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Abstract 

In this paper we look at the problem of strategic decision making. We start by presenting a new 

formalisation of strategic options as finite automata. Then, we show that these finite automata 

can be used to develop complex models of interacting options, such as option combinations and 

product options. Finally, we analyse real option games, presenting an algorithm to generate 

option games (based on automata).  
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1. Introduction 

The theory of investment is, in its majority, a one decision-maker problem, however, a new 

method of modelling strategic options has started to be accepted, the real options approach. In 

this line of research, Luerhrman (1998) presented the concept of strategy as a bundle of real 

options and McGarth (1999) argued that the entrepreneurial activity can be characterised as real 

options in which companies are bundles of real options. More recently the use of real options in 

a game setting has proved invaluable to model strategic decision making, e.g., Smit and 

Trigeorgis (2004). In this paper, we develop a new method to formalize the strategy problem 

that enables a formal treatment of complex, non-stationary interactions between different 

decision-makers.  

One of the contributions of our research is the formalisation of the strategic planning problem 

incorporating bounded rationality, and behavioural issues, in strategic games (Section 4). This 

allows the evaluation of strategies taking into account the long-term effects of the opponents’ 

behaviour.  

What is the advantage of formalising the strategy problem using finite automata?  

The traditional way to solve the game, i.e. to calculate how each player will play (Smit and 

Ankum, 1993), is to construct the decision tree and by backward induction compute the set of 

equilibrium strategies. Note that a decision tree is just a special case of a finite automaton in 

which there are no loops (it is a direct acyclic graph). In this case each player is assumed to be 

perfectly rational (there is no need for a player to build a model of his opponent’s behaviour) 

and the decisions are sequential. Within this traditional game theoretical approach the agents are 

given too much information: they know how the nature behaves and they also know the 

outcome of each pair of decisions (one from each player). This is an extremely strong 

assumption on the players’ rationality – they can compute the output of the interactions between 

both players’ decisions along the tree. Another assumption underlying the traditional approach 

is that the players always choose rationally, each one always maximises his payoff.  
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The finite automata, on the other hand, are much less restrictive on the rationality assumptions 

underlying human and organisational behaviour: a certain automaton is a rule (more or less 

complex) of behaviour that does not assume any optimal reasoning or knowledge about the 

other player’s behaviour. 

The main contribution of this paper is to develop algorithms to design complex real options 

(Section 5) such as product options and option combinations, and to design real-option games 

(Section 6).  These algorithms incorporate bounded rationality by modelling a firm as an entity 

resulting from the interactions between the rules of behaviour underlying the different decisions 

and projects considered by the firm. In Section 5 we show how to arrange several options and 

the Net Present Value rule into the bundle of options that describes a company. We prove the 

existence of such bundle of options and present an algorithm for their development, illustrating 

this algorithm with an example. In Section 6 we present an algorithm for the development of 

real option games, analysing an illustrative example and proving the existence of equilibrium in 

this game.   

The paper proceeds by analysing the real options approach, and the way it has been used to 

study strategic decision making (in Sections 2 and 3), and then we proceed by presenting how to 

model strategic decisions using finite automata (in Section 4). In Section 5 we analyse real 

option design from simple options, and in Section 6 we show how to use automata theory to 

develop real option games. Section 7 concludes the paper. 

2. The Real Options Approach to Strategic Decision Making 

The traditional way of evaluating investment projects, the discounted cash flows (DCFs), 

studies each project taking only into account the individual cash flows (only if the net present 

value of the expected cash flows is positive the project should be undertaken). MacDonald and 

Siegle (1986) in analysing the optimal time of investment in an irreversible project have shown 

that the correct calculation of the timing to invest in a project results from the comparison of the 

value of investing today with the value of investing at all possible times in the future, and they 
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derived the formulas to calculate the value of the option to invest, and to calculate the optimal 

time to invest.  

Furthermore, Pindyck (1991) identified two main problems in the DCFs approach: firstly, the 

existence of sunk costs that cannot be recovered; secondly, the possibility of delaying an 

investment that gives the firm an opportunity to wait for new information before taking the final 

decision of commit to the project. For these reasons, Pinyck defended that the presence of 

uncertainty, irreversibility, and of a delay option, makes the DCFs method inadequate to 

evaluate a new project.  

Dixit (1992) also argued against the DCFs theory of investment, since in reality firms invest in 

projects with a return rate three to four times the cost of capital. Firms only invest if the price 

rises well above the long run average cost (on the other hand firms with operating losses stay in 

business for a long time): i.e., the option of waiting has a positive value. Dixit (applying the 

option price theory to evaluate investment projects) concludes that the value of waiting may 

significantly increase the rate of return demanded in an investment, and concludes that the real 

options theory explains why the rates of return demanded by companies are much higher than it 

would be predicted by the DCFs approach.  

Overall, following Trigeorgis (1998, pp. 2), the literature has developed the following main 

types of real options: option to defer, management holds an option to buy valuable land or 

resources; time-to-build option, the investment is divided into different stages creating the 

option to abandon the project if the new information is unfavourable to future developments; 

option to alter the operating scale, the options to expand, contract, shut down or restart; option 

to abandon, if the market conditions get worse than expected management has the option to 

abandon definitely the project, receiving the resale value of the assets owned; option to switch, 

in which the agent has the option to change the input (or output) mix if the prices or demand 

change; growth options, in this case an early investment may be seen as the start of a chain of 

interrelated projects given access to future growth opportunities; multiple interacting options. 
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Investment projects usually present some of the types of options presented above interacting 

between them. 

Some more recent research on real-options reflects the need to adapt the basic theoretical 

framework to solve real problems. For example: 

- Cortazar, Schwartz and Salinas (1998) presented an application of real-options to the 

valuation of environmental investments. Their analysis showed that firms, in industries 

with high output price volatility, would be more willing to operate at low output levels 

(reducing the emissions) than to invest in environmental protection technologies.  

- Bollen (1999) developed an option valuation framework that explicitly incorporates a 

product life cycle (using a regime switching process) assuming a monopolist firm.  

- Huchzermeier and Loch (2001) applied real-options theory to evaluate flexibility in 

R&D projects. They identify five types of R&D uncertainty (market payoffs, project 

budgets, product performance, market requirements and project schedules). They have 

shown that operational uncertainty (in product performance, market requirements and 

schedule adherence) may reduce the real option value. 

