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Abstract: In this article we consider the interaction between forward and spot prices and analyse trading in 

oligopolistic markets under uncertainty. We extend the two-stage risk-neutral stochastic model to worst-case 

analysis with rival demand scenarios. At the methodological level we develop a robust analysis in oligopolies 

robust optimal strategies. We compare the performance of robust optimization with the cases of no uncertainty 

and risk-neutral uncertainty. We show that under robust oligopolies the firms tend to produce more and to 

trade more in the forward markets, moreover, under robust optimization market prices are lower. 
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1. Introduction 

Procurement (e.g., Virolainen, 1998) and trading strategies have been the topic of extensive research, 

including trading that consider electronic exchanges (e.g., Teich et al., 2006), procurement in electronic 

markets (e.g., Chen & Liu, 2007; Ganeshan et al., 2009; Gunasekaran et al., 2009), trading of production 

technologies in second-hand markets (Bunn & Oliveira, 2007) considering regulatory intervention (Bunn & 

Oliveira, 2008), the relationship between spot markets and bilateral contracts (e.g., Seifert et al., 2004; 

Agrawal & Ganeshan, 2007), and between forward contracts and spot markets (e.g., Wu et al., 2002; Wu & 

Kleindorfer, 2005; Anderson et al., 2007; Dong & Liu, 2007; and Mendelson &Tunca, 2007).  

On the relationship between forward contracts and spot markets, Allaz & Vila (1993) have shown that the 

introduction of futures markets would improve competition in any oligopolistic market with Cournot players, 

reducing the ability of firms to increase prices. This hypothesis was empirically tested by Herguera (2000) in 

the context of bilateral electricity markets, who found evidence supporting it. Le Coq & Orzen (2006) have 

also confirmed this hypothesis by using laboratory experiments. However, it has also been argued that, in an 

oligopoly, firms buy their own production in the forward markets, increasing equilibrium prices, when 

compared with the scenario without forward trading, Mahenc & Salanie (2004) and it has been shown that 

speculation in a commodity, in oligopolistic markets, leads to lower level of inventory and higher price 

volatility than under perfect competition, McLaren (2003).  

The conventional approach to decision making under uncertainty is based on the optimization of expected 

value. The main concern with this approach is that it avoids the worst-case effect of uncertainty in favor of 

expected values, Rustem & Howe (2002). While expected optimization is an acceptable tool for certain 

instances, decision making on stochastic programming needs to be justified in view of the worst-case scenario. 

This is also important if the decision to be made can be influenced by the uncertainty in such a way that, in the 

worst-case, it has critical consequences on the underlying system. Furthermore, it is known that the forecasts 

and estimations of uncertain parameters are inherently inaccurate as there are different rival estimates, or 

scenarios, e.g., Fair (1984). When predicting the future, it is often difficult or impossible to settle on a single 

forecast or an arbitrary pooling of scenarios, Gulpinar & Rustem (2007). Additionally, model-based policy 

design entails a reasonable specification of the underlying model and an appropriate characterization of the 

uncertainties, Becker et al. (2000). The latter can be due to an exogenous effect, uncertainty on the 



parameters, or on the structure of the model (which requires a setting that admits rival structures), Hall & 

Stephenson (1990). The significance of robust strategies is increasingly recognized as attitudes towards risk 

evolve in diverse areas such as economics, financial markets and engineering, e.g., Rustem & Howe (2002). 

The risk of making incorrect decisions in an uncertain environment can be managed using robust 

optimization. The minimax algorithms with several applications to a number of problems in diverse areas are 

presented in Rustem & Howe (2002). In general, the parameter uncertainty is characterized either in terms of a 

number of rival scenarios or ranges in which the uncertain parameters, or exogenous effects, may vary. Such 

characterization of uncertainty leads to discrete and continuous minimax models. The discrete minimax 

approach enables the use of point forecasts or specifications such as rival models. The optimal strategy is 

determined taking into account all specified rival scenarios simultaneously, rather than any single scenario. 

The continuous minimax strategy provides a guaranteed optimal performance in view of continuum of 

scenarios varying between upper and lower bounds. Thus, in this case, there are an infinite number of future 

scenarios in ranges arising from statistical properties associated with the uncertainty, Gulpinar & Rustem 

(2007). Another alternative is to define the worst-case over uncertainty sets, such as an ellipsoid, that offers 

significant advantages over the more traditional approaches with probabilistic representation of noise.  

