Science 33 (2) 192-206.  

 23


	coversheet_template
	OLIVEIRA 2008 A constraint logic programming