- Valuation (e.g., Thompson et al., 2004) and optimal operation (e.g., Tseng, and Barz, 

2002) of electricity plants. 

- Analysis of leasing problems (e.g., Kenyon and Tompaidis, 2001). 

- Study of operational risk management in the mining industry (e.g., Kardia and Ernst, 

2001).    

Kulatilaka and Perotti (1998) formulated a very important critique to the real options approach: 

it assumes that the product market is perfectly competitive, and that the firm has a monopoly 

over the investment opportunity (for an exhaustive critique of real-options see Lander and 

Pinches, 1998).  
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The Kulatilaka and Perotti’s critique is a very important one because in order to model strategic 

options we need to take into account the interactions between the different decision makers. 

This issue has been approached in several important papers, such as: 

- Smit and Ankum (1993) modelled corporate investment in a duopolistic industry 

showing that under competition there is a lower tendency to postpone projects. They 

have also shown that under a duopoly the timing strategy of the incumbent is coupled 

with the tactics of its rival. Smit and Ankum assume that both firms have the same 

tactics and are perfectly rational (assuming also complete information).  

- Grenadier (1996) also modelled the interaction between players in a duopoly (in the real 

estate industry) showing, under the assumption of perfect rationality, that it may be an 

optimal strategy to have periods of overbuilding with declining demand.  

- Kulatilaka and Perotti (1998) modelled the interaction between the two companies as a 

one shot first-entry game (a model of strategic growth options in a duopoly) strongly 

emphasizing the value of the initial investment as the acquisition of opportunities 

relative to competitors. They show that under imperfect competition the effect of 

uncertainty on the value of a growth option is ambiguous, since oligopolistic firms react 

to better market conditions increasing both quantities and prices.  

Next, in section 3 we present the theory of finite automata, before applying it to modelling real 

options.  

3. Finite Automata Games 

In this paper we develop the use of strategic options in games. A first development of the theory 

is to consider the existence of companies boundedly rational: given the limits of computation 

and access to information each firm does not know the behaviour of his opponents and has to 

define rules of behaviour that allows the firm to adapt to his opponents choices and possible 

developments of the game.  
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Rubinstein (1986) used finite automata as a method to model bounded rationality. The repeated 

game modelled with finite automata attempts to capture the bounded rationality of the players 

involved in the game, analysing automata with a bounded number of states.  

A finite automaton is a decision rule, or a strategy, consisting of a finite set of states, a transition 

function (which defines the rules of transition between states) and a behavioral function 

(defining how the player behaves in each state of the automaton), see Rubinstein (1986) and  

Hopcroft and Ullman (1979).  

In automata games we can also compute the equilibrium. This issue has been addressed within 

game theory in several different ways, one of which is the automata game (Rubinstein, 1986). 

This line of research has analyzed the complexity of computing the best response automaton 

(Gilboa, 1988; Banks and Sundaram, 1990; Piccione, 1992) and the issue of the equilibrium and 

coordination in automata games (Abreu and Rubinstein, 1988; Gilboa and Zemel, 1989; 

Newman, 1998; Eliaz, 2003; Gossner and Hernandez, 2003). 

In this section, we start by formalizing an N-player automata game (Definition 3.1), which 

defines the structure that regulates how players interact. We then formalize the definition of 

automaton. 

Definition 3.1: An automata game is a 5-tuple { } { } { } { }i

1 1 1
N, Z , , ,

N N NN
i i i

i i i i
G u Q

= = =

⎛ ⎞= Σ⎜ ⎟
⎝ ⎠1=

 in 

which N denotes the number of players. iΣ  is a non-empty set of possible actions of player i. Zi 

represents a finite non-empty set of possible outcomes of the game  in which each  is 

dependent on the actions of each player, 

i iz Z∈

( )Ni aaaz ,...,,...,1 i ia ∈Σi =z , and  represents the 

player i’s actions and for all ij ≠  the action  represents his opponents’ actions. jja ∑∈

( )iiu u z=  represents the utility function of player i, i.e., it is the payoff a player i receives from 

his action.  stands for a finite non-empty set of internal states of player i. iQ
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From Definition 3.1, it follows that the outcomes of the game represent the information received 

by each player at the end of every stage. This information, or outcome, is a function of the 

actions of each player in the stage game, and it is different for each one of the players, as each 

one only knows the outcome of his own actions. The behavior of each player in any one of his 

internal states is defined by the automaton presented in Definition 3.2.  

Definition 3.2: A finite automaton ( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  is a 6-tuple in which  is the 

initial internal state, 

0
iq

iΣ  is the set of all the possible actions, iZ  represents the set of possible 

outcomes, iδ  is a transition function ( ):i i i iQ Z Qδ × →  and iλ  is a behavioral function 

 associating one action with each possible internal state. ( :i i iQλ )→ Σ

The interaction between the different automata involved in the game can be described as 

follows. At stage 1 each player i plays ( )0
i iqλ . At a stage t , after receiving an outcome 1≥

( )Nii aaaZz ,...,,...,1=

( ),i i i
t tq zδ

, the state of automaton Ai changes from the state  to the state 

. Then, each player i chooses a new move, 

i
tq

( )1
i i

tqλ + .  

The repeated game with finite automata tries to capture the bounded rationality of the players 

involved in the game by considering automata with a bounded number of states. Papadimitriou 

(1992) argued that the limitations on the number of states do not capture the bounded 

rationality: bounded rationality is a restriction on the capabilities of the agent to design a 

strategy, while the bound on the number of states only captures a limitation on the 

implementation of a strategy. This gives rise to two different types of complexity: a design 

complexity and an implementation complexity. There is a trade-off between the two types of 

complexity.  

Abreu and Rubinstein (1988) suggested that one possible application of the finite automata 

models is to modelling the organization of bureaucracies in which the managers seek simple 
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rules that can be implemented mechanically by each employee. The automaton is viewed as the 

set of managerial instructions.  

Next, in Section 4, we show how real options can be modelled as automata.  

4. Modelling Real Options with Finite Automata 

In this section, we show how finite automata can be used to model real options. Although 

apparently trivial, the model of real options as finite automata shows that this theory can be 

extended and replicated using finite automata.  

In our figures we use the symbols presented in Figure 4.1. 