Following Allaz (1992), Dong & Liu (2007) and Mendelson & Tunca (2007), we consider a two-stage n-

player dynamic game with uncertainty. We assume that in the spot market the players have perfect 

information regarding the level of demand and forward positions of all the players in the market. In the 

forward market there is uncertainty regarding the level of demand. Our contributions can be briefly 

summarized as follows. First, we model inter-temporal decision making in oligopolistic markets using a 

scenario based stochastic program, e.g., Fair (1984), Gulpinar & Rustem (2007). Demand uncertainty is 

represented by discrete scenarios for the intercept of the inverse demand function. Second, we extend this 

model to worst-case design with rival demand scenarios. Therefore, the imprecise nature of parameter 

forecasts for dynamic Cournot games and the impact of demand uncertainty on the relationship between 

forward and spot trading are addressed. Moreover, we analyze the relationship between forward contracts and 

spot markets using scenario based stochastic program (after adapting it to the discrete scenario framework), 

and compare their performance with a robust game in which each player computes his worst-case profit given 

the strategies of his opponents (worst-case profit at the player level).  



At the methodological level, the contribution of this paper is to develop worst-case design approach at the 

player level. In this model, each player maximizes his worst-case profit in view of all rival scenarios of the 

uncertain demand parameter, taking into account that all the other players in the game are simultaneously 

maximizing their worst-case profit. Our analysis shows that, in this case, the worst-case profit of the different 

players is not higher than the worst-case profit in the risk-neutral stochastic model. This observation suggests 

that when firms are conservative the prisoners  dilemma effect is even stronger as firms tend to base their 

choices on the worst possible scenarios. This leads to an industry that is more competitive than in the risk-

neutral case. 

The rest of the paper is organized as follows. In Section 2 we present the deterministic and stochastic 

two-stage oligopoly market models, in which stochastic programming maximizes expected total profit under 

demand uncertainty. Section 3 summarizes the minimax problems in general. In Section 4, we develop robust 

trading approach for two-stage oligopoly model. Sections 5 and 6 present the analytical and computational 

results, respectively. Section 7 gives a short summary and our conclusions. 

2. Two-stage Oligopoly Models 

The two-stage oligopoly model involves trading in forward and spot markets. It is assumed that forward 

trading occurs before production. Thus, forward contracts are traded in the first stage, in the oligopolistic 

industry, under price uncertainty. In other words, the spot price is still unknown when trading takes place in 

the forwards market. In the second stage, the price uncertainty is resolved, the players trade in the spot market, 

and the actual service (or product) is delivered. Taking into account the forward position taken in the first 

stage each producer makes a decision on the amount of production. Therefore, an important factor 

determining spot prices is the demand for the commodity. In this context, Allaz (1992) developed a stochastic 

model where demand is assumed to be uncertain and normally distributed and Allaz & Vila (1993) introduced 

the deterministic model in which average demand was considered. In this section, we summarise the two-stage 

deterministic and risk-neutral stochastic oligopoly market models, Allaz (1992) and Allaz & Vila (1993). 

We use d, s and w superscripts to distinguish the notation used for deterministic, stochastic and worst-

case models, respectively. Expected value of random parameter ~  is denoted by ]~[E . We introduce 



deterministic and stochastic trading models in this section and extend it to the worst-case analysis in the next 

section.  

2.1 Deterministic Model  

We consider n players that are represented by index of  i  where ni ,,2,1 . Total profit of a player i 

during entire planning horizon is denoted by d
i for ni ,,2,1 . Let d

iQ  be total production of the player i 

for ni ,,2,1 . The  total output ,dQ  is the sum of outputs of all players in the spot market and 

formulated as 
1

n
d d

i
i

Q Q .  

The deterministic model possesses a two-stage decision process where forward and spot markets have its 

own characteristics. The forward position of a firm at the first period has an influence on the spot price at time 

zero. Let d
iF  denote trading made by firm i in forward market. It is called forward sale if 0d

iF , or 

forward purchase if 0d
iF . Let dP  and dS represent forward and spot prices, respectively. Following 

Allaz (1992), we model consumer behaviour using a linear function, in which price is a function of production 

as dddd bQaQSS , where the level of demand is defined by the parameter a and b is constant. It is 

worthwhile to mention that the methodology developed in this paper can be applied to a nonlinear price 

function with certain complexities on derivation of equilibrium conditions.  

