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1. Introduction 

After over a decade of various national experiments on introducing different forms of electricity 

restructuring around the world, it is apparent that the ideal of a fully liberalized deregulated market 

elusive in practice. Initial faith in the process of divestiture of assets to reduce market concentration has 

not generally been as effective as expected in reducing market power (see Borenstein et al., 1999), nor 

indeed sustainable in the face of subsequent market evolution through mergers and acquisitions (observe 

the re-concentration and vertical re-integration in the UK and Germany during 2000-2006). Attempts to 

implement price-caps have always been seen as transitional, and more fundamental measures such as 

institutionalized surveillance on the tactical withdrawal of capacity have been difficult to apply, because 

of the asymmetry of technical information between generators and regulators. In the case of the electricity 

market of England and Wales, one of the oldest fully competitive markets, all three of these regulatory 

interventions have been pursued, with mixed results, since 1990, together with a basic market mechanism 

change from a compulsory day-ahead uniform price auction to continuous, bilateral trading in 2001. 

Although this latter mechanism change was associated with a contemporaneous price fall, by 2004 prices 

were back to the previous levels, as companies re-organized themselves and adjusted their behavior. The 

research documented in this paper has, therefore, been motivated by the dynamic aspects of these kinds of 

regulatory interventions and the strategic market structure adaptations that the competing companies 

evolve as responses. 

In contrast, almost all of the  extensive modeling research relating market structure to market power 

in electricity has been analyzed from static perspectives, whilst the analysis of competitive company 

responses to market conditions has focused on the context of tactical daily bidding behavior rather than 

the longer-term strategic re-allocation of assets. Thus, several authors have addressed the analytical 

formulation of the supply function responses by generators in daily pool-based markets, e.g., Green and 

Newbery (1992), Day and Bunn (2001), Anderson and Philpott (2002a, 2002b, 2003), Neame et al. 

(2003). Other structural aspects such as spatial competition, e.g., Hobbs (2001), and technology mix, e.g., 
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Bushnell (2003), create further modeling challenges to representing the imperfect competition of daily 

bidding in a realistic way. Furthermore, to the extent that returns in the wholesale markets for power 

determine the asset values of generating plant, e.g., Tseng and Barz (2002), and that such physical assets 

are now being repeatedly bought and sold, e.g., Ishii and Yan (2002), there is a dynamic link between 

short-term performance in the daily markets and the longer-term evolution of market structure.  

In this paper, we develop model-based insights into this multi-stage dynamic process linking market 

interventions (such as market share restrictions and targets for generation output) with individual 

company performance through strategic asset trading and structural change. Essentially, this is achieved 

with an evolutionary, agent-based, computational model that is capable of simulating how a Cournot 

player, by interacting with its opponents, can rationally adapt its generation portfolio in order to increase 

value.  

Thus, we do not follow the real options approach to plant valuation, which assumes no market 

power, but price taking behavior by generation companies, e.g., Thompson et al. (2004). Under such 

assumptions, a particular plant would have the same value to any owner and therefore there would be no 

economic value in plant trading between existing generators. However, almost all power markets are 

imperfect to some extent, and the value of a plant differs according to the market power of the portfolio of 

ownership. The model developed here, therefore, seeks to capture the strategic value of plant as owners 

seek to improve the market power of their asset portfolios through plant trading.   

Research into asset trading between Cournot players does not in general present clear expectations 

for market structure evolution. Farrel and Shapiro (1990) used a Cournot model with exogenous market 

structure to study the welfare effects of mergers in oligopolistic markets, showing that when there are no 

synergies (or economies of scale) between the firms, mergers lead to higher prices; whilst Salant et al. 

(1983) and Barros (1998) show that the combined profits would tend to decrease if the merging firms 

were very different. In terms of understanding the dynamics of plant trading, however, it is the 

perspective of increased value to the purchasing company that is crucial. In Appendix 1, we develop 

background insights into Cournot asset trading through some simple examples.  These show, firstly that 
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whether a productive asset is worth more to the buyer than the seller will depend upon market 

heterogeneity. We then explore the evolutionary tendency with a simple application of the computational 

learning approach developed in this paper. The general tendency is one of increasing concentration and 

market power reinforcement, but it is clear that for more realistic applications, because of evident market 

structure sensitivity and path dependencies, simple generalizations may not apply and a full 

computational simulation becomes valuable

The functional capabilities of the computational approach therefore facilitate:   

- The study of asset portfolio adaptation as a result of rational choice. This cannot be achieved 

with a static Cournot model that, by construction, does not take into account endogenously 

the adaptive selection of the installed capacities and technologies used by the players. 

Further, an evolutionary computational model can explore the path dependencies, resulting 

from the starting conditions, as one of the determinants of portfolio adaptation. 

- The analysis of market structure and institutional intervention as an endogenous co-

evolutionary process, enabling an adaptive view of the impact of regulatory policies on the 

evolution of the industry’s market structure.   

The model therefore incorporates two main components: a plant trading game and an electricity 

market game. The plant trading game simulates the interaction between electricity companies that trade 

generation plants. The electricity market game simulates the performance of portfolios of plant in price 

formation assuming Cournot players. From this multi-stage modeling platform, we analyze two sorts of 

anti-trust interventions: (a) the “structural changes” of enforced divestiture and (b) the “behavioral 

remedies” (sic Competition Commission
1
) of capacity availability requirements. In common with most 

studies on market power mitigation, we take the pragmatic perspective of the need to transfer welfare 

from producer to consumer, and compare market interventions to achieve this, without addressing the 

larger policy issue of how much welfare surplus to transfer. Furthermore, we test the sensitivity of these 

interventions to the current debate on market mechanisms. We do not address directly the merits of basic 

discriminatory vs. uniform pricing, as in Bower and Bunn (2000), Abbink et al. (2003), Rassenti et al. 
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(2003), but instead, we follow Borenstein et al. (1995) who suggested that there could effectively be 

different markets for baseload and peak plants, and also Elmaghraby and Oren (1999), who proposed a 

clearing mechanism that implied separate pricing by technology. We compare this technologically 

motivated multi-market pricing with a simple single clearing, uniform market mechanism. 

2. The Electricity Market 

In this paper, the endogenous wholesale market prices are computed by using the Cournot model in 

which the players’ pricing tactics result from the use of quantities as instrumental variables. The Cournot 

model has become well-established in the electricity markets game theoretical literature: Allaz and Vila 

(1993) analyses Cournot competition in forward markets; Borenstein and Bushnell (1999) uses it to 

analyze market power and divestment in the California electricity market; whilst Wei and Smeers (1999) 

and Hobbs (2001) analyze spatial competition in restructured electricity markets assuming Cournot 

behavior. Hobbs and Pang (2007) analyze the electricity Cournot game with piecewise linear demand 

functions and joint constraints. In these contexts, the use of the Cournot model in electricity markets 

appears to be defensible for both theoretical and normative purposes.  

There is empirical evidence from the California market, e.g., Puller (2002), that conduct has been 

“relatively consistent” with a Cournot pricing game. Theoretically, Kreps and Scheinkman (1983) show 

that the Cournot equilibrium is the outcome of games where there is a capacity pre-commitment followed 

by Bertrand competition, and this appears to be the modus operandi of electricity markets. Further, 

Daughety (1985) in analyzing conjectural variations for quantity setting firms (ranging from Bertrand to 

Cournot conjectures) shows that an oligopoly equilibrium in which the players hold consistent conjectures 

is, in general, a Cournot equilibrium, and vice versa. Nevertheless, other equilibrium models have been 

preferred by some researchers, most notably the supply function equilibrium for power pools where 

players effectively submit price-quantity profiles to the market (Green and Newbery, 1992), and some 

empirical research has doubted the extent to which generators actually do compete through quantity 

offering rather than price mark-up (Green, 2004).  We are less concerned in this paper with the precise 
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accuracy of the price-setting model, than in understanding its general influence on market structure 

evolution, and in that respect it seems most useful to formulate this problem in the context of the more 

generally applied, and better understood paradigm of Cournot.  It is also analytically more tractable. 

We develop two different variants of the electricity market game. The first is a single-clearing 

Cournot game in which there is a uniform clearing price for each hour of the day. This model simulates a 

game where each player defines how much to sell at each hour (for different levels of demand), given the 

portfolio of plant owned. This is typified by the day-ahead compulsory pool-based market, where all 

power is offered into a single auction for the next day.  The second is a multi-clearing Cournot game in 

which there are different clearing prices for different markets (e.g., base, “shoulder” and peaking), and is 

inspired by the continuous voluntary forward trading markets where, for example inflexible plants are 

more likely to sell baseload power substantially forward, whereas peaking plant will be sold much closer 

to real-time. In the multi-clearing mechanism, each player decides how much to offer from each one of 

his plants in the different markets, given the durations, the different demand functions and the structure of 

his portfolio. Whilst the former captures a distinctive feature of the compulsory, uniform price pool-based 

markets, the latter is more descriptive of the continuous, bilateral, forward-trading power exchange based 

markets, where separate forward products for baseload and peak power are traded. We do not however, 

explicitly consider the influence of forward contracts on spot prices.  

In general terms, each player i chooses his output LiQ ,  in a specific market L, which is characterized 

by a certain demand, where the definition of each market L will be adapted to the specific needs of the 

formulation to be analyzed, e.g., single or multi-clearing. Let Ci,L stand for the marginal cost of player i, 

AL, L  represent the intercept and slope of the inverse demand function, and DL stand for the duration of 

market L. [In practice, we will typically be looking at annual load duration curves, and three “markets” (L 

= 3), baseload, shoulder and peaking, with DL being the durations in hours for each market].  Further, let 

Ki,L stand for player i’s total available capacity in market L. In this case, Ci,L is assumed locally constant 

for a given plant, but it may be different for the different plants owned by a player. Thus, Ci,L will 
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generally be a step-function, which makes the optimization problem computationally hard. In both 

models, the start-up costs and ramp rates are not explicitly taken into account. [This is a simplifying 

assumption that has also been used in several other studies of electricity markets (e.g., Ramos at al., 1998; 

Borenstein et al. 1999).] However, since these technical constraints effectively define the capability of a 

plant to access a particular market in the short-term, the model exogenously defines, for each plant, the 

market segment in which it can sell. This simplification does not change the economics of the model, but 

decreases its complexity as it allows its solution as a linear complementarity problem.  