 

 

 

 

Figure 4.1: Symbols used to draw automata 

Definition 4.1: An automaton’s state is said transient if it contains at least one transition to any 

other state. 

Definition 4.2: An automaton’s state is said absorbing if it contains no transition to any other 

state.  

Let us start by analysing nature. As in current options literature we define nature has a random 

sequence of events, and most specifically, by following Dixit and Pindyck (1994, p. 68), as a 

geometric Brownian motion, represented in Figure 4.2 and Definition 4.3. This is just an 

example of a possible finite automaton that replicates stochastic moves. Different stochastic 

automata may be a better choice for different types of problems. 

<Vf/ 
U>

<C/U> 

www eee

Transient state

Absorbing state

Transition from a state to another or marks the initial state
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Definition 4.3: The geometric Brownian motion can be represented as a finite automaton 

( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  such that: { }du
i SSSQ ,.,0= ; ;  is the set 

of all the possible action, in this case represented by the probabilities of moving up (p) or down 

(1-p ) and  represents the set of possible outcomes from moving up or down, in 

which 

00 Sqi = { ppi −=Σ 1, }

{ }duZ i ,=

u
d 1
=  and u>1. Further,  and ( ) uSu =,1t

i S −δ ( )t Sd =− ,1 d
i Sδ

1−

 represent the transition 

function, such that  and 1−tuS=uS = tdS iλdS . Finally, . iΣ∈

 

p 

 

1-p 
 

1-p  
1-p

p

30

Sd 

Su  

 S0

  

 

 
p

 

 

Figure 4.2: Nature's automaton for the Geometric Brownian Motion   

Next, we formalise as an automaton the decision rule of investment based on the Net Present 

Value of a series of discounted cash flows. This traditional investment strategy postulates that 

an investor, when planning his investments, would evaluate his cash flows and, if they were 

non-negative, he would invest (I), otherwise he would abandon the project (NI). This decision 

rule can be modelled using the automaton in Figure. 4.3. We formalize this concept in 

Definition 4.4. 

Definition 4.4: The NPV rule is a finite automaton ( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  such that: 

; ;  is the set of all the possible actions and 

 represents the set of possible outcomes. Further, 

{ }NIIQi ,,0=

0≥= NPVZ i

00 =
iq

0<NPV

{ NIIi ,=Σ

}

}

{ ,
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( ) INPVi =≥ 0,0δ , , ( ) NINPVi =< 0,0δ ( ) IIi =,.δ  and ( ) NINIi =,.δ  represent the 

transition function. Finally, iλ  is a behavioral function such that for any state in Dj∈Qi 

( ) { }NIID j
i ,∈λ . 

     0≥NPV

 

0<NPV  

0

I

NI

 

Figure 4.3: The Automaton Describing the NPV Rule 

We now formulate real options as finite automata. The first option to be represented as an 

automaton is the option to defer. A very first approach to model this option is to look at the 

basic decision, which is based on the comparison of the net present value (NPV) at a time t with 

the NPV of the same investment at a time t+k, in which k represents a future time. If the present 

value of the investment started at t+k is higher than the present value of the investment started 

today the investment is delayed one period. At the period t+1 a new evaluation of the NPV will 

take place. This automaton is represented in Figure 4.4 and formalised in Definition 4.5. 

00

I
tkt NPVNPV ≤+  

1

tkt NPVNPV >+  

Figure 4.4: Automaton Describing the Option to Defer 
 

Definition 4.5: The option to Defer an investment is a finite automaton 

( )ii λδ ,iiiii ZqQA ,,,, 0 Σ=  such that: { }I,0 0 =
iqQi = { }NIIi ,=Σ  is the set of all the ; ; 0
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possible actions and  represents the set of possible 

outcomes. Furthermore, the following rules represent the transition function: 

,  and 

{ }tkttkt
i NPVNPVNPVNPVZ ≤>= ++ ,

( ) It = ( ) NINPVNPV tkt
i =>+,0δNPVNPV kt

i ≤+,0δ ( ) IIi =,.δ . Finally, iλ  is a 

behavioral function such that for any state in Dj∈Qi we have ( ) { }NIID j ,∈iλ

0
0
0

),,
),,
),,

00

<⇐
=⇐
>⇐

ΔΔ
ΔΔ
ΔΔ

−−

++

E
E
E

PLK
PLK
PLK

. 

Moreover, the option to abandon has the same structure of the option to defer. The only 

difference are the instruments, instead of an irreversible investment the company has the 

possibility of irreversibly abandon (A) the project, see Figure 4.5. 

 

 

 
 
 
Figure 4.5: Automaton for the Option to Abandon 

 
Another important real option is the option to alter the operating scale, assuming that the 

investment is reversible, that the firm is already operating, and that to abandon is not an option. 

The firm needs to decide if it should increase or decrease its operation scale, given its 

expectation for the business evolution.   

As an example, let us analyse the option of a firm F producing a product P with an equipment K 

and labour L, with starting conditions are P0, K0 and L0. The firm has to decide if it wants to 

increase or decrease its operations scale given its expectations E, regarding the evolution of the 

market, see equation 4.1. 

( scale Decrease
( scaleConstant 
( scale Increase

0

⎪
⎩

⎪
⎨

⎧

Δ
Δ
Δ

−

+

     (4.1) 

000 

A

1

<t 0NPV  

0≥tNPV  
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Let 0, Inc, and Dcr represent, respectively, Do Nothing, Increase scale, and Decrease scale. The 

automaton for alter the operation scale can be represented as shown in Figure 4.6. 

E > 0
 

E < 0
E = 0

E = 0

E < 0 

E > 0 

E = 0 

0 

Inc

Dcr

E > 0 

 

 

 
 
 
 
 

E < 0 
 

Figure 4.6: Automaton for the option to Alter Scale 

In this automaton there is no absorbing state: the process of rescaling will be continuously 

reshaping the company in reply to management expectations. There is no definition of the final 

scale of the firm only the rates of change are fixed. Definition 4.6 formalises the option to alter 

scale. It is noteworthy that Definition 4.6 covers a number of possible actions, expectations and 

internal structures of the automaton which are much more complex than the ones presented in 

Figure 4.6. 