The cost of production, d
iC for player i, is assumed to be d

ii
d
i QcC  where the marginal cost of each 

player is 0<ci<a. Profits earned in the spot and forward markets, so-called spot and forward profits are 

defined, respectively, as d
i

dd
forward

d
ii

d
i

d
i

dd
spot FPUQcFQSU   and  , . Hence, a 

maximize its total profit, which is sum of the profits earned in the spot and forward markets: 

d
i

dd
ii

d
i

d
i

dd
forward

d
spot

d
i FPQcFQSUU   .  

       The Cournot-Nash equilibrium in the spot market is a vector of outputs d
n

dd QQQ ,,, 21  such that the 

first-order necessary and second-order sufficient conditions are satisfied for all producers ni ,,2,1 .  
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The solution of this equation system is obtained as 

n n

1,   1,   

( 1)

d d
i i j j

j j i j j id
i

a nc nbF c b F

Q
n b

 and the 

spot price is determined as 1 1

1

n n
d

i i
d i i

a c b F
S

n
.  

2.2 Stochastic Model with Discrete Demand Scenarios 

Stochastic decision models rely on future events. This is one way of characterising uncertainty in terms 

of future scenarios. The future is viewed in terms of scenarios that are essentially a discrete set of realisations 

of uncertainty given the probability domain. A method to obtain the discrete outcomes for the random 

var

such as simulation, clustering and optimisation techniques, e.g. Hoyland et al. (2003). The discretization of the 

random values and the probability space leads to a framework in which a random variable takes finitely many 

values. Thus, the factors driving the risky events are approximated by a discrete set of scenarios, or sequence 

of events. Given the event history up to a particular time, the uncertainty in the next period is characterized by 

finitely many possible outcomes for the next observation. This branching process is represented using a 

m 

deterministic data. The nodes further down represent the events of the world which are conditional at later 

stages. The arcs linking the nodes represent various realizations of the uncertain variables. An ideal situation 

is that a generated set of scenarios represents the whole universe of possible outcomes of the random variable. 

Therefore, scenarios should include both optimistic and pessimistic projections.  

Assume that demand uncertainty is described by discrete scenarios for the intercept of the inverse 

demand function. Let u denote a scenario that is defined as a possible realisation of the uncertain parameter 

.~a  Let pu be the conditional probability of event or scenario u that must sum to one, i.e. 
K

u
up

1

1where K is 



the number of finite realisations of .~a Hence, spot price at scenario Ku ,,2,1 is described by a 

discretized probabilistic model as 
n

i

s
iuu

s
u QbaS

1

, where s
iuQ denotes the output produced by player i at 

scenario u. The production cost under scenario u for player i is computed as s
iui

s
iu QcC where

].~[0 aEci

The expected forward price based on K number of scenarios is estimated as 
K

u

s
uu

s SpPE
1

][ . The 

Cournot Nash equilibrium in spot market in view of all rival scenarios is represented by a set of equations: 

           

n n

1,   1,   ,     1,2, , ,    1,2, , .
( 1)

s s
u i i j j

j j i j j is
iu

a nc nbF c b F

Q i n u K
n b

  

Figure 1 represents the time path of the sequence of decisions and realizations of the stochastic parameters in 

the model. At time one, the decisions on the quantity to trade forward and the equilibrium price in the forward 

markets depends on the expected value of a. At time zero, the spot market takes place in which the quantities 

produced and spot prices are decided already taking into account the specific realization of the scenario about 

demand.

Figure 1: Time path of the sequence of decisions and stochastic parameters in the stochastic model.
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The total profit of the producer i, for ni ,,2,1 , at scenario u is expressed as 

s
i

ss
iui

s
i

s
iu

s
u

s
iu FPQcFQS   . The player i

K

u

s
iuu

s
i pE

1

.  Each 

producer aims to maximize its expected profit in view of all discrete demand scenarios. Therefore, the optimal 

trading strategy is achieved by solving the scenario based profit maximization problem (1). 
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This is a nonlinear program where ci, au, b, and pu are inputs and K and n are pre-specified parameters. 