The Single-Clearing Cournot Game 

This model assumes that there is only one clearing price at any given market time period of the day, 

and that a player receives the same price for the electricity generated by any plant selling at that time. So 

the market state L is defined by time of the day (e.g., peak or baseload) and each player receives the same 

clearing price PL for the quantities sold in each of these markets. The capacity constraint for each market 

state L is the total capacity available for each player in that type of market (e.g., how much could be 

produced in peak or baseload market time periods).  

Thus, for a player i, the profit ( i ) maximization problem is represented as: 
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The Multi-Clearing Cournot Game 

In the case of bilateral electricity markets, each generator has the possibility of selling the electricity 

of its various plants into different market segments. Based on the evidence from the England and Wales 

electricity forward markets, the baseload, shoulder, and peaking plants tend to sell electricity over 
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different timescales with different prices. Thus, essentially, different technologies sell into different 

market segments. The multi-clearing price mechanism aims to capture this segmentation by allowing a 

player to sell the generation from specific plants into different segments for a given time, possibly 

receiving a different clearing price in each one of them. This procedure follows the model proposed by 

Elmaghraby and Oren (1999), also suggested by Borenstein et al. (1995), and aims to capture the 

interaction between different market segments and technologies in defining the value of a plant. 

Thus, for a player i, the profit ( i ) maximization problem is similar to the one presented in problem 

(2.1), with the difference that the available capacity at any point in time is the sum of the available 

capacity in each market segment. Thus, the definition of market L is now not a state in time, as in the 

single clearing case, but a market segment that extends over a period of time. This implies that the 

definition of what type of plant can operate in each market segment L also changes. For example, in 

single clearing, the “peak” market would be a time state in which all technologies would generally 

operate, whereas in multi-clearing, the “peak” market would be a segment in which only the peaking 

technologies offered to operate. Thus, in problem (2.1) we need to replace the capacity constraint by a 

coupled capacity constraint i

L

Li KQ  , . Again, as in the previous model, the costs are a non-linear 

function of production. Furthermore, the shape of the annual load duration curve determines the duration 

of each market segment, as before but with, for example, the peak segment being just a few hundred 

hours, whilst the baseload segment, in this case, extends for the full year, i.e., 8760 hours.  

The general feature of the multi-clearing mechanism is that for each trading period, it recognizes that 

the total energy may have been traded through several market segments, and the way these are defined 

depends on the objectives of the study under consideration. In the present case we were assuming that 

each market segment would be linked to the type of technology (as defined in Section 5 below), however 

it is useful to see the formulation as just one example of the general multi-clearing specification. The 

model can incorporate as many market segments as required to better represent the market. 
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3. Market Interventions 

Institutional interventions have generally been either structural (e.g., divestiture) or behavioral (e.g., 

generation long-term adequacy requirements), and often both.  Whilst the former is mainly a market share 

issue, and there has been extensive research on the relationship of market concentration to market power 

in electricity since the early days of restructuring, the latter has become more topical in the context of 

ensuring security of supply and mitigating the abuse of market power. Furthermore, whilst the structural 

remedies are often implemented ex post through a lengthy procedure involving competition authorities, 

behavioral incentives or regulations can be implemented ex ante by regulatory bodies and are therefore 

attractive for reasons of expediency. 

Regulators do, of course, face a number of conflicting obligations and are generally obliged to 

promote both short-term market efficiency and long term market security. In this respect, whilst both 

structural and behavioral interventions can mitigate the abuse of market power and thereby increase short-

term market efficiency, promoting longer term security via efficient market entry (and exit) essentially 

constitutes a behavioral requirement. This is being achieved in several ways including the creation of 

explicit adequacy requirements and capacity markets (as in some of the North-East markets of the US), or 

with obligations on the system operator (as in the UK), or through standard capacity payments (as in 

Spain and several S. America countries) or motivated by vague but statutory responsibilities for national 

intervention (as in the EU directive of 2004). 

However, a forward market for capacity is just as vulnerable as an energy spot market to the abuse of 

a dominant generator, and markets for capacity do not preclude capacity withholding tactics that can lead 

to very high prices of capacity. Market power in the energy spot market can therefore re-appear in a 

compulsory forward capacity contracts market.  

Thus it follows that any behavioral motivation for controlling capacity may need to control not only 

the required forward capacity contracts, for security reasons, but also, as a consequence, the actual 

generation quantity offered into the spot market, for market power mitigation. From a regulatory 
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perspective, the control of capacity availability is also rather more attractive than price control, especially 

in bilateral markets, where the actual transaction prices are private information, but where the quantity 

generated by each plant in the system is known at least to the grid and regulator, if not to the whole 

industry.  

Consequently, to the extent that the exercise of market-power often appears in practice through 

generation capacity withholding, the existence of a minimum generation requirement, explicitly or 

implicitly, can have strong implications for curtailing market abuse.
2
 We see this kind of constraint being 

implemented, in a strict sense, through the various requirements that in some markets are directed to load 

serving entities to pre-contract for adequate generation through capacity markets. Explicit attempts are 

made by regulators to maintain capacity levels, as Green (2004) notes in his review of British regulatory 

practice, where he comments upon the license condition that required companies to provide an annual 

statement of their plans for making each unit available to the market, and to account ex post for 

deviations.
 
Moreover, generators do not withdraw as much capacity as daily profit maximization would 

suggest. Rather more moderate price levels are maintained, perhaps in the belief that this would deter new 

entrants or avoid regulatory intervention (e.g., Wolfram, 1999).  

To formalize these ideas, let LMQ ,  stand for the minimum generation requirement for market L and 

let j stand for the players in the industry (an exogenous parameter). In the presence of a minimum 

generation requirement for market L, the profit ( i ) maximization problem (in the single-clearing 

mechanism) for a player i is represented as: 
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(In the multi-clearing mechanism the capacity constraint would be i

L

Li KQ  , ). 

Further let 
*

,LjQ  and 
M

LjQ ,  represent the optimal generation for player j, in market L, in a Nash-

Cournot equilibrium of problems (2.1) and (3.1), respectively.
3
 The constraint for the minimum 

generation requirement LM

j

Lj QQ ,,   imposes behavior on the market as a whole and not on any 

specific player, implying that any move (such as generation withholding by specific players) which 

violates this constraint cannot be a solution of the game. We state here a number of implications of this 

requirement (proofs in Appendix 2): 

Lemma 3.1: If LM

j

Lj QQ ,

*

,   then the solution 
M

LjQ ,  of the constrained Cournot game (3.1) 

satisfies LM

j

M

Lj QQ ,,  .  

Lemma 3.2: In the electricity market games described by problem (2.1) such that in equilibrium 

LM

j

M

Lj QQ ,,  , the higher the minimum generation requirement the lower the prices. 

Therefore, because demand is relatively inelastic in electricity markets, the imposition of the 

minimum generation requirement is equivalent to imposing price cap in each market. However, whereas 

bilateral trading does not provide transparent transaction prices, let alone the possibility of enforcing a 

price cap in each market, information regarding generation output is easily available and therefore can be 

a crucial variable for market monitoring. It has also been a key issue in ex ante market power studies 

where potential individual and aggregated generation withholding from specific players has been under 

scrutiny (Bunn and Oliveira, 2003). 

The implication of this is quite subtle and strong, reflecting the nature of Cournot players who may 

have market power. This shows that in Cournot industries price response to generation is the inverse of 

what happens in perfectly competitive industries.  
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Theorem 3.1: In any electricity market with an inelastic demand, every minimum generation 

requirement such that 
LM

j

M

Lj QQ ,,  : a) reduces the value of each portfolio selling in the industry; b) 

reduces the value of the industry as a whole.  

Theorem 3.2: Every minimum generation requirement such that LM

j

M

Lj QQ ,,   limits capacity 

withholding and the dynamics toward concentration. 

This is a useful result as it shows that a behavioral remedy is a viable alternative to restructuring 

(e.g., divestment) in order to regulate the performance of an electricity market. 

4. Evolution, Equilibrium and the Plant Trading Game 

In this section, we present the plant trading game, the main objective of which is to model how the 

market structure of a given electricity market evolves from the initial conditions to an evolutionary 

equilibrium. 

Evolutionary Equilibrium 

Definition 4.1: An evolutionary equilibrium for plant trading is a state of the industry in which no 

plant trade occurs: the value of a plant for its owner is not less than its value for any other player in the 

industry. 

Thus, an evolutionary equilibrium represents a stationary state of the industry in which no rational 

player would propose a deal leading to a trade. More precisely, in this state of the industry, even if the 

value that each player gives to each asset is common knowledge, there is no asset such that its value is 

higher for any buyer than for its owner. 

Thus, for each asset, there are an infinite number of offers and bids that do not result in a trade, as the 

buyers’ valuation is always no more than the seller’s valuation. Since, for a given market structure, any 

set of bids and offers by the firms in the industry represents a Nash equilibrium of the plant trading game 

if no player can profit from changing his current bids and offers, given the bids and offers of his 
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opponents, then we can observe that any evolutionary equilibrium in this game includes an infinite 

number of Nash equilibria. In terms of defining equilibria, for the evolutionary equilibrium we need to 

look at the valuations of each one of the players, whereas to define a Nash equilibrium we need to look at 

actions in terms of bids or offers for each plant, i.e., the implications of these internal valuations. 