Definition 4.6: The option to Alter the Scale of a project is a finite automaton 

( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  such that: { }n
i DDDQ ,...,, 21= ; ; 

 is the set of all the possible actions for changing the scale of the firm, and 

in which  represents the set of all possible expectations regarding the 

evolution of the business size. Further, for any j, r and s, 

10 Dqi =

{ }m
i ΣΣΣ=Σ ,...,, 21

{i EEEZ ,...,, 21= }k

( ) srj
i DD =Σ,δ ,  represents the 

transition function. Finally, and iλ  is a behavioral function such that for any state Dj: 

( ) { }mj
i D ΣΣΣ∈ ,...,, 21λ . 
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Firms also have the option to switch, i.e., to change the mixed of resources used maintaining the 

same scale of production. As an example, consider a firm F using the resources labour (L) and 

capital (K). The decision variable is the ratio capital on labour ⎟
⎠
⎞

⎜
⎝
⎛

L
K

 and it is a function of the 

ratio of the price of capital (Kp) on the price of labour (Lp), i.e., ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

p

p

L
K

.  

In this case, assume that the firm has to decide which technologic combination to adopt of a 

finite vector of available technologies, {T1,…, TT}. The value of the technologies and conversion 

costs (from one technology to another) will change depending on nature’s moves. The agent 

will have some expectations on the technologies value Switching 

, in which Eii=0 and Eij represents the expect profit 

from switching from technology i to technology j.  

{ TTT2T122211211 E,...,E,E,,E,E,...,E,E … }

We represent a simple example of the finite automaton for the option to Switch agent’s 

behaviour in Figure 4.7. Once again, a simple finite automaton is used to model a situation with 

no absorption state. In this case we assume three technologic combinations T1, T2, and T3, 

moreover, in a given state Ti the firm is modifying its internal structure in order to implement 

the technology Ti. 

T1 

T2

T3
S 

E23 

E33 E11 E13 

E31 

E21 

E12 

E22 

 

E32 
 

 

 

Figure 4.7: Automaton for the Option to Switch 

Definition 4.7 represents this automaton using a more formal approach. 
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Definition 4.7: Let the vector {T1,…, TT} represent the different combination of technologies 

and Ekj represents the expect profit from switching from technology k to technology j. The 

option to Switch is a finite automaton ( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  such that 

; ; { T
i TTTQ ,...,, 21= } 10 Tqi = { }T

i TTT ,...,, 21=Σ  is the set of all the possible actions for 

implementing a given technological combination, and in which  

represents the set of all possible expectations regarding value of switching technologies. 

Further, for any j, r and s, 

{ }TTEE ,...,12
i EZ ,11=

( ) rjrj TET =,iδ , represents the transition function. Finally, iλ  is a 

behavioral function such that for any state Tj: ( ) { }TTTT ,...,, 21∈j
i Tλ . 

Next, we extend this methodology to the design of complex real options.  

5. Designing Real Options 

It is possible for an agent to develop an automaton that results from the combination of the basic 

automata presented in Section 4, such as the NPV rule (Definition 4.4), the option to defer 

(Definition 4.5) and option to abandon (Figure 4.5), the option to alter the scale (Definition 4.6), 

the option to switch (Definition 4.7). As these are rules of behavior they model bounded rational 

behavior, as they do not need to be the result of full optimization and, most likely, are the result 

of the firm’s culture which evolved over time. The combination of automata is formalized in 

Definition 5.1. 

Definition 5.1: Let { }i
N

ii AA ,...,1=Λ  represent the set of N basic automata available to player 

i. An option combination is a finite automaton ( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  such that each 

element of this 6-tuple results from the agglutination of the elements of each basic automaton in 

the following way:  

a) . b)  . c) . d) .  {U
N

j

i
j

i qq
1

,00
=

∈ } U
N

j

i
j

i QQ
1=

= U
N

j

i
j

i

1=

Σ=Σ U
N

j

i
j

i ZZ
1=

=
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e) For every element  and ii
j

i
j Qqq ∈21 , ii Zz ∈  the transition function is well defined, i.e., for 

all j1 and j2 and zi there is always a ( ) i
j

i q 2δ ii
j zq 1 , =  if   is transient or a i

jq 1 ( ) i
j

ii
j

i qzq 11 , =δ  

if  is an absorbing state.  i
jq 1

Firstly, the states, actions and outputs used in each automaton depend on the strategies of each 

player. In any option combination the initial state is one of the initial states in the basic 

automata. In a given state the player can only choose actions possible in any of the automata to 

which that state belongs to. Absorbing (transient) states in the basic automata are absorbing 

(transient) states in the automata combination. Proposition 5.1 shows how a player may 

combine these different automata in order to develop his strategic plan and how this new rule of 

behavior is still an automaton, and therefore a representation of the rules governing a firm.   

Proposition 5.1: For the option combination, as defined in Definition 5.1, to be a well defined 

finite automaton ( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  the following conditions are required to be met:    

a) For any ordered pair of states and outcomes ( )ii zq 21 ,  in an option combination the transition 

function, ( )iii zq 21 ,δ , is such that if  then .  i
j

i Qq ∈1
i
j

i Zz ∈2

b) For all   and , such that  , if ii
j Qq ∈1

ii
j Σ∈1θ i

j
i
j Qq 11 ∈ ( )i

j
ii

j q 11 λθ =  then .   i
j

i
j 11 Σ∈θ

c) Every transition from any state in a given option must be mutually excluding or lead to the 

same state. For every state qi, and outcomes , if for at least one instance of  they 

are both true, i.e.,  is true, then 

ii zz 21 , ii zz 21 ,

ii zz 21 ∩ ( ) ( )iiiii zqq 2,δδ iz1, = . 

