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Real-Time Dynamic Pricing in a Non-Stationary

Environment using Model-Free Reinforcement Learning

Abstract: This article examines the problem of establishing a pricing policy that maximizes

the revenue for selling a given inventory by a fixed deadline. This problem is faced by a variety

of industries, including airlines, hotels and fashion. Reinforcement learning algorithms are used to

analyze how firms can both learn and optimize their pricing strategies while interacting with their

customers. We show that by using reinforcement learning we can model the problem with inter-

dependent demands. This type of model can be useful in producing a more accurate pricing scheme

of services or products when important events affect consumer preferences. This paper proposes

a methodology to optimize revenue in a model-free environment in which demand is learned and

pricing decisions are updated in real-time. We compare the performance of the learning algorithms

using Monte-Carlo simulation.

Keywords: Revenue Management, Dynamic pricing, Reinforcement learning, Simulation.

1 Introduction

Dynamic pricing is a business strategy that adjusts the product price in a timely fashion in order

to allocate the right service, to the right customer, at the right time [1]. It is usually applied when

there are uncertainties and seasonality of demand and supply, in an attempt to increase revenue. In

particular, with the use of dynamic pricing over the internet the seller is informed about the level of

demand in real-time and can price items using the optimal policies computed using historical data.

In many industries managers face the problem of establishing a pricing policy that maximizes the
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revenue from selling a given inventory of items by a fixed deadline. The common characteristics

of these industries are that the full inventory of products is available for sale at the beginning of

the selling period, no re-ordering is allowed, and the unsold products that remain by the deadline

have a zero constant salvage value [2]. This paper is concerned with using reinforcement learning

to solve the tactical problem of dynamically pricing these products to maximize the total expected

revenue.

Examples of industries that must use dynamic pricing strategies are manufactured goods and

services [3,4]. The first category includes goods with limited shelf-life, such as food items, electronic

goods or fashion garments, which are usually sold in a finite time-frame, meaning that there is a

deadline by which they must be removed from the store. The second category includes the service

industries where the service will not generate revenue once the time window for availability has

passed, such as airlines, hotels, conference or party facilities, cruise ship holidays, and tickets for

trains, theatres, concerts, cinemas and stadiums.

The single product pricing problem addressed in this article, and originally studied by Gallego

and van Ryzin [5], is important as it represents the issues faced in several industries and it is a

good test framework for methodological contributions, see [6-15]. The most essential consideration

when developing such a pricing policy is demand forecast accuracy. There are two major sources of

randomness in demand: the customer arrival rate and customer reservation price. Most academic

studies in revenue management assume that the functional relationship between arrival rate and

price is known to the decision-maker. This assumption makes the problem more manageable and

offers qualitative insights but it is unlikely to provide an optimal policy. In practice it is very rare

that the decision-maker has full knowledge of the demand function. For this reason, to impose a

structural form on the demand function can lead to model misspecification, resulting in revenue

loss.

The main objective of this paper is to propose a model-free approach whereby the transition

probabilities between states (i.e., the demand behaviour) are not characterized by a particular

distribution. Reinforcement learning techniques, such as Q-learning and Q-learning with eligibility

trace Q(λ), are applied to solve the problem of optimal dynamic pricing of perishable products when

demand is stochastic with unknown characteristics. The contribution of this paper is to propose
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a tested computational method (i.e., reinforcement learning) to solve the revenue management

problem when information is incomplete and demand is non-stationary. In this article we use two

popular methods, Q-learning [16] and the Q-learning with eligibility traces, originally proposed by

Peng and Williams [17] .

When selling products or services with well known statistical distributions the information

about one product can be used to update the demand for similar products. For example, one may

consider all flights for a particular origin-destination pair and a specific departure time each week.

Since booking can start half a year in advance, or even earlier, this provides simultaneous learning

opportunities for 26 or more concurrent episodes, shifted by 1 week relatively to each other. This

can similarly be applied to hotel rooms, cabins on cruise liners, and cars at rental agencies. In

all these services there are opportunities to book in advance, they are perishable, and there is a

window for learning from the same service, from one time period to the next. For example, when

pricing hotel rooms, the behaviour of demand for a given room type, on a Monday, can be used

to price for the same room type the following Monday.

However, when a new product is launched, the demand patterns may be very different from

past ones. In this case reinforcement learning will be even more helpful. If iPad 2 is launched and

the demand profile is different from iPad, for the same time period, this difference is used by the

algorithm to update the expectations about future demand for the product, implicitly, without

having to explicitly compute a demand forecast.