To be more specific, let LijQ ),,(  and LijQ ),,(  represent, respectively, the total output of plant j, and of 

the “rest of the plants owned by player i” in market L. Moreover, let GM(j,i) represent the gross margin of 

plant j for player i, and let     LSjLBj
L

Bj
QQQ

,,,,,),(
  represent the change in generation from plant j 

introduced by its buyer B, when compared with the quantity the seller S was generating from the same 

plant. Theorem 4.1 defines conditions for the generation quantities of the owner of the plant (the seller) 

and each one of the potential buyers for which no trade is possible and therefore an evolutionary 

equilibrium, as defined in Definition 4.1, is reached. 

Theorem 4.1: Every state of the industry is an evolutionary equilibrium if for every possible 

transaction of plant j owned by a potential seller S, and for any buyer B, the optimal generation change 

L
BjQ

,),(  is such that          j,BGMj,SGMQQ.Q.α ,Lj,B,Lj,S
L

,Lj,BL   







 .  (Proof in Appendix 

2.) 

Theorem 4.1 shows that there is no trade if the increase in value of the rest of the seller’s and buyer’s 

portfolios is not higher than the loss in Gross Margin for asset j resulting from the trade, i.e., in order to 

have a trade the increase in the value of the portfolio of the buyer needs to be higher than the loss for the 

seller.  

The Plant Trading Game 

The plant trading game is a multi-stage game of incomplete information where each player chooses 

the amount of capacity he wants to hold from each different technology and he specifies the quantity of 

generation he wants to sell in the market from those technologies. Essentially the game progresses as 
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repeated iterations of two component models: (a) the single stage Cournot model (either single or multi-

clearing) that determines the market prices and hence values of each plant and (b) a trading algorithm that 

finds the most desirable trade of capacity between players who may value the same plant differently. 

There are five main stages in the plant trading game: Initialization, Identification, Adaptation, Trading 

and Updating. The interaction between these stages is summarized in Figure 1. We first present an 

overview, and then describe each of these stages in more detail.  

 

 

 

Figure 1. Plant Trading Game. 

 

 
During Initialization, the Cournot model is solved for the initial market structure and the value of 

each plant is computed. The Identification and Adaptation stages model the internal processes of the 

players, attempting to capture how they interact with the market by modeling, separately, the processes of 

learning and adaptation. These two stages have as their main objective the identification of the list of 

plants that are likely to be traded during the next stage of the algorithm and, given this list, the player 

Identification: 

- Learning 

- Model inference 

- Identify plants most likely to be 
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- Market Structure 

- Cost structure of each player 

- Solve the Cournot Game 
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- Solve Cournot Game 

- Compute the initial value of each plant 
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defines which plants it will attempt to buy or sell during the auction. After having collected all the bids 

and offers for every plant in the industry, an auction starts, aiming to compute the transaction price for 

each plant and to determine which one will be traded at any given time. 

Subsequent to any plant transaction, the internal states of the buyer and seller change as their 

capacities and cost structures will be different. Moreover, this transaction also implies that the market 

structure will evolve. Therefore, the algorithm proceeds by updating the cost structures and capacities of 

the players, and recalculating the new solution of the Cournot game (under the new conditions) with 

capacity constraints. Thus, the computational burden is heavy, as we need to compute this solution every 

time there is a transaction. As a plant transaction implies a different solution of the Cournot game, a new 

value for each generating plant in the industry needs to be recalculated. Finally, given the new state of the 

industry, the players go to stage one, Identification, and the process restarts. We now describe the stages 

of the algorithm in more detail. 

Table 1 presents the Identification algorithm, which proceeds as follows. During Identification, each 

player infers a model of how the system behaves by keeping in memory the results of each one of his 

actions, 
i

t  (to sell, to buy or do nothing) in the last K periods. Further, a player is able to infer the results 

of actions that he did not take, 
i

t

i  \ , by analyzing if-then-else scenarios, i.e., by deciding for each one 

of these actions, if a trade would have been possible if it had been chosen. The difference between the 

latter and the former is that actions actually submitted to an auction, 
i

t , influence the perception the 

other players hold on the system’s behavior, while actions not submitted do not. 
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Table 1.  Identification Algorithm. 

D
i
: Perceived outcomes of the player’s actions in the path of his automaton,   1,0iD . 

i : Set of actions a
i
 available to player i. 

i

t  Set of W actions actually bid by player i, in state t; such that 
ii

t  . 

i

tT , Plausibility table: a vector of size M (number of plants) representing the likelihood of each plant 

being traded in the next iteration. 

 : Plausibility cut-off parameter, 0 1  . 

S   All prefixes (string with the perceived past outcomes) of D
i 
 with a length less than or equal to K, 

such that K> W;  is a S . 

 

Update operator   .   i

t

i

t

i

t

i

t aDss ,1 , in which  i i

t tD a  represents the expected outcome of action 

i

ta , 1 1 2[ , ,..., ]i

t Ks d d d   represents the vector of the past outcomes of action 
i

a ,  and 

 2 ,..., ,i i i

t K t ts d d D a 
 

. 

The forecast operator:  














p

p

if

if
p

0

1
,  

At stage zero initialize  0
iS ,T :     0, [1,1,...,1], , 1i i i i ia s a T s a     . 

Step 1. At any given stage t and for each player i: 

Step 1.a) For each possible action, update the string of perceived outcomes 

 





possibleTrade

possiblenotTrade

if

if
aD i

t

i

t
_

__

1

0
 

  1, ,i i i i i i

t t t t ta s s D a     

Step 1.b) Compute ,

a

i tp  the percentage of time each action is expected to be successful 

Let 
i

j td s  represent a perceived outcome in string 
i

ts , such that  0,1jd  . 

1

,,

K

j

ji i a

t i t

d

a p
K


  


 

Step 1.c) Let ,a t  represent the perceived outcome of action a, such that  , 0,1a t  : 

 , , ,, ,i i a

a t t a t i tT p     . 
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Step 1.a) For each possible action, update the perceived outcomes. The perceived outcomes, D
i
, are 

trade-possible (1) or not trade-possible (0). A trade is possible if the player wants to sell (buy) plant a
i
 and 

there were buyers (seller) in the market for plant a
i
. The player iteratively updates the string of perceived 

outcomes (
i

ts ), for each one of his actions, using an update operator ( , a moving window) such that 

every new string 
i

ts  is computed by removing the first element of 
i

ts 1  and inserting a new perceived 

outcome D
i
:  2 ,..., ,i i i

t K t ts d d D a 
 

 (see the definition of update operator in Table 1).  

Step 1.b) Compute the percentage of time each action would be successful, i.e., the average number 

of times the perceived outcome of an action is one and a trade is possible. 

Step 1.c) A one dimensional table T
i
 summarizes the perceived model of player i, in which each cell 

represents a plant in the system. Each element tj ,  of T
i
 is binary and represents the perceived outcome of 

action j at time t, which is 1 if and only if the action j produced a possible trade in sufficiently many 

recent time intervals. Thus, given the K-string of possible-events associated with each action, a player 

computes the percentage of time it would be possible for a trade to have happened, ,

a

i tp , and, if ,

a

i tp   

this action is considered to be a plausible trade. The plausibility parameter   is not important. It only 

helps to speed up the best-response algorithm, and the plant trading game, as it enables the players to 

concentrate the best-response algorithm on the set of actions that is more likely to lead to a trade, instead 

of insisting on using actions that will not lead to any transaction. In the experiments presented in Section 

5 the value of   is 0.1. This algorithm used a simple moving average of the number of times a given 

action would have been successful if taken. This simple statistic tells the player how likely is that this 

action will be accepted, given all the other possible trading opportunities available. Since the probability 

of trading is computed for every single plant, and by every player, this simple statistic helps the players to 

select the actions that may lead to a trade. 
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Table 2 presents the Adaptation algorithm which models how players adapt in the evolutionary 

market structure. A player computes the actions to take (which plants to buy or sell) in order to maximize 

his long-term profit. 

Step 1.a) Given the set of plausibly successful actions  i

tT  a player i computes the set of actions 

 i

tZ  that would improve the value of his portfolio using a best-response algorithm. However, as we are 

modeling an evolutionary game with simultaneous moves, the player applies the Inertia principle in order 

to decide if he should follow the policy recommended by best response or if he should keep the same 

automaton. Most importantly we would like to restrict the possibility of cyclical strategies, to which 

simple best response algorithms are prone, and facilitate a convergence towards an evolutionary 

equilibrium. In real markets players do not repeatedly buy or sell the same plant, i.e., a player needs to 

wait enough time before inferring the true value of an asset.  

More subtle evolution can also appear. By choosing from among the proposed trades the one in 

which he is interested, he is able, particularly in the case where he owns the plant in discussion, to 

influence the plausibility of other players’ actions (as computed in Table 1), as by not offering to sell a 

plant he leads others to believe that he is not interested to sell. Further, by choosing to propose some new 

actions and persisting with them, a player increases the plausibility of these trades. To the extent that the 

other players consider best response strategies, they adapt to plausible trades and are therefore, in a sense, 

influenced by the first player.  

Step 1.b) A player i computes the best response policy given his perceptions of the other players’ 

behavior. This policy is a dynamic programming algorithm that enables the player to compute the optimal 

set of actions, given the constraints of the possible trades, and taking into account the short-term evolution 

of the market structure implied by each trade. The utility  i

tt au , , in this case, is the Gross Margin 

GM(i) described in Table 4, Step 4. Then, function 
i  updates the plausibility table 

i

tT 1 , setting to zero 

the probability of the traded asset being traded in iteration t+1. 
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Table 2.  Adaptation Algorithm. 

i : Set of actions available to player i. :i

ta  action of player i at time t. 

i

t  Set of W actions actually bid by player i, in state t; such that 
ii

t  . 

i

tZ : Set of optimal actions by player i, in stage t. 
i

tZ : number of elements in the set 
i

tZ .  

i

tT : Plausibility Table, vector of dimension M (number of plants). 

t
{(j,i): player i owns plant j}: State of the industry at time t.  

i

tV : Value of i’s portfolio at time t. 

 i

tt au , : utility (profit or reward) of player i at time t, for a given action 
i

ta  in state t . 

i : Discount factor for agent i, 0 1i  . 

r: random generated number from a uniform distribution, such that  0,1r . 

i

tw : inertia variable such that  0,1i

tw  , at time t.  

h: number of steps of look-ahead. 