Proof: a) We prove this step by contra-positive.  Assume that for any ordered pair of states and 

outcomes ( )ii zq 21 ,  in a option combination, the transition function, ( )iii zq 21 ,δ , is such that 

, ,  and . Consequently, in this case, i
j

i Qq 11 ∈
i
j

i Qq1 ∉ 2
i
j

i Zz 12 ∉
i
j

i Zz 22 ∈ ( )iz2,ii
j q11δ  is not in 

automaton , and i
jA 1 ( )iii

j zq 212 ,δ  is not defined in automaton , and therefore,  i
jA 2 ( )ii z21 ,i qδ  is 
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not defined in the combination of the basic automata. Hence, for every well define transition in 

the combination automata any pair (state, outcome) belongs at least to one basic automaton.  

b) We need to prove that this is a condition for the behavior function to be well defined. Again, 

this proposition is proved by contra-positive. Assume that for all  such that , 

and for all , 

ii
j Qq ∈1

i
j

i
j Qq 11 ∈

ii
j Σ∈1θ ( )i

j
ii

j q 11 λθ =  and that . Consequently,  then i
j

i
j 11 Σ∉θ i

j1Σ∉i
j1θ

( )i
j

i
j

i
j q11 λθ = 1  is nor defined in the basic automaton  and therefore the basic automaton is 

not well defined. Concluding, condition b) is necessary for the option combination to be a well 

defined automaton.  

i
jA 1

c) Again, this proposition is proved by contra-positive. Assume that for every state qi, and 

outcomes , at least one instance of  they are both true, and that ii zz 21 , ii zz 21 ,

( ) ( )iiii zzq 21 ,,δ ii qδ≠ . Consequently, there is an instance of  for which in state qi there 

are at least two simultaneous transitions, which contradicts the definition transition function 

which only has a possible transition at any given time.        Q.E.D.  

ii zz 21 ,

Moreover, a necessary condition for the existence of an option combination is that some of the 

states in the basic automata are the same. This is formalised in Proposition 5.2.  

Proposition 5.2: Let { }i
N

ii AA ,...,1=Λ  represent the set of N basic automata available to 

player i. A necessary condition for the existence of an option combination 

( )ii λδ ,

i
jQ 1

i
jQ 2

iiiii ZqQA ,,,, 0 Σ=  is that there is at least one state that is a member of at two 

different set of states,  and , belonging to the basic automata . 

iq

Proof: The proof is by contra-positive. Assume that there are no common states among the 

several different automata, i.e., assume that for any pair of set of states  and  belonging i
jQ 1

i
j2 ∉

i
jQ 2

 and qto the basic automata, for all and i
jq 1  i

jq 2 : i
j

i
j Qq 11 ∈ , i

j
i
j Qq 22 ∈ , i

jQq 1
i
j

i
j Q 21 ∉ . 
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Moreover, from Proposition 5 g) we ow i t i
jq 1 d 

ii
j Σ∈1θ , if 

.1. kn  that for all  such tha ani
j Qq ∈1  i

jQ 1∈  

( )i
j

ii
j q 11 λθ =  then i

j
i
j 11 Σ∈θ . Therefore,  with Proptogether osition 5.1.f) 

( )i
2 , is if iq ∈1  i

j
i Zz ∈2 , it follows that there is no state ii zq1 ,δ such that i

jQ  then

( )ii z21 ,  such that i
jq 2 s all the ons occur within the same automaton. iiq2 δ=

Q.E.D. 

Proposition 5.3

or to the NP

q i
j1 , a

on to switch cannot be co

Q∉  transiti

: The opti

V rule.  

mbined with the options t

h

o

bining ta in 

 defer, the NPV 

at as the option to switch does 

 the automa

rule, the option to abandon, or the option to alter scale. 

Proof: From Proposition 5.2 and Definitions 4.2-4.5 it follows t

not have any common state with any other option, then no combination is possible.  Q.E.D. 

In practical terms this result implies that the option to switch relates to a different stage of 

decisions, and possibly a different type of problem, than the ones modelled by the options to 

defer, abandon, the NPV rule or the option to alter scale: whilst the options to abandon, defer 

and the NPV rule relate to a decision on entering or abandon a project, the option to switch 

relates to the current management of a running project. Similarly, the options to switch and to 

alter scale are not related to each other: the option to switch works at an operational level 

whereas the option to alter the scale is applied at a strategic level.   

Let us look at a simple example of automaton combination by com

Figures 4.3-4.6, see Figure 5.1. It should be noticed that Proposition 5.1.h) rules out any 

combination between the option to alter scale and any of the following, NPV rule, Option to 

Abandon or Option to Defer, see Proposition 5.4. The economic intuition is simple: you can 

alter the scale of a current project and simultaneously start or abandon a different project, but 

not the scale of the project in which you have not yet invested. This means that the actions 

available in the option to alter the scale cannot be used to extend the options to Defer, Abandon 
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NPV  = 0t+1

 

Figure 5.1: An Example Combining the Options to Defer, to Abandon and the NPV Rule 

Proposition 5.4: The option to Alter Scale cannot be combined with the options to Defer, the 

common state, Dj = 0, there are several actions in the 

options to Alter Scale which do not exclude the actions in the options to Defer, Abandon, or in 

ombinations. 

NPV rule and the option to Abandon.  

Proof: From Definitions 4.2-4.5 it follows the option to Alter Scale may have a common state 

Dj = 0 with the other options. For this 

the NPV rule, {0, NI, I}. Consequently, by Proposition 5.1.h) this combination is not possible. 

Q.E.D. 

Next, in Table 5.1, and as a result of Propositions 5.1-5.4 we present an algorithm to build 

option c

We can now analyze the construction of product automata, see Definition 5.2 and Proposition 

5.5.  

Definition 5.2:  Let { }i
N

ii AA ,...,1=Λ  represent the set of N basic automata available to player 

i, and let ∏ stand for the Cartesian product. An option product is a finite automaton 

( )iii λδ ,,iiq ,0 Σii ZQA ,,=  such that each element of this 6-tuple results from the 

agglutination of the elements of each basic automaton in the following way: 

NPVt+1 > 0

00 A 

I

NPVt+1 < 0

NPVt+1>NPVt
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 a) ∏=
N ii qq . b) ∏Σ=

N ii . d) ∏=
N ii ZZ .  

every element ii
j

i
j Qqq ∈21 ,  and ii

=j
j

1
,00 ∏=

=

N

j

i
j

i QQ
1

. c) 

e)  For 

Σ
=j

j
1 =j

j
1

iiii QZQ →×:δ . Zz ∈  the transition function is 

well defined, i.e., for all j1 and j2 and zi there is always a ( ) i
j

ii
j

i qzq 21 , =δ  if   is transient i
jq 1

or a ( ) i
j

ii
j

i qzq 11 , =δ  if  is an absorbing

Table 5.1. The Option Combination Algorithm 

ameters: 

i
jq 1  state. 