The size of the stochastic model depends on the number of players in the market and the number of scenarios 

generated. Discrete scenarios can be generated by either using expert-knowledge or applying a scenario    

generation method or a forecasting technique, e.g. Gulpinar et al. (2004). 

3. Robust Optimal Decisions under Uncertainty 

The stochastic characterization of uncertainty relies on the average or expected performance of the system 

in the presence of uncertain effects. Although expected performance optimization is often adequate, it is the 

realization of the worst-case that causes the failure of the system, Rustem & Howe (2002). An important tool 

to address the inherent error for forecasting uncertainty is worst-case analysis. Worst-case analysis (min-max) 

provides robust optimal strategies that yield guaranteed performance. From the risk management point of 

view, minimax yields the best strategy determined simultaneously with the worst state of the underlying 

system and also analyses the effects of uncertain events. Min-max optimal strategy is determined in view of 

all the scenarios, rather than any single scenario. Thus, min-max optimisation is more robust to the realisation 

of worst-case scenarios than considering a single scenario or an arbitrary pooling of scenarios. It is therefore 



suitable for situations which need protection against risk of adopting a strategy based on the wrong scenario, 

Gulpinar & Rustem (2007).

The worst-case approach minimizes the objective function with respect to the worst possible outcome of 

the uncertain variables. Let R G : Rn+m be a function of a decision variable x and uncertain variable v for 

a stochastic system. The general minimax optimization problem can be stated as:

    

min     max     ( , )

.              ,

x X v V

n m

G x v

s t X R V R (2)

To be on the conservative side, the decision x is required to be optimal with respect to each observation 

of uncertain variable v. Therefore, x is chosen to minimize the objective function, where nature chooses v to 

maximize it. When the objective function is convex with respect to the uncertain variables the maximum will 

correspond to one or more vertices of the hypercube defined by the upper and lower bounds on the uncertain 

variables. If the objective function is concave with respect to the uncertainties the maximum may lie anywhere 

within the hypercube. The discrete minimax problem arises when the worst-case is to be determined over a

discrete set. If V is a finite set, then (2) is called a discrete minimax problem and formulated as

1 2

min     max     ( , )

.              , , ,       
x X v V

m

G x v

s t V v v v
(3)

Introducing a more familiar notation, ,m,,j = x = gvxG jj 21for )(),( , we have )(    max  min
,,2,1

xg j
mjXx

. It 

can be shown that the minimax problem (3) is equivalent to the following optimization problem (4).

,
min     z

        ( ) ,         1,2, ,    
x X z

js.t g x z j m
(4)

If V has an infinite number of elements, then it is called continuous minimax. In this case, the minimax 

problem (2) can be reformulated as the semi-infinite optimization problem:

,  

1 2

min     

.         ( , ) ,      , , ,

x X z

m

z

s t G x v z v V v v v (5)

with an infinite number of constraints corresponding to the elements in V . Worst-case analysis is a robust 

framework for decisions under uncertainty as the actual performance of the decision has a non-inferiority 



property. Robustness is ensured by considering the optimal strategy in view of multiple rival scenarios 

generated and evaluating the expected profit corresponding to the best performance, simultaneously with the 

worst scenario. Therefore, the min-max strategy has the best lower bound performance which can only 

improve if any scenario, other than the worst-case, is realized, e.g.  Gulpinar & Rustem (2007) and Rustem & 

Howe (2002). 

Let **   and vx solve (2). Then, the following inequality is valid for all feasible Vv ,

)  ,()  ,( *** vxGvxG . This inequality simply states the optimality of *v  for the corresponding problem (2). 

In addition, it signifies the robustness of minimax in that performance is assured to improve if the worst-case 

*v does not happen. Similarly, under the same assumptions, for all feasible x, we have 

* * *( ,  ) ( ,  ).G x v G x v   

As stated by Rustem & Howe (2002), in the presence of a discrete set of rival models, forecasts or 

scenarios purporting to describe the same system, the optimal decision needs to take into account all possible 

representations. The minimax problem arises when statistical or economic analysis cannot rule out all but one 

of the rival possibilities. 