 

Step 1. Each player i decides to adapt  

Step 1.a) Inertia principle, for a given 
i

tw : 
 

i

t

i

t

i

t

i

t

i

i

tt

i

t

wr

wr

if

if

AZ

TBRZ













1

,, 
 

Step 1.b) Algorithm Best-Response  , ,i i

t t t iZ BR T   : 

Compute the optimal policy, 
i

tZ : 

 

   

 

    

 

1 1 1

1 0 1 0

, 1 1 , 1 ,

1

,

,

1,...,

arg max , ,

. .

,

, ,

\ , ( , )

,
0

i
t

i i i i

t t t i t t t
a

i i

i i i

j t t j t j t t

t t

i
j ti i t

j t t i

t

t h

Z u a V T

s t

T T

T a

a i a j

if j a
a

if j a



   


 

  

  



 

    
 

   

  

  

 
 



 

Step 2. Complete Adaptation Model 

If WZ i

t    

  Let  , ,: , 0i i i

t t j t t j ta T     ,  , ,i i

t t t iZ BR      

else  i

tZ  

 

Step 3. Define the set of actions to bid into the auction 
i i i

t t tA Z Z   
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Step 2) If the number of these actions, 
i

tZ , is less than the maximum number a player can submit to 

the auction, he may bid some additional trading proposals  i

tZ  that he perceives to be the most 

profitable, albeit having a low plausibility. Note that when a player adapts his behavior, first he is 

constrained by the behavior of the others but, at the same time, he is able to influence their behavior as 

this is another facet of the Inertia Principle.  

The Plant Trading Auction is organized as a single-call auction (Cason and Friedman, 1997), in 

which all the players bid for the assets being auctioned only once and the auctioneer sells the asset to the 

highest bidder. This auction was chosen due to its efficiency. Therefore, as in any single-call auction, 

there is a separate auction for each plant. The algorithm also calculates the transaction price for the plant 

traded. Table 3 describes the trading auction algorithm. 

Step 1) Compute the set of possible trades. A trade is possible only if simultaneously there are one or 

more buyers and a seller, and the price offered by the buyers is higher than the seller’s bid. It is assumed 

that any player bidding or offering into an auction reveals his true valuation of the plant he wishes to buy 

or sell. For a buyer (seller) the value of a plant represents the increase (absolute value of the decrease) of 

the value of his portfolio by acquiring (selling) that plant. 

Step 2) Find the set of all winning trades. For every plant compute the winning trade by choosing the 

buyer with the highest bid price. 

Step 3) Find the asset to be traded among all possible trades. So far in Steps 1) and 2) we have 

implemented a standard single-call auction. Moreover, in this step the regulator controls for market share, 

not allowing trades that violate this constraint. However, in Step 3) the plant-trading auction needs to be 

adapted to the specific task of modeling the evolution of market structure in an electricity market.  

It is possible to have more than one trade per iteration, as happens in a standard auction, and indeed 

this would not affect any of the theoretical properties of the model, and could easily be implemented 

within this simulation platform. However, this would imply that the jumps between successive states of 

the industry would be wider and the evaluation error for each plant would be higher. The most dramatic 
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adverse implication of such errors, which we observed in several simulations, was the “winners curse” in 

which players would systematically overbid for the plants (due to the assumption of a market structure 

evolution that would not occur). Thus, for this reason, we use a one-trade-at-a-time algorithm, since the 

“winners curse”, which often occurs in practice, would, in our formulation be a systematic mistake in 

plant valuation and lead to a theoretically flawed market trajectory.  

Table 3.  The Trading Auction. 

a: Asset being auctioned 

i, j: players offering (attempting to sell) or bidding (attempting to buy) assets in an auction 

Pa,t: Transaction price of asset a at time t 

Ba,i: Price bid by player i attempting to buy asset a 


iaB , : Winning bid by player i attempting to buy asset a 

*

,iaB : Bid by player i leading to a trade of asset a (bought by player i)  

 Oa,i: Price offered by player i attempting to sell asset a 


iaO , : Winning offer by player i attempting to sell asset a 

*

,iaO : Offer by player i leading to a trade of asset a (sold by player i)  

Ta: Set of all possible trades for asset a 

Ba: Set of all acceptable bids for asset a 

T: Set of the all winning trades (at the most one per asset) 

Step 1. For every asset a find Ta  

   , , , ,, : ,a a i a j a i a jT B O i j B O    

   , , ,: ,a a i a i a j aB B B O T   

Step 2. For every asset find the winning trade  , ,,a i a jB O 
: 

  , ,a j a jO O   and , supa i aB B   

 Find the set of all winning trades: 

   , ,,a i a j

a

T B O   

Step 3. Find the asset to be traded, 
*a , and the respective pair of bid and offer prices  * *

, ,,a i a jB O . This 

asset 
*a  is such that player i passes the market share control, and with the largest difference between 

offer and bid price, that is, for every asset a 

     jaiajaia OBOB ,,*,*,  
, 

 Step 4. Compute the transaction price 

 Let ,a zB
 represent the second highest bid for asset a:  

   *

, ,sup \a z a a iB B B   

* *

, ,

, ,max ,
2

a i a j

a t a z

B O
P B

 
   

 
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However, if we decide that only one trade is to take place at a time, then a criterion needs to be 

specified to choose a given trade. After testing for several different criteria, we trade the one with the 

largest difference between offer and bid prices jaiajaia OBOB ,,*,*,  
. There are two main reasons for 

this choice: 

 It implies that trading of bigger plants, which have the highest impact on the evolution of market 

structure, occurs earlier.  

 It assumes that the trades in which the players have the highest expected profits occur first (and 

therefore maximizes the players’ surplus). 

Step 4) Computing the transaction price: For the traded plant a, the algorithm computes the 

transaction price Pa,t by using the following standard procedure of the single-call auction: 

 Compute the simple average of the seller’s bid price and the buyers’ highest offered price.  

 Pa,t equals the maximum of this simple average and the second highest bid price.  

Finally, note that admissible trades are only those in which the transaction price is positive, as the 

seller would never pay to sell (due to the implicit option of closing-down a plant). Moreover, any 

transaction price Pa,t above the bid of the second highest bid price (and the seller’s offer price) and below 

the buyer’s bid price (the average used here is just one of the possible solutions) will be valid but will not 

change any of the conclusions nor the market trajectory during the game.  

After any successful trade, the algorithm computes a new state of the game, since the portfolios of 

traders, the equilibrium price and the output of the Cournot game have changed. Moreover, even if there 

is no trade, the probabilities associated with the inertia principle still need to be updated. Table 4 

describes the algorithm for updating the state of the game.  

Step 1) The algorithm starts by identifying the new owner of the plant traded (player i sells plant a to 

player j). 

Step 2) Each player updates the capacities and marginal costs iteratively, taking into account the past 

performance of each plant. A player may offer in a given market the generation of every plant with a 
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marginal cost lower than this player’s marginal plant in this market during the previous iterations of the 

algorithm. Please note that the marginal cost of a given player is the highest one among all the plants he 

submits to a given market (Ramos at al., 1998; Borenstein et al. 1999).
4
 

Table 4.  Update State of the Game. 

a: Any given plant that may be auctioned;  

 tia ,, : Plant a is owned by player i;  not a,i,t : Plant a is not owned by player i, at time t 

i, j: player i sells plant a to player j in an auction 

PL,t: Electricity price in market L, at time t; 
t : State of the industry at time t 

Ci,,L: marginal cost of player i in market L  

C(a,i),L: marginal cost of plant a, owned by player i, for market L 

K(a,i): available capacity of asset a, owned by player i 

K(a,i),L: capacity of asset a offered in market L in the previous iteration 

Ki,L: capacity of player i assigned to market L 

w
i
: inertia variable such that  0,1iw  ;  1,0  is the parameter for inertia updating 

GM(a,i), GM(i): Gross Margin of plant a and player i, respectively 

LD : duration of market L; 
 a,i ,L

Q : total generation of plant i sold in market L 

 

Step 1. Update state of the industry t  

     1 \ , ( , )t t a i a j   ; 



 


otherwise

jiz

if

if

w
w

z

t

z

t

,

.

1
1


 

Step 2. Order the markets by ascendant order of peak typical demand 

    Update the cost structure and capacities bid into each auction (start from the lowest L)   

 L, i :  , : 0i LK  , a , ( , ), : 0a i LK   

  Step 2.1 For all available assets a 

   if 
  i ,La ,i ,L

C C  

          iaLiLi KKK ,,, :   , 
 ( , ), ,

:a i L a i
K K ,  LiLi CC ,, :  

           Otherwise  if    not a,i,t ,     CC LiLia 1,,,   

          iaLiLi KKK ,,, :   , 
 ( , ), ,

:a i L a i
K K ,    LiaLi CC ,,, :  

           Otherwise 

         LiLi KK ,, :  , 0:),,( LiaK ,  LiLi CC ,, :  

 

  Step 2.2 Under multi-clearing if ( , ), 0a i LK   then 
 ,

: 0
a i

K   

Step 3. Solve Cournot game 

Step 4. Compute value of plant 

 i,a :     
L

LLiaLiatL DQCPiaGM ),,(),,(,),( ,       
),(

),()(
ia

iaGMiGM . 
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Moreover, a player may offer the generation of a plant in a certain market even when its marginal 

cost is higher than this player’s marginal cost. However, this is only possible if in the previous iteration, 

the player did not own this plant and, additionally, if the marginal cost of this plant is lower than the 

player’s marginal cost in the subsequent markets (assuming that the markets are organized in increasing 

order by the typical peak demand).  

Additionally, in the case of the multi-clearing mechanism (Step 2.2), the capacity of a plant offered 

in a market is not available for the subsequent auctions, and therefore the available capacity is set to zero.  