Par
B: Number of basic automata 

Ak: The basic automaton k, ( )kk λ,  kkkkk ZqQA δ,,,, 0 Σ=

com : Compatible out es ( ), yw ZZCompatible yw ZZ ∩:   is not an impossible event 

 
Algorithm for option combination: 
 
 Let Cj stand for the combined automaton at time j 

Step 1. For the current automaton Ak and Cj find all the states that have 
tions, (qa, qc), respectively.  

st with all the actions in the basic automata, L 

ach action in the list  get all t  
with the action, building a vector V. 

Step 3: For each list of clauses in vector V, merge states: merge(qa, qb) 

 
Algorithm for merging states: 
 
merge(qa, qb):
 Step 1:
 
 Step 2: th

the same ac
 
Step 1: Build a li
 
Step 2: For e L he basic clauses associated

 

 
Step 4: Create the product automaton. 

- 
 qa and qb are not from the same basic automaton  

( ) ( )ba qq λλ = .e actions of the states are the same, i.e.,  
ransitions are the same or not compatible  Step 3:

e z 
 T
i) Same transitions, for any outcom

( ) ( )zqzqq baj ,,1 δδ ==+  
 
ii)  not(compatible(Za , Zb)), in which Za and Zb represent the 

transitions from states qa and qb, respectively. 
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Proposition 5.5:  For the option product, as defined in Definition 5.2, to be a well defined finite 

automaton ( )iiiiiii ZqQA λδ ,,,,, 0 Σ=  the following conditions are required:  

a) For all   and , such that  , if ii ii i
j Σ∈1θ j

i
j Qq 11 ∈ ( )i

j
ii

j q 11 λθ =j Qq ∈1  then .    

b) Eve

me state. For every state qi, and outcomes , if for at least one instance of  they 

are both true, i.e.,  is true, then 

i
j

i
j 11 Σ∈θ

ry transition from any state in a given option must be mutually excluding or lead to the 

ii zz 21 , ii zz 21 ,

ii zz 21 ∩ ( ) ( )iiiii zqq ,δδ iz, =

sa

21 .   

his proof is the same as in Proposition 5.1. oof is the same as in Proposition 

Table 5.2 The Product Option Algorithm 

Proof: a) T b). b) Pr

5.1.c).        Q.E.D.  

In Table 5.2 we present an algorithm to compute product options.  

Parameters: 
B: Number of basic automata 

Ak: The basic ( )kkkkkkk ZqQA λδ ,,,,, 0 Σ=  automaton k, 

( ) :, ZZCompatible  Compatible outcomes: kw kw ZZ ∩  is not an impossible event 

Compatible actions: ( ) :, kw aaCompatible  kw aa ∩  is not an impossible event 

( )k
j

k
j q 1, + : stands for a clause in the basic optiok

j
k
j zaqkclause ,,, n k, in which: 

a) : current state of the basic option 

 the basic option if this clause is true 

  c)  represents the action at state 

d)  represents the outcome at state 

k
jq  

  b) k
jq 1+ : next state of

ka k
jq  j

k
jz k

jq  

( )ppp
j

p
j qzaqproductclause ,,,_ jj 1+ : stands for a clause in the product option, in which: 

tate of the product option 

b) , such that : next state of the product option if this clause 

is true 

  a) , such that ∏
=

= k
j

p
j qq

1

: current sp
jq

B

k

∏
B

kpp
jq 1+

=k 1
++ = jj qq 11
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  c)  or equ  

action the b au

d)  , or equivalently ,  represents the product 

outcome of the basic automata  
 
Algorithm for the product automaton: 
 Let P stand for the set of

t automaton at time j is 

ivalently ∏=
B

kp aa ,  represents the product of theB
jjj

p
j aaaa ...21= ,

=k
jj

1

s of asic tomata 

Bp
j zzzz ...21= jjj

=k 1

 ∏=
B

k
j

p
j zz

 all game clauses of the product automaton 
 Initiate P :={} 
 A state of the produc [ ]B

jjj
p
j qqqq ,...,, 21=   

  or equivalently,

States_list es to be analyzed  

 or equivalently 

 jj ∏
=

=
B

k

kp qq
1

. 

 :={}, represent the list of stat 
 

Step 1: Build the initial state of states  
B

[ ]Bp qqqq 0
2
0

1
0 ,...,,= . a)   ∏= kp qq

=k 1
00 0

p

  

b)  States_list := { }.  

tate in the list and 
add it to P 

se the first state 

 b) Expand(S1, New_clauses, New_states): expand the chosen state 
pu ns from that state and the New_states 

q0

 
Step 2: While there are states in States_list, choose the first s

compute the transition of the product automaton and 
 
 a) States_list := {S1| Rest}: choo
 

com ting the transitio
 
 
 

 i) For each basic automaton k, at iteration j:  
    Get k

jq    

( )kk λ=    jj qa   
 

 ii) For each player k:   
( )B

jjj
kk

j aaaZz ,...,, 21=      

( )kkk zqq ,δ=      jjj 1+

   
  iii) New state: [ ]B

jjjj qqq 1
2

111 ,...,, ++++ =  pq 1

 
iv) New real product option clause: 

( )p
j

p
j

p
j qz 1,, +

p
j aqproductclause ,_   

   ∏
=

=
k

ja
B

k
j

p a
1
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   ∏
=

=
k

jz
1

B
k
j

p z  

 
 c) Add ct automaton 
  
    

d) Add the new states to the list of states to be expanded and remove the 

  i) 

 the new clause_product to the produ

{ }1 Sfrom expanded clauses newproductclauseGG :_: ∪=
  

first state: 
 

statesNewstlistStates _Re:_ ∪=  
  ii) Go to Step 2.a). 

 
 

Next, in Figure 5.2 we present a simple example of an option product, in which a firm holds the 

options to invest in two different products 1 and 2. 

Figure 5.2: Product Automaton describing two different Options to Defer 

[I,0] 

tkt NPVNPV 11 ≤+  

tkt NPVNPV 11 >+  

tkt NPVNPV 22 ≤+  

tkt

tkt

NPVNPV
NPVNPV

22
11

>
>

+

+  

[0,0] 

tkt

tkt

NPVNPV 22 >+

+  

[I,I] 

tkt

tkt

NPVNPV
NPVNPV

22
11

≤
≤

+

+  

[0,I] 

NPVNPV 11 ≤

tkt

tkt

NPVNPV
NPVNPV

22
11

≤
>

+

+  

tkt NPVNPV 22 >+  
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In the product automaton in Figure 5.2 the number of states is the product of the number 

of states of the simple automata. The automaton sta tate [0,0] in which no option  

is exercised, and depending on the value of the net present values of each option the 

company may decide to go to state [I,0] or [0,I] in which one option is exercised, to 

continue in state [0,0] in which no option is exercised or move to state [I,I] in which 

both s are exercised. Only state [I,I] is absorbing. 