4. Discrete Minimax Approach for the Two-stage Oligopoly Model 

In decision problems, when uncertainty is treated as a stochastic effect, the optimisation of the underlying 

system imposes a heavy burden on the policy modeller. The solution methodology for stochastic programming 

or expected value optimisation procedure requires the precise definition of the probability distributions. This 

can be relaxed by introducing ranges or rival scenarios for these probabilities and solving an optimisation 

problem robust to the imprecise nature of the probabilities. We are concerned with worst-case analysis for 

oligopoly markets in view of rival demand forecasts due to three main reasons. First, the optimal strategy 

based on expected value optimisation (stochastic program) needs to be justified when a probability 

distribution is associated with the demand uncertainty. Second, the imprecise nature of probability 

measurements leads to worst-case analysis in order to compute the best investment decision in view of rival 

demand specifications. Finally, it is not realistic to make a decision based on a single scenario (such as 

average value), but it is better to consider discrete rival scenarios describing different views on the future.  



Given K rival scenarios, the discrete minimax problem, for two-stage oligopoly market at the player 

level, can be formulated by (6). 
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There are several algorithms to solve the minimax problems; for instance, see Rustem & Howe (2002). 

We consider reformulation of the problem as a nonlinear program. Let i denote the worst-case profit for 

player i  in view of all rival scenarios is the minimum profit. This is 

described by a set of constraints. Then the minimax problem in (6) can be reformulated as the following 

nonlinear programming problem: 
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     Since discrete minimax may yield pessimistic strategies, the rival scenarios need to be selected among 

likely values. The minimax strategy addresses the question of what the best strategy should be in view of the 

worst-case. The discrete minimax strategy ensures a guaranteed optimal performance in view of the worst-

case and this is ensured for all rival scenarios. 

 

 



5. Analytical Results

In this section, we derive analytical properties describing the relationships between deterministic, 

stochastic and discrete minimax models in terms of production level, forward trading and the 

Proposition 1. When the expected value of the intercept of demand equals its value in the deterministic model, 

the following statements hold for any firm in oligopolistic markets:

i.) Spot trading in the deterministic model is equal to the expected spot trading in the risk-neutral model;

ii.) Forward trading is the same in the deterministic and risk-neutral models. 

Proof: From the equilibrium conditions in the deterministic and risk-neutral models, we obtain the spot 

trading and the expected spot trading for a firm i, respectively, as

bn
cnn + cnnaEnFE

n

j
ji

s
i

)1(

1
)1()1)(1(]~[)1(][

2
1

2

and
bn

cncnnnaQ
n

j
ji

d
i

1

1
1

2
1

22 . Therefore, comparison of these expressions leads to

][ s
i

d
i QEQ only when [ ] .E a a Moreover, using the same, respective, equilibrium conditions we can 

calculate the forward trading for a firm i, in the deterministic model as follows      

bn
cnn + cnna nF

n

j
ji

d
i

)1(

1
)1()1)(1()1(

2
1

2 .

Similarly, we can obtain the forward trading using the risk-neutral stochastic model as 
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j
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)1(

1
)1()1)(1(]~[)1(][

2
1

2 . Hence, ][ s
i

d
i FEF if and only 

if [ ] .E a a
    

Proposition 1 suggests that even though, in general, the deterministic and the stochastic models consider 

different forward and spot prices, they produce the same expected quantities traded in the spot market as well 

as the same expected forward trading under the specific choice of demand. In those circumstances, a risk-

neutral analysis of a decision problem may not provide additional information to the decision maker when 

compared to the deterministic approach. 



Next, we establish a relationship between the weighted averages of spot prices in the risk-neutral model 

(in which the weights are the quantities produced in the spot market in all the possible scenarios) with the 

deterministic model -neutral scenario based 

Cournot games are comparable. Those circumstances stated in Proposition 2 reinforce the idea that the risk-

neutral analysis provides no additional information when compared to the deterministic analysis.  

Proposition 2.  -neutral stochastic model is equal to (higher or lower 

than) his expected profit in the deterministic model if and only if the spot price in the deterministic model is 

equal to (less or higher than) the weighted average of the prices under different scenarios in the stochastic 

model. 