The paper is organized as follows. Section 2 presents a literature review and places the contribu-

tion of this paper in comparison to the literature. Section 3 discusses how the model is formulated

and describes how reinforcement learning is used to solve the dynamic pricing problem. Section

4 presents the analytical results, showing that Q-learning with eligibility converges to the optimal

policy, and that the rate of learning is faster than with the simple Q-learning. Section 5 provides

numerical results, and qualitative insights into the advantages of model-free reinforcement learning

and compares the Q and Q(λ) learning algorithms.
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2 Related Literature

The two main research areas relevant to this study are dynamic pricing and reinforcement learning,

each of which is addressed in turn, together with a discussion of the contribution in this article,

where appropriate.

The majority of papers that address the problem of demand learning or estimation of pricing

in the context of a single product, do so by assuming that one or more of the demand parameters

are unknown. Recent examples include [1, 3, 18, 19], who have incorporated real-time demand

information in their models. Anjos et al. [18] develop a general methodology for implementing

a pricing policy, and describe how the policy can be updated in real-time to react to changes in

the predicted purchase patterns of consumers. Lin [1] forecast customer arrival rates in real-time

using Bayesian statistics. Aviv and Pazgal [19] and Lin [1] assumed a known reservation price

distribution. Berk et al. [20] investigate pricing of perishable products in menu costs recogniz-

ing that, although demand autocorrelation within the selling is important, it is often ignored in

revenue management literature. They highlight that the complexity of modelling demand in an en-

vironment in which autocorrelation is a concern. In this case the Q-learning with eligibility traces

algorithm has the merit of learning the pricing policy in a model free-environment and hence has

the ability to implicitly incorporate autocorrelation of demand information within its policy. Zhao

et al. [21] study a dynamic pricing problem for perishable goods to consumers who may exhibit

inertia. They formulate this problem using the finite-horizon dynamic programming approach and

derive an optimal dynamic pricing policy. Daso and Tong [22] have modelled the pricing of perish-

able products considering strategic buyers. Banerjee and Turner [23] have developed a model for

pricing perishable goods based on differential equations, which is able to deal with group arrivals

and continuous prices. Li et al. [24] have modelled dynamic pricing of perishable products with

stochastic demand which they represented using randomness and fuzziness.

In most studies, there a few underlying assumptions in the model-based approaches, as in the

case of the Bayesian learning. In this case, when the conditions of the model are violated, the

policy is non-optimal. Lim and Shanthikumar [25] presented an approach for the single product

dynamic pricing problem that accounts for errors in the underlying model at the optimization

stage. They emphasized the importance of the underlying assumptions about the demand-rate
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when computing the optimal pricing policies. Besbes and Zeevi [26] developed nonparametric

approaches that learn demand in a model free environment. However, there is a major issue with

nonparametric approaches; the loss of tractability.

The reinforcement algorithms used in this article produce look-up tables of value functions of all

state-action pairs where the state is characterized as the capacity level and time until expiration

and the action is the price. The value functions of a state-action pair are calculated by the

immediate revenue gained and the expected future revenues. Using these algorithms allows the

initialization of the value functions as the best estimated demand function and then observe the

real-time demand and update the value functions. The decision-maker is then better informed

than an agent that starts pricing assuming no prior knowledge. This is illustrated in the numerical

experiments in Section 5.

There is limited literature in the area of revenue management using reinforcement learning

to find an optimal pricing policy. Gosavi et al. [27] used reinforcement learning to develop a

strategy for seating allocation and overbooking in order to maximize the average revenue gained

by an airline. In particular, Raju et al. [28] used a reinforcement learning (Q-learning) algorithm

to price products dynamically with customer segmentation. They considered an infinite horizon

learning problem where there is no deadline for the sale of stock, and price changes according

to queue length and time. Carvalho and Puterman [29] have also investigated dynamic pricing

and reinforcement learning by studying maximization and learning problems in finite horizons for

unlimited product quantities. They have focused on specific parametric forms of customer arrival

distribution and on the probability of sales; the parameters are assumed to be fixed and unknown.

Cheng [30] applied the Q-learning approach to dynamic pricing in e-retailing. Cheng acknowl-

edges that Lin’s [1] approach to adjust price in response to changes in demand may not be plausible

due to the computational complexity of using dynamic programming. Cheng has characterized

demand in the same way as Lin except that the parameters of the model are learned using re-

inforcement learning. Price updates are made in real-time as the Q-learning algorithm produces

a look-up table and, therefore, value function updates can be made with ease. Cheng focused

on the computational advantages of using reinforcement learning and was not concerned with the

accurate representation of demand.
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This article differentiates itself from existing literature in dynamic pricing as it uses reinforce-

ment learning in the context of pricing perishable products with non-stationary selling demand.