6. Designing Real-Option Games 

In this section, we look at the development of real-option games, in which the outcome of any 

real option depends on the real options of the other players in the game. Smit and Ank

(1993) presented one of the first models of real-options in multi-firm environments, namely 

modelling the entry game in a duopoly situation.  In Table 6.1 we present the entry game in the 

normal form.  

 
A firm A and a firm B need to decide when to undertake an investment. Let V  represent the 

present value of the total cash flows the project generates when both firms invest 

leader leader

investment will also decrease if the other firm has invested first, Cfollower  < C .  

roject. Under scenario i both firms 

decide to invest simultaneously and will get Vt-I. Under scenario ii (iii) the firm A (B) invests 

irm B (A) defers the investment and owns an option to 

rts in s

option

um 

t

simultaneously, and I the investment needed to undertake the given project. Then Ct represents 

the value of the option to invest, i.e., the value that the investment is expected to have if 

postponed. The model assumes that the company investing first earns a premium, the value of 

this investment will be V t, where V t > Vt. The value of the option to postpone an 

t t

Each company decides between investing and delaying the p

receiving the leader’s payoff while the f

invest that is less valuable. Scenario iv represents a situation in which both firms defer the 

investment owning, each one of them, an option with a value Ct. 
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Table 6.1: The entry game in the normal form 

 

t t t

postponing the investment, Ct or C t. In order to analyse the automaton for each 

player A and B let us simplify the representation of the several possible o

Vt-I, Vt-I Vleader
t-I, C

follower 
t 

iii iv 
follower leader

Invest 

Defer 

A firm will invest at a period t if the NPV  (V -I or Vleader -I) is higher than the value of 

follower

utcomes for the 

entry game.  

The entry game is a simultaneous moves game in which the payoffs received by the players 

depend on the state of the industry and all the competitor’s moves. The payoffs received by the 

players are the result of the Nash equilibrium: there is Nash equilibrium when no player can 

increase his payoffs by n, there are two main 

ere are situations in 

in which t ) there may be 

f 

 as the value of the option to invest as a follower is not less than the value of 

Duopolist. For this reason this coordination problem is not an issue in the entry game. 

 

The entry game in the automata format is represented in Figure 6.1 which represents the 

automata for firms A and B. An agent chooses to defer if the expected net present value of the 

Invest Defer
i ii 

C t, V t-I Ct, Ct

Firm A 

Firm B

follower
ttF CIVD ≤−: ; follower

ttF CIVI >−: ; t
leader

tL CIVD ≤−: ;

ttL CIVI >−: .  leader

 unilaterally changing his strategy. For this reaso

issues with the entry game: a) as exposed in Smit and Ankum (1993) th

which the payoffs received by the firms in the Nash equilibrium are lower than in the situation 

hey coordinate their actions, this is known as the prisoners’ dilemma; b

a coordination problem if there are several Nash equilibria. This would be the case i

follower
tt CI ≤−V

investing simultaneously with the opponent firm. It is a natural assumption of the entry game 

for the value of the option to invest as a follower to be less than the value to invest as a 
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investment is lower e  than the expected value of the call option, it will invest otherwise. Th

uncertainty regarding the decision to invest is on the other agent behaviour. The final result 

clearly depends on the expectations that each player holds about the others’ behaviour. 

 

We are now in a condition to generalise the entry problem to N players using finite 

automata. In this setting we will assume that each agent knows the other players’ 

ith N potential firms. As in the two player entry game each firm decides when to enter 

the industry by making an irreversible investment. At each time each firm decides 

between investing or delaying the investment. The present value of the investment is a 

function of the number of companies in the market, i.e. Vt = Vt(n), with n=1,…, N, in 

which n represents the number of companies that have already invested (Vt is a negative 

function of n). The value of the call option associated with the opportunity to invest will 

 

Figure 6.1: Automaton for the Entry Game 

automata (and their current internal state). Let us define the entry game in an industry 

w

DL,DL

DF, 

IL,DF 

I ,IF F 

D ,DL L

DD

D I DD 

I I I D 

DF,IL 

IF,IF IL,DF

DF,IL

. , IF 

I , .F

.,DF 
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also depend on the number of companies that have already invested: Ct = Ct(n) with 

n=0,…, N-1, (Ct is a negative function of n). Finally, we generalise the entry m l 

assuming that the investment cost is also a function of the number of firm

already invested: It = It(n), (It is a negative function of ). For each player j, and at any 

time t, the payoff will be depend on the investment decision of the player j: 

Next, in Definition 6.1 we formalize the automaton used by a player i during the entry game.  

Definition 6 n the entry game each player uses an option to Defer which can be represented 

by a finite automaton 

ode

s that have 

n

.
investednot  )(

invested  )((
j

jnC
jnInV

payoff
t

tt
jt

⎩
⎨
⎧

⇐
⇐

=  
) −

,t∀

.1: I

( )iiiiii ZqQA ,,,, 0 Σ=

s alr

of all the possible actions, Invest

he market entering tf players 

urther, for any jD ∈

i λδ ,  such that: each element of the set of states 

eady in the market; ; 

 (I) and delay (NI),  

 

{ }1,...,1,0 −= NQ  equals the number of firmi

is the set 

W:number oZ =

of possible outcomes. F

 00 =
iq

1N-  repres

nc

{ }NIIi ,=Σ  

and in which

ents the set

tion is equal to 

{ }i e, Wat any tim ≤

iQ  the transition fu

( ) WDWD jj +=,δ . Finally, i iλ  is a behavioral function such that for any state Dj: 

( ) { }NIID j
i ,∈λ . 