Proof: Assume that the non-arbitrage condition holds. Let  s
iu denote the profit of player i at scenario u 

under risk-neutral stochastic model. The expected profit of the player i is computed as
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expected profit earned by the stochastic model and the profit by the deterministic model becomes
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. Therefore, we can easily show 

that the following properties exist:  
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In the rest of this section, in order to simplify our calculations, we assume that all firms are homogeneous, i.e., 

they have the same production technology. Let a denote expected value of a~ over K scenarios:

K

u
uu apa

1

. The worst-case profit *
i of player i is obtained by solving the following nonlinear program.

(8)                                      ,,2,1   ,    max
,

Kui
w
iui

F i
w

i

Using (8) we can derive the worst-case solution of the Cournot dynamic games including the forward trading 

position, as presented in Proposition 3.

Proposition 3. The worst-case forward trading for homogenous firms is
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Proof: Let 0iu for Ku ,,2,1 be the Lagrangian multipliers associated with constraints 
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w
iu Lagrangian function associated with the worst-case profit optimization problem (8) is given by 
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have the same marginal cost cccc n21 , the equation (14) becomes 
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Then the worst-case forward trading for homogeneous firms is obtained as stated in the proposition.               

 

It is worthwhile to mention that, contrary to the risk-neutral stochastic model, the position in the worst-

case forward trade for homogenous firms depends on both   (the expected values of the demand parameters) 

and  au* (the value of the intercept of the demand function in the scenario in which at least one of the firms 

obtains its lowest profit).  

We carry on the analytical results by comparing the equilibria obtained under the risk-neutral stochastic 

model and the robust analysis. We can derive the specific conditions under which the expected production in 

the robust analysis is higher or lower than the one in the risk-neutral stochastic model, as expressed in 

Proposition 4.  
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completes the proof of the proposition.            
  

 

 

Proposition 4 establishes specific conditions when the expected production of a homogeneous firm under 

the robust analysis is higher than the expected production of the same firm at the risk-neutral stochastic 

model. The most common case arises when the expected demand intercept is larger than the worst-scenario 

demand intercept (where the firms achieves the lowest profit) and the slope of demand is greater than one and 

less than three (when the number of firms is as small as two).  
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Proposition 5 derives the conditions under which the forward trading in the worst-case analysis is higher 

than the forward trading in the risk-neutral stochastic model. These conditions allow the decision maker to 

choose appropriate parameters. In order to analyse these two conditions (described in Proposition 5) further, 

define a parameter 
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Figure 2: The cases described for forward trading obtained by the worst-case and stochastic models.

R

b

1

1

n

n
b

*u
aa

*u
aa

*u
aa

b



 
Our analysis proceeds by comparing the profits received by the firms under the worst-case and the risk-

neutral analysis. The robustness in worst-case analysis is due to the inferiority of the min-max solution, e.g., 

Rustem & Howe (2002). As proved in Proposition 6, profit of any firm implementing the worst-case strategy 

is always lower than the one gained by the risk-neutral strategy.    

Proposition 6. The worst-case profit at player level is less than the expected profit. 

 

    Proof: Let *
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    Finally, we determine the conditions, under which the proportion of forward trading in the worst-case 

analysis is higher (lower) than the one in the risk-neutral stochastic model.  

 

Proposition 7. For homogenous firms, one of the following conditions holds. 
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       Proof: Recall that for each demand scenario, Ku ,,2,1 , ua c . For homogenous firms, the 
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Note that for the second part of the proposition, the sign of inequality in (15) needs to be changed. It is also 
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Figure 3 illustrates how the relationship between the slope of demand, b, and the ratio R determines the 

circumstances in which the proportion of forward trading in the risk-neutral model is higher or lower than the 

one in the worst-case analysis. The frontier is convex for low number of firms (n). However, it becomes 

almost linear as n increases. As can be seen from the relationship stated in Proposition 7, the worst-case 

proportion traded forward depends on the slope of demand, the demand intercepts, and the production costs, 

see (15), as illustrated in Figure 3.  

 

Figure 3: Relationship between the proportion of forward trading in the worst-case and risk-neutral analysis. 

Next, we design a series of numerical experiments to illustrate the performance of optimization models as 

well as to validate the analytical results.  