3 Model formulation of the Dynamic Pricing problem

3.1 Markov Decision Process

In this article, the dynamic pricing problem of a perishable service is modeled as a discrete finite

horizon Markov decision process (MDP). The dynamic pricing problem is formulated as a MDP

because pricing is a real-time decision-making problem in a stochastic environment. This article

aims to approximate a pricing policy that maximizes the revenue for selling a given inventory of

products by a fixed deadline.

In practice, as it is difficult to apply a continuous price change, we use periodic price reviews,

where prices are only allowed to change at specific time-points. Here, a general model for a fixed

number of identical products or services is presented. The price, at any given time period, is

determined by the remaining capacity and the time (e.g., number of days) left before the deadline

expires. Let n be the total capacity of seats to sell and m be the total number of times intervals,

i.e., the number of times the price is reviewed and can be changed. The key components of the

MDP are:

• The state space: x ∈ X = {0, 1, .., n}. This represents the remaining capacity.

• Time horizon t ∈ T = {0, 1, ..,m} is the set of finite discrete times at which pricing actions are

executed, where m is the last selling period before the service expires.

• xt represents the remaining capacity (state of the system) at time t.

• A(xt) denotes the set of prices the seller can choose to set when there is x remaining capacity at

time t, at ∈ A(xt) is a price for the capacity at time t.

• Transition Probabilities: pt(xt+1|xt, at) is the probability of having x remaining capacity at time

t+ 1, given that there is x remaining capacity at time t and price a is set.

• R is the revenue function defining, for each decision step, at every state and action, a real number

r(xt, at) for xt ∈ X, t ∈ T and at ∈ A(xt) which specifies the expected immediate revenue gained

for executing price a when there is x capacity remaining at time t.
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The objective is to maximize the total expected revenue presented in Eq. (1), in which x ∈ X and

Eπ is the expected value given the policy π.

V π(x1) = Eπ[r(x1, a1) + r(x2, a2) + .....+ r(xm, am)|x1] (1)

A policy is a function π : x× t→ at specifying the price that should be set given the remaining

capacity and time.

3.2 Adapting Reinforcement Learning to Dynamic Pricing

Reinforcement learning originated in the cybernetics, psychology, neuroscience, and computer

science disciplines and has ever since attracted increasing interest in artificial intelligence and

machine learning [31].

Reinforcement learning is an approach to sequential decision making in an unknown environ-

ment based learning from past experience. Reinforcement learning algorithms apply directly to the

agent’s experience, changing the policy in real-time. The first advantage of using reinforcement

learning is that it does not require a pre-specified model of the environment on which to base the

action selections. Instead, relationship between states, actions and rewards are learned through

dynamic interaction with the environment. The second advantage is that is adaptive in the sense

that it is capable of responding to a dynamically changing environment through ongoing learning

and adaption.

The Q-learning and Q(λ) algorithms have been proposed to approximately solve large scale

MDP problems. In the MDP framework: vπt (xt) denotes the expected total reward when starting

at state xt and following a policy π (i.e., at = π(xt) where π(s) denotes the action chosen in state s

when policy π is pursued). Qπ
t (xt, at) denotes the discounted expected total reward when starting

at state xt, taking action at and following policy π. That is Qπ
t is the state-action value function

for policy π at time t. Eq. (2) represents the relationship between Qπ
t (xt, at) and V π

t ,

Qπ
t (xt, at) =

∑
xt+1∈X

Pt(xt+1|xt, at)[r(xt, at, xt+1) + ηV π
t+1(xt+1)] (2)
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where η is the discount factor, 0 < η < 1. In terms of the Bellman optimality function, Eq. (3)

holds for arbitrary xt ∈ X, where Q∗t (xt, at) is the optimal value function for each state-action

pair. For t = 1, 2,..., m.

Q∗t (xt, at) =
∑

xt+1∈X

Pt(xt+1|xt, at)[r(xt, at, xt+1) + η max
at+1∈A(xt+1)

Q∗t+1(xt+1, at+1)] (3)

In the Q-learning and Q(λ) paradigms the decision-maker interacts with the environment

through executing a set of actions. The environment is then modified and the agent perceives

a new state, and a reward signal, at each time-point. In this process learning takes place through

trial and error in a dynamic environment.

Over the course of the learning process, the Q-values of every state-action pair, Qt(xt, at), are

stored and updated. A Q-value represents the usefulness of executing a pricing action at when the

environment is in a state xt. This paper considers the dynamic pricing model of identical items

over a finite selling horizon allowing the value of the state-action pairs, from one selling horizon

to the next, to be learned. Let k denote the selling horizon and each selling horizon be split into

m time intervals. The episode (selling horizon) refers to multiple instances of the dynamic pricing

problem in consecutive time horizons and the transition probabilities are the same for different

episodes (this makes them stationary across different episodes) but non-stationary within each

episode. The algorithms consist of updating Qk
t , the Q-values at every selling horizon k, for time

t, which is a representation the estimation of Q∗t , the optimal Q-values, from the current observed

transitions and reward < xkt , a
k
t , x

k
t+1, r

k
t >, where xkt , a

k
t , r

k
t are the remaining capacity, price

action, current observed reward at time t, in episode k, respectively and xkt+1 is the new remaining

capacity at time t+ 1. Note that rkt depends on xkt , a
k
t and xkt+1 : rkt ≡ r(xkt , a

k
t , x

k
t+1).