Option Game Algorithm presented in Table 6.2 (which constructs an option game starting with 

the automaton of each player) is very similar to the Product Option algorithm presented in Table 

5.2. The option game algorithm captures bounded rationality as it models games played by 

automata, i.e., by players that use rules of behaviour to manage the interactions with other 

players. In general, these rules of behaviour can have emerged through learning and evolution, 

or may be defined by the ethos of the firm. Nonetheless, these rules of behaviour may also be 

computed has the Nash equilibrium (and therefore as the perfect foresight solution to the game), 

As proved in Proposition 6.1, the Option Game is an instance of a Product Option, therefore, the 
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as was the case of the entry game. However, in general, these Nash equilibria may not exist, 

there may be many of them, or the computational complexity of computing such equilibria 

(Gilboa and Zemel, 1989) may prevent the firms to use them in strategy problems.  

Parameters: 

Table 6.2 The Option Game Algorithm 

N: Number of players in the game 

A : Player i’s auto , ( )iiiiiii ZqQA ,,, 0 Σ=i maton λδ ,,  

( )i
j

i
j

i
j

i
j qzaqiclause 1,,,, + : stands for a clause in the basic option of player i, defining the 

rules of transition fr

  b) : next state of player i’s automaton 

  c)  represents the action of player i at state 

d)  represents the outcome received by player i at state 

om state to state, in which: 

  a) jq : current state of the player i’s automaton  

i i

i

i
jq 1+

i
ja i

jq  

jz jq  

( )g
jqgameclause _ g

j
g
j

g
j zaq 1,,, + : stands for a clause in the option game, defining the 

rules of transition from state to state, in which: 

  a) , such that : current state of the option game 

b) , such that : next state of the option game if this clause is 

true 

  c) , or equivalently ,  represents the product of the 

actions of players 1 to N 

d)  , or equivalently ,  represents the product 

 of the actions of play .  

 Let G stand for the set of all game clauses of the real options game 

 A state of the game at time j is 

g
jq ∏

=

=
N

i

i
j

g
j qq

1

g

=

N

i

ig

1
11

N
jjj

g
j

=

N

i

i
j

g
j

1

N
jjj

g
j

=

N

i

i
j

g
j

1

j

 
Algorithm for the real options game: 

 Initiate G :={} 

jq 1+ ∏ ++ = jj qq

aaaa ...21= ∏= aa

zzzz ...21=

outcome

 ∏= zz

ers 1 to N, in state gq

[ ]Ng qqqq ,...,, 21= jjjj

 States_list :={}, represent the list of states to be analyzed  
 

Step 1: Build the initial state and the list of states: 

 . 

 a)  ∏
=

=
i

q
1

0  or equivalently 
N

igq0 [ ]Ng q0
21 .qqq 000 ,...,,=   
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b)  States_list := { }.  

 states in States_list, choose the first state in the list and 
oduct automaton and add it to G 

 
oose the first state 

x pand the chosen state 
computing the transitions from that state and the New_states 

 

gq0

 
Step 2: While there are

compute the transition of the pr

 a) States_list := {S1| Rest}: ch
 
 b) E pand(S1, New_clauses, New_states): ex

 
  i) For each player i at iteration j: 
    Get iq    j

   ( )i
j

i
j qa λ=   

 
  ii) For each player i:  
    ( )N

jjj
i

j aaa ,...,, 21  i Zz =

    ( )i
j

i
j zq ,δ=  i

jq 1+

   
 tate: [ ]Ng

j qq 1
1+ = iii) New s jjj qq 1

2
11 ,...,, +++  

iv) New real option gam
 
  e clause: ( )g

j
g
j

g
j

g
j qzaqgameclause 1,,,_ +   

  

    

 
 c) ton 
  

}  

he new states to the list of states to be expanded and remove the 

  ∏=
N

i
j

g
j aa

=i 1

 

∏=
N

i
j

g
j zz  

=i 1

Add the new clause_product to the product automa

  {clausGG : ∪= 1 Sfrom expanded clauses newproducte :_
  

d) Add t
first state: 
 
  i) statesNewstlistStates _Re:_ ∪=  
  ii) Go to Step 2.a). 

 
 

Proposition 6.1: The option game algorithm generates a product option 

( )gggggg Z λδ ,,,Σ . g qQA ,, 0=
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Proof: orithm 

obeys all the co itions tial state  which is the 

product layers. b-d The set , 

actions,  are the product 

one of e-f sition function,  

position 5.5 a

Propos m of the Op ooses the option 

that is a ption of the Options used by his opponents.  

Proof:  of the automata game, the automata choose  any 

player i is su , 

i.e., . Since from Proposition 6.1 we know that the option 

gam rent options is a Product option, by defining 

In order to prove this we need to show that any automaton produce by this alg

∏
=

=
N

i

ig qq
1

,.00

 of internal states Q

of the different states of each 

ggg ZQ ×:δ

so apply he

in Proposition 5.5.      

nd  in Proposition 5.5. a) There is an ini

∏
=

=
N

i

ig Q
1

.

gQ→ , and

re as the sets 

 Q.E.D.  

 of the initial states of the N p ) 

∏Σ=Σ ig
.  and outcomes, gZ

N N

∏
=

=
i

iZ
1

.

) The same tran

defined in Pro

s as the sets 

=i 1

the players in the game. 

behavioral function 

gΣ,  present the sa

ggg Q Σ→:λ

me propertie

l

gg ZQ , iii ZQ Σ,,  

ition 6.2: In the Nash Equilibriu tion game each player ch

 best response to the Product o

By definition, in a Nash equilibrium by

ch that Ai is the best response (strategy) to the automata used by the other players

,...,, AA ),...,,( 112 Niii AAABRA +−=

e defined y the 

1

b interaction of diffe

( )igigigigigigi ZqQ −−−−−−− Σ= λδ ,,,,, 0

interaction of i’s opponents, then it follows that 

gA  as the product automaton resulting from the 

.    Q.E.D.      

7. Conclusions 

Strategy is a very interesting area of research which demands the development of new 

algorithms to handle the challenge of modelling complex and evolutionary games. In this paper 

making, enabling the analysis of bounded rationality and behavioural issues and enabling the 

strategic decision-making problems.  

)( ig
i ABRA −=

we showed that automata theory is a powerful tool for the formal modelling of strategic decision 

graphical representation, and straightforward computational simulation and solution, of hard 
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Further, we showed how to formalize d y decision problems using finite automata, 

and product options. Finally, we provide an algorithm for a special ca n: the 

real option games, w  analysis of complex games in which different real options 

ifficult strateg

and provide two algorithms (and analyse their properties) for designing option combinations 

se of a product optio

hich enable the

interact.  
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