Step 3) The Cournot game with capacity constraints is solved. The system with the Karush-Kuhn-

Tucker conditions is solved using constraint logic programming by extending Lemke’s algorithm
5
 

(Lemke, 1965). Alternatively the solver MILES, Rutherford (2006), can be used to implement a 

generalized Newton method based on the Lemke algorithm. 

Step 4) After having computed the solution of the Cournot game the Gross Margin is calculated for 

each plant, and the sum of the Gross Margins of a player constitutes the value of his portfolio.  

5. Computational Experiments  

For a large scale application of the above algorithm, we applied it to the full England and Wales 

electricity market, as it was in 2000. This was partly a test of model efficacy in a realistic experimental 

setting. We were not, however, suggesting that the plant trading game is a forecast of how capacity 

trading may actually occur step-by-step, as in practice plants are not traded so frequently. Rather we are 

seeking to understand the attractor states in the evolution of market structure, where plant value is 

determined within a portfolio of assets performing on a spot market. From an evolutionary perspective, 

this study aims to clarify how the market mechanisms interact with regulatory behavior in influencing the 

players’ behavior. 

The generation capacity owned by each player was split into three categories (Table 5), taking into 

account the degree of flexibility, economics and hence load factors of each technology: Nuclear plants 

were the baseload technology running continuously. Large coal and Combined Cycle Gas Turbine 
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(CCGT) were the shoulder technologies. Small Coal, Open Cycle Gas Turbine (OCGT), Oil and Pumped 

storage provided the peaking plants. Thus BE had 54% of the Nuclear generation capacity installed in 

England and Wales (and 4.9% of the shoulder capacity), while AES owned both shoulder (10.1% of 

shoulder capacity) and peak plant (6.8% of peak capacity). These experiments simulated trading at a 

genset level (137 gensets) distributed among 24 different players. This leads to approximately 1.22E+189 

possible states of the industry and 2.27E+51 total number of transitions between states of the industry, at 

every stage of the game. Such complexity makes a computational learning algorithm necessary. 

Table 5.  England and Wales Generating Capacity
6
 in 2000. 

Capacity of each Company (% of Total, 59 GW) in 2000 

 Total Nuclear Large 

Coal+CCGT 

Small Coal +OCGT + 

OIL + Pump. Storage 

PG 16.5  19.7 24.9 

NP 13.9  16.3 22.5 

BE 12.4 54.0 4.9  

Edison 10.6  10.1 30.7 

TXU 9.7  11.6 14.7 

AES 7.8  10.1 6.8 

EDF 4.7 17.3 2.0  

Magnox 3.9 19.9   

Others 20.5 8.8 25.3 0.4 

     

Total GW 59.1 11.4 40.7 7.0 

 

Furthermore, in these experiments the demand functions were parameterized by defining the same 

elasticity, prices, and traded quantities in each one of the two clearing mechanisms, in each of the three 

simulated markets, baseload (bs), shoulder (sh) and peak (pk). In the multi-clearing case, baseload defines 

capital intensive and often inflexible plant that intends to runs for the whole year, and will be mostly 

traded forward if possible. Shoulder plant will often be seasonal in their usage and perhaps cycle within 

the day, running in total perhaps for about 60% of the time, and will be partially traded forward, if 

possible. Peaking plant will be flexible, with low start up costs and only come in for perhaps a few hours 

per day during the peak seasons, and will either be traded as spot or as call options, if possible. Thus, in 
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the multi-clearing case the durations for the baseload, shoulder and peak markets were specified as 8760, 

5500 and 500 hours; these durations in the single-clearing specification were equivalently represented as 

3260, 5000 and 500 hours. All the experiments presented in this section simulate 400 iterations in each 

simulated scenario (and we may have several “runs” of each scenario).  

The computational time of the plant trading game depends crucially on two major components, the 

Cournot game and the adaptation algorithm. Therefore, the smaller the number of players and plants, and 

the closer the initial state is to the evolutionary equilibrium, the faster a run of the experiments will be. In 

the case of the experiments presented in this paper, which were run in an Intel Pentium M with 1.6GHz 

processor and 1.00 GB of RAM, the computation time for the experiments of the non regulated market 

(worst case) was about 20 minutes for one run of the model with 400 iterations. 

In the multi-clearing case we have used the following assignment of plants to markets. Nuclear: 

baseload only. CCGT: all. Big Coal: baseload and shoulder. Small Coal: shoulder and peak. Pumped 

Storage: shoulder and peak. OCGT: shoulder and peak. OIL: shoulder and peak. 

The first experiments, presented in Table 6, analyze the impact of the minimum generation 

requirement (MGR) and market share control (which is defined by the regulatory policy and remains 

fixed in a given scenario), under the multi-clearing mechanism, assuming elasticities of 0.5, 0.35 and 0.25 

for baseload, shoulder and peak, respectively. Moreover, the demand function is defined as a linear 

function and therefore the elasticities change as a function of the quantities effectively generated. 

Following a similar process to the one in Wei and Smeers (1999) we defined the elasticity for the typical 

demand at any given time.
7
 Therefore, for each market the elasticity of demand is defined for the typical 

demand. 

Firstly, Table 6 shows that the existence of a minimum generation requirement reduces prices and 

increases generation (in a multi-clearing mechanism). Further, it shows that the existence of market share 

constraints also decreases prices and the concentration levels. Secondly, from the comparison of 

experiments B and D, in Table 6, it is clear that together with a minimum generation requirement, the 
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introduction of a market share control does not significantly change (in the economic sense) the 

generation and prices in these two experiments.  

Table 6.  Mininum Generation Requirement, Market Share and Performance. 

Experiment Mk Share  Min. Gen. Req. 

(MWh) 

Quantities (MWh) Prices (£/MWh) 

Bs Sh Pk Bs Sh Pk Bs Sh Pk 

A 100 0.0 0.0 0.0 20.7 13.7 3.0 19.1 28.4 119.0 

B 100 24.0 20.0 4.0 24.0 20.0 4.0 15.0 20.0 60.0 

C 10 0.0 0.0 0.0 22.7 16.0 4.1 16.5 19.9 51.7 

D 10 24.0 20.0 4.0 24.0 20.0 4.0 15.0 19.9 60.0 

 

In the second and third set of experiments (in a multi-clearing mechanism), which are presented in 

Table 7 and Table 8, respectively, we analyze how demand elasticity interacts with the minimum 

generation requirement and market share control. 

Table 7. Mininum Generation Requirement, Elasticities and Performance. 

Experiment Min. Gen. 

Req. (MWh) 

Elasticity Quantities 

(MWh) 

Prices (£/MWh) 

Bs Sh Pk Bs Sh Pk Bs Sh Pk Bs Sh Pk 

A 0 0 0 0.1 0.05 0.01 17.5 13.1 3.3 55.8 91.8 1078.6 

B 0 0 0 1.25 1.0 0.75 21.7 13.7 4.8 16.1 22.8 44.5 

C 24 20 4 0.1 0.05 0.01 24.0 20.0 4.0 15.0 20.0 60.0 

D 24 20 4 1.25 1.0 0.75 24.0 20.0 4.9 15.0 20.0 41.8 

 

In Table 7, the comparison of experiments A and C shows that, in the presence of very low elasticity 

in the short-run, the minimum generation requirement significantly decreases prices and increases 

generation. However, the comparison of experiments A-C and B-D shows that the impact of minimum 

generation requirement is less strong in the presence of a higher elasticity of demand.  
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Next, in Table 8 a minimum generation requirement of zero in each market is assumed. The 

comparison of experiments A and C, and B and D, respectively, clearly shows that the existence of 

market share control increases generation and decreases prices. Altogether, in the presence of these 

market interventions, the results in Table 7 and 8 show that the elasticity of demand is a much less 

important factor in determining prices and generation. However, in the absence of regulatory intervention 

the lower the elasticities the higher the prices, as one would expect in a Cournot game. 

 

Table 8.  Market Share, Elasticities and Market Performance. 

Experiment Mk 

Share   

Elasticity Quantities (MWh) Prices (£/MWh) 

 (%) Bs Sh Pk Bs Sh Pk Bs Sh Pk 

A 100 0.1 0.05 0.01 17.5 13.1 3.3 55.8 91.8 1078.6 

B 100 1.2

5 

1.0 0.75 21.7 13.7 4.8 16.1 22.8 44.5 

C 10 0.1 0.05 0.01 21.2 14.5 3.4 32.0 55.9 814.0 

D 10 1.2

5 

1.0 0.75 26.2 17.9 5.2 13.8 17.6 34.9 

 

So far, the results in Tables 6 to 8 only show a static picture of the final state of each experiment. In 

order to provide a better understanding of the adaptive process underlying these experiments, Figure 2 

presents the same experiments A, B, C, and D as in Table 6 and represents the evolution of the 

Herfindahl-Hirschman index during the 400 iterations of each experiment. These experiments represent 

the outcome of one run of the algorithm for the given parameters. This again shows that the existence of 

market-share control has a stronger implication for market concentration than the minimum generation 

requirement. Moreover, the minimum generation requirement only has an impact if the market share 

control is not a constraint.  
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Figure 2.  Herfindahl-Hirschman  Index – multi-clearing mechanism. 

 

It is also interesting to note that the experiments A, B and D converged to a flat line (and experiment 

C is also converging to an evolutionary equilibrium). This is the expected behavior of these experiments. 

This represents a steady state, an equilibrium, as in Definition 4.1, in which the value of any plant in the 

system is higher for its owner than for any of his competitors. These experiments show that the market 

structure can converge towards an evolutionary equilibrium.  

Next, in Table 9, we present a fourth set of experiments in the single-clearing market in which, at 

each time, all the electricity sold receives the same price. These experiments assume an elasticity of 0.5, 

0.35 and 0.25.  

The results in Table 9 are very similar to the ones under the multi-clearing mechanism. Again the 

minimum generation requirement and the presence of market share control imply lower prices and higher 

generation.  
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Table 9.  Single-Clearing, Mininum Generation Requirement, Market Share and Performance. 