6. Computational Experiments 

For illustration purposes, we consider a stylized industry with four firms that sell directly to the final 

consumers. The four players differ in the production technology. The marginal cost of production is assumed 

to be constant. We set up three different experiments. Table 1 summarizes the parameters used in three 

experiments for the portfolio of technologies. The first experiment assumes that all players are homogenous 
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with a marginal production cost equal to one. In the second and third experiments, the players are 

heterogeneous with different marginal costs of production.  

Following Allaz (1992), we model consumer behaviour using a stochastic linear function, in which price 

is a function of production. Moreover, the level of demand is defined by the parameter a. For the deterministic 

model, we use mean demand (expected value of a) as E[a] = 55. For the stochastic and worst-case 

optimization models, uncertain demand parameter a~  is represented by ten rival scenarios 10,,2,1u  as 

10, 20, 30, 40, 50, 60, 70,80, 90,100ua          . Notice that demand varies between 10 and 100. Each scenario u is 

associated with the probability pu whose values are 0.05, 0.05, 0.1, 0.1, 0.2, 0.2, 0.1, 0.1, 0.05, 0.05 for 

scenarios, respectively. In addition, we fix 1b  through all experiments. 

Table 1  
 

Experiment ID Player 1 Player 2 Player 3 Player 4 

Experiment 1 1 1 1 1 
Experiment 2 1 2 3 4 
Experiment 3 1 2 4 6 

 

We analyze the performance of each player (denoted as P1, P2, P3 and P4) under three models; 

deterministic, stochastic and worst-case analysis. Their results are presented in Tables 2, 3, and 4 in terms of 

expected production (EPROD), expected forward trade (EFT), expected proportion traded forward (EPTF), 

expected profit (EP)and minimum profit (MP). We implement all optimization problems in the General 

Algebraic Modeling System (GAMS) (http://www.gams.com), and integrate it with nonlinear optimization 

solver CONOP, Drud (1992). It is worthwhile to mention that the CPU time, taking to solve the optimization 

problems, is in the range of one to three seconds.  

Table 2 shows that, as proved in Proposition 1, the quantity traded in the spot and forward markets in the 

deterministic model are equal to the expected spot trading and forward trading in the stochastic risk-neutral 

model since the expected value of the intercept of demand equals its value in the deterministic model. 

Similarly, for heterogeneous players in Experiment 2, the levels of trading in the spot and forward markets are 

the same in the deterministic and risk-neutral stochastic models. However, Proposition 1 does not hold for 

Experiment 3 as the equilibrium quantity for player 4 is zero in the very low demand scenario and the capacity 

constraint is binding. Consequently, quantities traded in the stochastic and deterministic models are different: 

3.4 in the deterministic model and 4.0 in the stochastic model for player 4.  



Furthermore, in all experiments and for all the players, the expected profit in the risk-neutral stochastic 

model is higher than the expected profit in the deterministic model. This result arises from the fact that the 

forward prices in the deterministic model (4.18, 5.59 and 6.29, for Experiments 1, 2 and 3, respectively) are 

lower than the corresponding forward prices in the risk-neutral model (4.64, 5.83 and 6.34, for Experiments 1, 

2 and 3, respectively), due to the existence of scenarios in this second model with prices equal to zero. 

Table 2: Results obtained by deterministic model 

 
 

Table 3: Results of scenario based risk-neutral stochastic model 

 
 

Comparing performance of stochastic and worst-case models presented in Tables 2 and 3, we observe 

that demand uncertainty leads to a significant increase in the value of the different technologies, and this 

effect is particularly evident in the case of the most expensive ones. For example, in Experiment 3, the 

expected profit of player P4 increased from 1 in the deterministic model to 16.8 in the risk-neutral stochastic 

model. Furthermore, the introduction of uncertainty increases risk, obviously, and the minimum profit is lower 

for all the players in all the experiments.  

Table 4: Results of worst-case analysis 

 
   



From the comparison of Tables 2 and 4, which presents the worst-case analysis results, we conclude that 

if the players are risk averse they tend to have higher expected profits than in the deterministic case. 

Moreover, in Experiment 3, the player with the very expensive technology P4 sells rather than buying in the 

forward market as the expected price is 5.1, below his marginal cost. 