Experiment Mk Share  Min. Gen. Req. 

(MWh) 

Quantities  (MWh) Prices  (£/MWh) 

Bs Sh Pk Bs Sh Pk Bs Sh Pk 

A 100    0.0 0.0 0.0 21.2 30.4 33.9 18.5 33.7 114.6 

B 100 24.0 44.0 48.0 24.0 44.0 48.0 15.0 20.0 60.0 

C 10   0.0 0.0 0.0 25.6 40.7 47.9 13.0 18.9 38.7 

D 10 24.0 44.0 48.0 25.3 45.4 52.4 13.3 18.1 38.0 

 

Figure 3 represents the evolution of the Herfindahl-Hirschman index (HHI)
8
 during the 400 iterations 

of each experiment, during the set of experiments (A, B, C, and D) presented in Table 9. Once again, 

these experiments represent the outcome of one run of the algorithm for the given parameters. 

 

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

400 Iterations

H
H

I A

B

C

D

A

B

C

D

 

Figure 3.  Herfindahl-Hirschman Index – single-clearing mechanism. 

 

The main conclusions are similar to the multi-clearing ones. Figure 3 shows that the existence of market-

share control has a stronger impact on market concentration than the minimum generation requirement. It 

is also interesting to note that the experiments A, B converged to a flat line (and experiments C and D are 
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also converging to the evolutionary equilibrium). Again, this is the expected behavior of the structural 

evolution. Moreover, in Figures 2 and 3 the following pattern emerged: 

 In the absence of market interventions the market structure converges to a steady state with 

the highest HHI. 

 The minimum generation requirement imposes a faster convergence towards an evolutionary 

equilibrium. 

 Initial conditions affect the speed of adjustment toward an evolutionary equilibrium. 

 The presence of market share constraints makes it harder for the algorithm to converge to a 

steady state (even though it always converges to a market structure around which the system 

evolves). This is due to the fact that the control for market share is imposed in the auction 

but not in problem (3.1), and therefore every time a firm produces above the allowed market 

share a divestment is ordered (i.e., a sell of a small generation set). 

Hence, in Table 10, we can now compare the average prices and total quantities traded in the multi-

clearing and single-clearing mechanisms using the data presented in Table 6 (multi-clearing) and Table 9 

(single-clearing).  

 

Table 10. Multi-Clearing vs Single-Clearing. 

Experiment  Multi-Clearing Single-Clearing 

Quantity 

(TW/year) 

Average Price 

(£/MWh) 

Quantity 

(TW/year) 

Average Price 

(£/MWh) 

A 
258 22.4 238 35.0 

B 322 16.9 322 21.8 

C 289 17.8 311 18.8 

D 322 16.9 336 18.5 

 

A first conclusion of the analysis of Table 10 is that the average prices in the single-clearing case are 

higher than in the multi-clearing case, independently of the experiment. Second, from the analysis of the 

experiments A (no interventions), in the single-clearing case, the average price is significantly higher than 
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in the multi-clearing case, mainly due to the change in the quantities traded in each market. A third 

conclusion, arising from the comparison of scenarios C and D with A and B, is that the existence of 

market share control has a stronger impact on the prices and quantities of the single-clearing mechanism 

than on the multi-clearing mechanism. This conclusion can also be reached by comparing experiments A 

and B in Figures 2 and 3. Under single-clearing there is a stronger trend toward concentration, showing 

that the minimum generation requirement is non-binding; but with multi-clearing there is no trend 

towards concentration, showing that the minimum generation requirement by itself can prevent the 

evolutionary movement toward concentration.  

These three observations imply that, in non-regulated “mandatory Pool” markets average prices 

could be higher than in non-regulated “continuous bilateral” markets. However, and most importantly, 

they also imply that regulatory interventions may be more effective in pool markets.  

Finally, in Figure 4 we look at all the experiments and consider the sensitivity of these results to the 

inertia principle (the only stochastic variable in the model) and the possible existence of multiple 

equilibria. We repeat experiment A of the multi-clearing and single-clearing mechanisms (in Figures 2 

and 3), and compute the 95% confidence intervals for the average HHI in experiment A, in the single and 

multi clearing mechanisms. 
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  (a) Single-Clearing    (b) Multi-clearing 

Figure 4. Herfindahl-Hirschman Index: Confidence Intervals. 

 

Figures 4.a and 4.b represent the behavior of the HHI in the forty experiments with the single-

clearing and multi-clearing mechanisms, respectively. These results were computed from the simulation 

of 40 independent repetitions of experiment A under single and multi clearing (80 repetitions in total).  
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At iteration 400, in the single-clearing mechanism, the average HHI was 2499 and the 95% 

confidence interval was [2374, 2623]; moreover, in the multi-clearing mechanism, the average HHI was 

1478 and the confidence interval was [1432, 1524]. Hence, the narrow confidence intervals in these 

sensitivity experiments corroborate the results in Figures 2 and 3, showing that the single-clearing 

mechanism, on average, leads to greater concentration levels (these results are statistically significant).  

These sensitivity analyses also give general confidence to the overall pattern of results and 

conclusions. Furthermore, several other more extreme stylized experiments validated this model by 

testing its results under different market structures. For example, when all players behaved as price takers, 

no trading occurred as the players generate the market clearing quantities (which is a stable equilibrium). 

Similarly, in a simulation of the monopoly situation with potential new entrants, there was no entry, and 

the prices were always the ones of the monopoly market structure. In Appendix 1 we discuss the issue of 

capacity trading in the context of a simple stylized oligopoly. 

6. Conclusions 

This paper has presented a large-scale, computationally intensive model for understanding the 

dynamic strategic evolution of electricity generation asset portfolios in response to various market 

interventions, and the consequent longer term effects of such changes on market structure and prices. 

Such insights are elusive to conventional static equilibrium analyses of the effects of market structure on 

market performance. We have compared the traditional structural intervention of market share control 

with the behavioral remedy of generation adequacy.  

Whilst both controls can lead to lower prices, it was interesting to observe that: 

1. The minimum generation requirement imposes a constraint that limits the ability of incumbents to 

use capacity withholding as an instrument to increase the value of their portfolios, and hence, it 

limits the dynamics towards industry concentration by making it less attractive for them to buy 

plant from smaller players. 
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2.  With the existence of a minimum generation requirement, the additional introduction of 

structural (i.e., market share) control does not significantly change (in the economic sense) the 

level of generation and prices.  

3. The elasticity of demand has a comparatively smaller impact on the solution of the game, in the 

presence of other regulatory controls. 

4. Still, even with market share control and minimum generation requirements in place, capacity 

withholding by the pivotal players remains a concern (even though with reduced implications on 

prices and generation). 

Further, we have also compared the effectiveness of market interventions under the two variants of 

market clearing. The results of our experiments suggest that an “interventionist” regulator might prefer a 

mandatory Pool market where quantities and prices are public knowledge and where regulation appears to 

be more effective. However, a more liberal regulatory body, i.e., that wishes all incentives to come from 

the market, might prefer a multi-clearing mechanism, which leads to higher consumer welfare (under the 

non-interventionist scenario.  

Finally, apart from validating the use of a large scale, computationally intensive multi-stage gaming 

model involving a mixture of Cournot market behavior and plant trading to capture the dynamics of 

market structure, a further observation from this work relates to the topic of modeling electricity markets 

using Cournot models. In such specifications, demand elasticity is crucial and is often done in an ad hoc 

way to achieve realistic prices. In the daily market place, demand is actually inelastic, except for 

conditions of extreme scarcity, but because oligopolies of generators in practice have not generally 

chosen to exercise their market power to the fullest extent (e.g., for political or repeated game reasons), 

higher values for elasticities have generally been specified in market models as surrogates for longer term 

considerations.
7
 In contrast, with the kinds of regulatory intervention explicitly represented in this study, 

rather lower, more realistic elasticities can be used to model the behavior of electricity consumers.  

In summary, the contributions of this paper can be positioned in three main directions: 
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 Computational modeling: through the presentation of an innovative evolutionary model to 

simulate the evolution of a market structure in response to market microstructure and 

interventions.  

 Policy and regulation: through the analysis of how structural and behavioral regulatory policies 

could affect not only prices and conduct in the short term, but also longer term strategic 

evolution .  

 Electricity markets design: through providing further model based evidence on the price effects 

of market rule changes, and new insights into their market structure incentives as well. 

In this paper we aimed to explain how market structure, the clearing mechanism and regulatory 

behavior interact in order to shape the evolution of an electricity market. However, we have not argued 

that we are predicting how the industry will evolve in the future, as any model, even a complex one, is 

always a simplification in order to provide conditional insights only on specific features of reality. 

Moreover, even though the main drivers of the system are mostly determined by the market structure and 

rules, the introduction of stochastic shocks in the model may change the evolutionary equilibrium, given 

the apparent path dependency of the results. Hence, whilst we believe that the model and platform 

presented in this paper can be used both by policy makers and companies to better understand the 

evolutionary implications of their actions; more specific questions would require the introduction of 

additional details into the basic model.     

Endnotes 

1. The UK Competition Commission (www.competition-commission.org.uk) indicated in 2004 that 

it would be seeking to implement more “behavioral remedies” than “structural changes” to deal 

with dominance and potential market power abuse.  Initial attempts during the 1990s to reduce 

market concentration by enforced divestiture had clearly not gone far enough, and were difficult 

to achieve in the face of corporate resistance. Nevertheless, wholesale market concentration did 

reduce substantially through further new entry so that by 2003, prices became very competitive. 

2. It should also be noted that because, in the medium and long-terms, there is some demand 

elasticity, then through increasing prices, demand decreases and effectively some capacity is not 

http://www.competition-commission.org.uk/
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called. Thus, the minimum generation requirement would indirectly impose a constraint on price 

rises.  Moreover, these market interventions are such that the market price is always higher than 

marginal cost, for obvious efficiency reasons. 