We also compare the performance of the risk-neutral stochastic model (in Table 3) with worst-case 

analysis (in Table 4). Overall, the computational experiments confirm the analytical results proved in the 

previous section. The worst-case profit is lower than the expected profit, as proved in Proposition 5. If all the 

firms are homogeneous as in Experiment 1, then under worst-case analysis there is more trade in the forward 

market (Proposition 4) and higher production in the spot market (Proposition 4). Moreover, the homogeneous 

players trade a higher proportion of their production in the forward market under worst-case analysis than in 

risk-neutral analysis. However, as Experiments 2 and 3 clearly show, these results are not extendable to the 

heterogeneous case. 

 
Figure 4: Expected profits of players obtained by different models at various market structures. 

 
The performance of each player in terms of profit (that is obtained by deterministic, stochastic and worst-

case strategies) at different market structure is presented in Figure 4. The left plot assume that all players in 

the market are homogenous and have unit marginal production cost whereas the middle and right plots 

consider heterogonous players facing various production costs. We observe that the risk-neutral model 

provides the highest expected profit for both homogeneous and heterogeneous players with any marginal 

production cost. As all players under the worst-case analysis consider a conservative approach, their expected 

profits are lower than the ones obtained by the stochastic strategy. However, the worst-case profits at any 

market structure are still higher than the ones obtained by the deterministic strategy. In particular, the worst-



case strategy outperforms at the catastrophic market conditions like the highest production cost as illustrated 

by player 4 in Experiment 3. 

 
  Figure 5: Robustness of minimax strategy. 
 

       In Figure 5, we present the robustness of the minimax strategy for all players over ten scenarios for 

Experiment 1 (represented by just one line as all the players are homogeneous) and Experiment 3 (in which 

each player is has his own line, Player 1, Player 2, Player 3 and Player 4).  We have disregarded Experiment 

2, in order to simplify the figure, as it is similar to Experiment 3. As it can be seen from Figure 5, the worst-

case profit is achieved at fifth scenario (a5 = 50) for all experiments. This shows that expected profit for all 

players will improve if the worst-case scenario is not realised. 

7. Conclusions 

    In this paper, we consider robust Cournot dynamic games and model the interaction between forward 

contracts and spot prices in oligopolistic markets under uncertainty. We introduce discrete scenarios 

representing data uncertainty into the two-stage stochastic model that was previously developed by Allaz 

(1992), Allaz & Vila (1993), Dong & Liu (2007), and Mendelson & Tunca (2007). We then extend the risk-

neutral stochastic model to the worst-case design of oligopolistic markets at the player level. Analytical results 

comparing the properties of deterministic, risk-neutral and worst-case models are derived.  

    We have proved that, ceteris paribus, the deterministic and risk neutral models lead to the same decisions 

regarding forward trading and expected productions, if the corresponding 

functions. We have further showed that the expected profit in the risk neutral model is equal to the profit in 

Rival Scenarios

Expected Profit

Player 1 Player 2 Player 3
Player 4 Worst-case profit Experiment 1



the deterministic model for as long as the weighted prices in the risk-neutral scenarios are equal to the price in 

the deterministic spot market. 

    In addition, we have established the relationship between the risk-neutral and robust analysis under specific 

conditions depending on the specific levels of demand, demand slops and production costs. It is shown that 

the worst-case model provides higher expected production and forward trading than the risk neutral model. 

However, it is not clear in which model the proportion of forward trading on expected production is larger.  

    Finally, we have carried out numerical experiments, within a stylized representation of the electricity 

industry, in order to illustrate the performance of these models. Our findings can be summarised as follows;  

Demand uncertainty has a significant impact on the value of the different technologies.  

For all homogeneous firms in the market, the worst-case analysis provides more trade in the forward 

market (in absolute and as a proportion) and higher production in the spot market. However, these results 

do not hold for any heterogeneous player.  

The expected profits in the worst case analysis are lower than the in the risk-neutral model, due to the 

are still higher than the ones obtained by the deterministic strategy.  

    Moreover, our results suggest that worst-case modelling of Cournot players in oligopolistic industries 

captures better behaviour of the generation companies in practice as in the real world prices tend to be lower 

(and firms tend to produce more) than suggested by the risk-neutral Cournot models (e.g., Bunn & Oliveira, 

2008; and Green &March, 2004). As a result, we can conclude that the robust worst-case analysis at player 

level, as introduced in this article, is an important step forward in the modelling and understanding of how 

risk-averse oligopolistic firms behave in practice. 
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