3. In the general case of the Cournot game with a constraint for minimum output, there can be 

multiple equilibria. A solution is however possible by assuming that the constraint has the same 

shadow price for every player, and this ensures that with symmetrical players, they would have 

the same level of generation. Hobbs and Pang (2007) have also used equal shadow prices for 

maximum sales in order for Lemke’s (1965) algorithm to perform correctly and the same 

assumption has been used in Harker (1991) as well as in Wei and Smeers (1999).  

4. This step represents a simplification of the more general procedure that would be to concatenate 

together the first order conditions for every plant in the system. However, although we adopted 

that approach at first, it did not work well, as Lemke’s (1965) algorithm failed to converge in 

many instances of the problem. This is due to the linear relationship between the dual variables 

associated with maximum capacity constraint of these plants. Even though results could be 

obtained eventually, through the use of a backtracking procedure (that looked for a feasible 

solution when Lemke’s procedure failed), this was extremely time consuming, especially as we 

needed to solve the Cournot model very often whilst simulating market structure evolution. See 

also endnote 5 below. 

5. The solution of the game with the minimum generation constraint can be characterized as a 

generalized Nash game, e.g., Harker (1991) and Oren (1997). It is well known that Lemke’s 

algorithm can fail under certain conditions, see Oliveira (2008) and Hobbs and Pang (2007). 

Hobbs and Pang (2007) show that in the case of joint capacity constraints by assuming the same 

shadow price the Lemke’s algorithm converges to a solution. Further, Oliveira (2007) proposes a 

constraint logic programming extension for Lemke’s algorithm which incorporates an iterative 

procedure to look for a feasible solution when the basic algorithm fails to converge. In the 

approach used in this paper, after modifying the algorithm using constraint logic programming to 

proceed in this way, Lemke’s algorithm worked well. 

6. For sources, refer to the UK Electricity Association (1999, 2000a,b,c)  

7. For example, Wei and Smeers (1999) use 0.4 and 0.53 for residential and industrial clients 

respectively, in simulating the Belgium, France, Germany and Italy markets, whilst Ramos et al. 

(1998) use an elasticity of 0.6 in simulating the Spanish market. 

8. The Herfindahl-Hirschman index (HHI) is a measure of the size of the firms’ market share in 

comparison to the industry as a whole. It is an indicator of market-power. It is calculated as the 
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sum of the squares of the market shares (as a percentage) of each individual firm, ranging from 0, 

if there are infinitely many firms to 10000 for the monopoly. A possible reference, among many 

others, is Rhoades (1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

Appendix 1: Analysis of Cournot Asset Trading 
1
 

In order to explore a basic perspective on the interaction of plant trading and market structure, we 

consider a simple Cournot model where an agent i aims to maximize his profit (
i ), equation (A.1), 

taking into account the demand function, equation (A.2), and the existence of capacity constraints, as in 

equation (A.3), in which Ki represents the available capacity for agent i. 

  iii QCP max          (A.1) 


j

jQaP           (A.2) 

ii KQ 0           (A.3) 

We consider the duopoly with two agents A and B. We analyze three different cases, taking into account 

the number of plants and capacity available for each agent. 

First Case: In this case, with no excess capacity, the loss of the seller due to capacity trading is equal to 

the gain of the buyer, therefore no trade is possible.  

For this example, firm A owns 1000 units of capacity with a total of 100 plants and the marginal cost is 

zero, whereas firm B owns 990 units of capacity with a total of 99 plants and the marginal cost is equal to 

10 monetary units. The inverse demand function is P =100 - 0.02Q. 

Under these conditions the solution for the Cournot model is QA =1000, QB=990 and P=60.2. The profits 

earned by the two firms are ProfitA= 60200 and ProfitB= 49698 monetary units and there is no spare 

capacity. 

If there were a trade of a plant from firm A to Firm B (the plausible direction), the new structure of the 

market would be Firm A owning 990 units of capacity with a total of 99 plants (marginal cost zero) and 

                                                 
1
 Online Appendix 
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firm B owning 1000 units of capacity with a total of 99 plants (marginal cost 10) and one plant with a 

marginal cost equal to zero. The inverse demand function remains the same.  

Under these new conditions the solution for the Cournot model is QA =990, QB=1000 and P=60.2. The 

profits earned by the two firms are ProfitA= 59598 and ProfitB= 50300. In this case there is no spare 

capacity and the profit of agent A decreases by 602 and the profit of player B increases by 602 monetary 

units. Therefore there is no incentive for capacity trading.  

Second Case. In this case, with A having excess capacity, no trade is possible because the loss of the 

seller due to plant trading is higher than the gain of the buyer. 

In this second example, firm A owns 2500 units of capacity with a total of 250 plants and the marginal 

cost is zero, whereas firm B owns 990 units of capacity with a total of 99 plants and the marginal cost is 

equal to 10 monetary units. The inverse demand function is P =100 - 0.02Q. Under these initial conditions 

the solution for the Cournot model is QA =2005, QB=990 and P=40.1. The profits earned by the two firms 

are ProfitA= 80400.5 and ProfitB= 29799 monetary units. Here, firm A has some excess capacity and firm 

B is using its full capacity. Therefore, intuitively it would seem that firm B would profit from buying a 

more efficient plant from firm A, and that a trade would be possible.  

However, after a trade of a plant from firm A to Firm B the new structure of the market is the following. 

Firm A owns 2490 units of capacity with a total of 249 plants (marginal cost zero), whereas firm B owns 

1000 units consisting of 99 plants with marginal cost equal to 10 and one plant with a marginal cost equal 

to zero. The inverse demand function remains the same.  

Under these new conditions the solution for the Cournot model is QA =2000, QB=1000 and P=40.0. The 

profits earned by the two firms are ProfitA= 80000 and ProfitB= 30100. In this case there is no spare 

capacity. The profit of agent A decreases by 400.5 units and the profit of player B increases by 301 units. 

Surprisingly, there is no incentive for capacity trading. In this case capacity trading leads to lower prices 
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and to higher losses for the selling agent. Therefore, there is no trade as the dominant player would prefer 

to withhold capacity. 

Third Case. In this case both players have excess capacity and the lower unit cost agent can profit from 

selling its plant to the other firm with more expensive technology. 

In this third example, firm A owns 2500 units of capacity with a total of 250 plants and the marginal cost 

is zero, whereas firm B owns 2490 units of capacity with a total of 249 plants and the marginal cost is 

equal to 10 monetary units. The inverse demand function is P =100 - 0.02Q. 

Under these initial conditions the solution for the Cournot model is QA =1833.3, QB=1333.3 and P=36.7. 

The profits earned by the two firms are ProfitA= 67282.1 and ProfitB= 35599.1. In this case both firms 

have excess capacity.  

After the trade of a plant from firm A to Firm B the new structure of the market is the following. Firm A 

owns 2490 units of capacity with a total of 249 plants and the marginal cost is zero, whereas firm B owns 

2500 units of capacity with a total of 249 plants, with marginal cost equal to 10, and one plant with a 

marginal cost equal to zero. The inverse demand function remains the same.  

Under these new conditions the solution for the Cournot model is QA =1833.3, QB=1333.3 and P=36.7. 

The profits earned by the two firms are ProfitA= 67282.1 and ProfitB= 35699.1; i.e., the profit of agent A 

is the same and the profit of player B increased by 100 units. In this case, the intuition holds: the player 

with the expensive technologies buys the cheaper plant that replaces its more expensive plant at the 

margin. However this Cournot equilibrium is not sustainable. The continuous trade of plants would lead 

to a market structure in which firm A owns 1833.3 units of capacity and firm B owns 3156.6 units of 

capacity. The total production in equilibrium would not change, as it remains QA=1833.3 and QB= 1333.3, 

but we observe that not only is the market structure suggested by the static Cournot model not sustainable 
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in the long run but also, in the end, it is the larger player, eventually, B, that withholds capacity, and that 

is the one holding the inefficient plants.  

These simple examples raise several questions on the sustainability of a given market structure, on the 

direction of plant trade and evolution of the market structure, and on the way to compute the value of a 

plant (as player A in case two refuses to sell any of the plant that he is actually not using). Clearly, the 

mutual trading incentives are dependent upon the market structure and excess capacity, and this suggests 

that more detailed market specific, evolutionary modeling is needed, especially for a particular market 

such as electricity, which is typically an oligopoly with substantial technological cost disparities and 

moderate, time-varying, excess capacity. 

Next, we use a very simplified version of the computational learning model to explore the evolution 

of asset trading and its relationship with the value of firms. We again model a simple market 

characterized by a inverse demand function 



N

i

iQP
1

003.090 , in which N is the total number of 

players. Each firm behaves as a Cournot player. There is no regulation. There is only one type of plant 

with a marginal cost equal to zero and a production capacity of 1000. There are 30 plants (so the total 

capacity is 30,000) and five players in the industry. We model two different experiments for market 

structure, as presented in Table 11.  

Table 11.  Market Structure. 

Player Experiment 1 Experiment 2

A 6 2

B 6 4

C 6 6

D 6 8

E 6 10

Number of plants Owned
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In Experiment 1 all the firms are equal and owned the same quantity of capacity. In Experiment 2 the 

firms have very different installed capacity, with firm E being the biggest. These are two extreme 

scenarios for asset ownership. We simulate plant trading between the firms in the industry, using the 

model in section 4. The results are presented in Figures 5 and 6. 

 

 
 

 

 

 

--- Insert Figure 6 about here --- 
 

 

 

 

 

 

       (a)      (b) 

Figure 5. Evolution of Capacity Ownership per Player. (a) Experiment 1, (b) Experiment 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (a)      (b) 

Figure 6.  Evolution of Capacity Ownership and Income for the Dominant Player. (a) Experiment 1, 

(b) Experiment 2. 
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Figure 5 shows that in both experiments the market structure converged towards a monopoly. Figure 

6 shows that the income of the dominant player in both cases increases by almost 700% from the initial 

market structure to the monopoly market structure. Moreover, as under a Cournot oligopoly the sum of 

the players’ incomes is always less than the monopolist’s income, it follows that possible for a firm to buy 

out its rivals paying them more than their current value and still retaining some extra-value resulting from 

its future dominant position. Therefore, these results are similar to Farrel and Shapiro’s (1990) with plant 

trading leads to higher prices. However, there are situations in which the profits of the buying firm may 

not increase after buying an asset. In Figure 6 we have signaled four different situations in which plant 

trading failed to change income. Since we have not incorporated the purchase price of the assets in these 

figures, in such situations, buying a new asset could temporarily decrease the value of the firm. This 

example shows that a mere static analysis of a Cournot model is not sufficient to get a full perspective 

over the impacts of asset trading and a model in which market structure is endogenous can provide a 

better insight into the dynamics of asset trading.  

 

Appendix 2: Proofs 
2
 

Lemma 3.1: If LM

j

Lj QQ ,

*

,   then the solution 
M

LjQ ,  of the constrained Cournot game (3.1) 

satisfies LM

j

M

Lj QQ ,,  .  

Proof: First, by definition of minimum generation requirement  
j

LM

M

Lj QQ ,,  and therefore any 

solution such that  
j

LM

M

Lj QQ ,,  is not possible. Second, we need to prove that  
j

LM

M

Lj QQ ,,  is not a 

solution. For any player i not generating at its full capacity  *

,,, Li

M

LiLi QQK   we have the following 

optimization conditions 02 ,

*

,

*

,  


LiLiL

ij

LjLL CQQA   and 
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02 ,,,  


 Li

M

LiL

ij

M

LjLL CQQA , where 0 . Hence, as 0  and by the complementarity 

condition of the minimum generation requirement it follows that 0,, 














j

LM

M

Lj QQ , and thus 

 
j

LM

M

Lj QQ ,,
, contradicting  

j

LM

M

Lj QQ ,,
. If all the players are generating at full capacity when the 

minimum generation requirement is imposed, i.e., if LjLj KQ ,

*

,  , then, as  
j j

LjLj KQ ,

*

,
 and 

 
j

LMLj QQ ,

*

,  it follows that  
j

LMLj QK ,, . As by definition of generation capacity 

 
j

LMLj QK ,,  if all the players, at the optimum solution, are generating on full capacity, the minimum 

generation requirement can only be such that Lj

M

Lj KQ ,,   and  
j

LM

M

Lj QQ ,, , as it represents the 

maximum capacity available. Q.E.D. 

 

Lemma 3.2: In the electricity market games described by problem (2.1) such that in equilibrium 

LM

j

M

Lj QQ ,,  , the higher the minimum generation requirement the lower the prices. 

Proof For any market L the market price is 
i

LiLLL QAP , . Let QM,L stand for the minimum 

generation requirement for market L, and 
i

LiQ*

,  represent the total generation for market L in the 

unconstrained solution. Further let 
'

,LMQ  and 
''

,LMQ  represent two minimum generation requirements such 

that 
i

LiLMLM QQQ *

,

'

,

''

, . By definition of price, and Lemma 3.1 it follows that 
i

LiLLL QAP '

,

'   

and 
i

LiLLL QAP ''

,

''  , and hence 
'''

LL PP  . Q.E.D. 
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Theorem 3.1: In any electricity market with an inelastic demand, every minimum generation 

requirement such that 
LM

j

M

Lj QQ ,,  : a) reduces the value of each portfolio selling in the industry; b) 

reduces the value of the industry as a whole. 

Proof1: Let 
i

LiQ*

,  represent the total generation for market L, and let LMQ ,  represent the 

minimum generation requirement. a) We need to look at three scenarios. In the first scenario, every player 

j keeps the same generation 
*

,, Lj

M

Lj QQ   and player i generates
M

LiQ , , such that 
*

,, Li

M

Li QQ  . As by 

definition of optimality    *

,, Li

M

Li QQ    the value of player i´s portfolio decreases. In the second 

scenario player i maintains his generation, i.e., 
*

,, Li

M

Li QQ  , and at least one of his competitors j increases 

generation, i.e., 
*

,, Lj

M

Lj QQ  . In such a case the value of player i´s portfolio decreases as by definition of 

market price, i.e., 
i

LiLLL QAP , , i sells the same quantity at a lower price. Finally, in a third 

scenario both i and some of his competitors increase their generation. From scenario one, it is known that 





























 ij

LjLi

ij

Lj

M

Li QQQQ *

,

*

,

*

,, ||  . Further, from scenario two, and as 



ij

M

Lj

ij

Lj QQ ,

*

,  then 





























 ij

Lj

M

Li

ij

M

Lj

M

Li QQQQ *

,,,, ||  , this relationship implies that 





























 ij

LjLi

ij

M

Lj

M

Li QQQQ *

,

*

,,, ||  . This implies that the value of player i’s portfolio decreased with 

the introduction of the minimum generation requirement. b) As 
i

LiLM QQ *

,, , and since in equilibrium 

the total generation equals LMQ ,  (from Lemma 3.1), the market price for any market L, 


i

LiLLL QAP , , decreases. As the demand is inelastic, this leads to a loss of revenue, which 

together with increased costs, imply lower profits.  Q.E.D. 
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Theorem 3.2: Every minimum generation requirement such that LM

j

M

Lj QQ ,,   limits capacity 

withholding and the dynamics toward concentration. 

Proof: Let LiQ ,  and LiQ ,  represent, respectively, the total generation of player i and of the “rest of 

the industry” for market L. Further, let LijQ ),,(  and LijQ ),,(  represent, respectively, the total output of 

plant j, and of the “rest of the plants owned by player i” to market L. Moreover, let C(j,i),L and C(-j,i),L stand, 

respectively, for the marginal cost of plant j and of the “rest of player i’s plants” (i.e., player i’s marginal 

plant at market L, after removing plant j) selling in market L. Finally, let K(j,i),L represent the capacity 

available of plant j for market L. 

At any given time, the gross margin of a given player i is a function of market price and of the output 

of each one of his plants, i.e.,  

             
L L

LijLijLijLijLijLLijLLiLL CCQQQQQAiGM ),,(,,),,(,,,,),,(, . . 

Therefore,  

       
L

Lij

L

LijLijLLijLLiLL CQQQQAijGMiGM ),,(),,(,,),,(, .),(  . 

Thus, the value of a plant j for the player i is not only a function of its output Q(j,i),L, but also of the 

capacity withheld, (K(j,i),L- Q(j,i),L), as by withholding capacity the player increases the value of the other 

plants by increasing the price received by those plants, this conclusion follows from the term 

  LijLLijLLiLL QQQA ,,),,(,    .  

Therefore, a player buys a plant j only if Q(-j,buyer),L > Q(-j,seller),L since it is more profitable for the 

buyer to withhold capacity and therefore increase the price received by the generation of his larger 

portfolio. However, if the market is generating at the minimum generation requirement level no extra 

capacity withholding is possible. Hence, the value of the rest of the buyer’s portfolio remains unchanged, 

as the price LijLLijLLiLL QQQA ),,(),,(,     is the same, and the quantities do not change. Thus, the 

buyer does not have extra-profit to pay for the plant, and therefore trade cannot happen. Conclusion, the 
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existence of minimum generation requirements limits capacity withholding and the dynamics toward 

concentration.    Q.E.D. 

Theorem 4.1: Every state of the industry is an evolutionary equilibrium if for every possible 

transaction of plant j owned by a potential seller S, and for any buyer B, the optimal generation change 

L
BjQ

,),(  is such that          j,BGMj,SGMQQ.Q.α ,Lj,B,Lj,S
L

,Lj,BL   







 . 

Proof: At any given time, the gross margin of a given player i is a function of market price and of the 

output of each one of his plants, i.e.,  

             
L L

LijLijLijLijLijLLijLLiLL CCQQQQQAiGM ),,(,,),,(,,,,),,(, . therefor

e,  

        

   

 









L

Lij

L

LijLijLLijLLiLL

L L

LijLijLijLLijLLiLL

CQQQQA

CQQQQAiGM

),,(),,(,,),,(,

,,,,,,),,(,

.

.





.  

And equivalently,  

       
L

Lij

L

LijLijLLijLLiLL CQQQQAijGMiGM ),,(),,(,,),,(, .),(  . 

So we can write a gross margin for the seller (S) and another one for the buyer (B), in order to 

analyze how they evaluate a plant j: 

       
L

LSj

L

LSjLSjLLSjLLSLL CQQQQASjGMSGM ),,(),,(,,),,(, .),(   

       
L

LBj

L

LBjLBjLLBjLLBLL CQQQQABjGMBGM ),,(),,(,,),,(, .),(  . 

From these profit equations it follows that a player cannot extracts value from a given plant if it does 

not change its generation output: if the generation level of a plant bought does not change the buyer’s 

profits in the rest of his portfolio will not change and therefore the transaction is not profitable. Moreover, 

a player cannot extract extra value from a plant by increasing its generation as bigger buyers will lose 

more from price reductions, and smaller buyers are not able to generate extra-profit to compensate the 
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seller from the effects of lower prices (if this strategy was profitable the seller would implement it 

himself).  Therefore, the only possible strategy to extract extra value from a plant is to decrease its 

generation, i.e.,      0,,,,),,(  
L

LSjLBj

L

LBj QQQ .  

Thus, as 0),,( 
L

LBjQ  we have no transaction, and therefore an evolutionary equilibrium, if and 

only if the gross margin forfeit by the seller of asset S is higher than the extra total profit gain by the 

buyer:               
L

,Lj,B,Lj,BL
L

,Lj,S,Lj,BL .QQ.αj,BGM.QQ.αj,SGM . Hence, by simple 

manipulation of this formula we see that there is no trade if the increase in value of the rest of the seller 

and buyer’s portfolio is not higher than the loss in value for asset j: 

         j,BGMj,SGMQQ.Q.α ,Lj,B,Lj,S
L

,Lj,BL   







 .      Q.E.D. 
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