The Q-learning approach updating rule is represented by Eq.(4), where α(xkt , a
k
t ) is the learning

rate and 0 < η < 1. For t = 1, ...,m

Qk+1
t (xkt , a

k
t ) = (1− α(xkt , a

k
t ))Q

k
t (x

k
t , a

k
t ) + α(xkt , a

k
t )(r

k
t + η max

at+1∈A(xt+1)
Qk
t+1(x

k
t+1, at+1)) (4)

The Q(λ) algorithm is an extension to the one-step Q-learning algorithm. The Q-value esti-

mates of the value of all state-action pairs are updated in proportion to their eligibility. The idea
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behind the eligibilities is very simple: each time a state-action pair is selected within an episode

a short-term memory is assigned (known as a trace) which decays as the sales horizon moves for-

ward. The magnitude of the trace determines the eligibility of a state-action pair for learning;

a state-action pair visited more recently has a larger eligibility. The use of eligibility traces in-

creases the ability of a learning system to solve the temporal-credit assignment problem, i.e., to

calculate how to punish or reward a state-action choice, when it may have far reaching effects.

Additionally, reinforcement learning with eligibility traces has the important ability of learning

in non-stationary selling horizons, performing particularly well in situations in which the demand

between successive times (e.g., days) exhibits autocorrelation as it can incorporate hidden states

into its decision making process.

The transition information available to the decision-maker, at episode k, at time t, is < xkt , a
k
t ,

xkt+1, r
k
t >. The eligibility trace function, at episode k, at time t, is denoted by ekt . On experiencing

transition < xkt , a
k
t , x

k
t+1, r

k
t > the following updates are performed to the eligibility traces:

ekt (x
k
t , a

k
t ) = 1,

∀ i < t, ekt (xi, ai) = λekt−1(xi, ai) if Qk
t (x

k
t , a

k
t ) = maxat∈A(xt)Q

k
t (x

k
t , at),

otherwise ekt (xi, ai) = 0.

For all state-action pairs, the eligibility trace decays at a rate λ , except for the last state-action

visited where the eligibility trace is incremented by one unit. The traces can be updated in two

ways. If a greedy selection is made, then all the traces of the state-action pairs visited in the

episode decay at a parameter λ . The decay parameter determines how different state-action pairs

are assigned a certain prediction error. If an exploration action was taken, then the eligibility

traces are set to zero.

At episode k, for each time t, the estimation error is equal to

δkt = rkt + ηmaxat+1 Q
k
t (x

k
t+1, at+1) − Qk

t (x
k
t , a

k
t ) , and it is assigned to each prior state-action pair

visited, in episode k, according to their eligibility trace. The error is computed at each time t, and

its value, and the value of the state-action pairs previously visited in that episode, are updated.

Earlier visited state-action pairs are given less credit for the current error. The pricing action

many time-steps away take less credit, or blame, for the error at time t. Learning accelerates

because of the use of eligibility traces. The eligibility trace methods can strengthen the whole
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sequence of pricing actions. The objective of the learning strategy to teach the decision-maker the

optimal pricing policy. The Q(λ) algorithm computes the optimal value function iteratively: for

each state x at every time t, the optimal value Q∗t (xt, at) of each action at is estimated on the basis

of simulated transitions. When all these values have been estimated correctly the optimal policy

can be derived through through Eq.(5).

∀t ≤ m, ∀x ∈ X, π∗t (xt) = max
at∈A(xt)

Q∗t (xt, at). (5)

Before discussing the Q(λ) algorithm in procedural form (presented in Table 1), two important

elements must be introduced: the exploration rate and the learning rate. The absence of perfect

prior information concerning the demand model introduces a new component into the dynamic

optimization problem, the trade-off between exploration (attempting non-optimal decisions in order

to improve the current policy) and exploitation (choosing the best policy so far in order to maximize

the expected profit). The longer one spends learning the demand, the less time is spent exploiting

prices to increase revenue.

The objective of the algorithm is to obtain an accurate estimate of the optimal policy based

on observations during the exploration phase while, at the same time keeping the exploration rate

small, in order to limit revenue loss over this learning phase. The exploration rate (ε) chosen is

an ε-greedy policy at a rate 1/k so that learning progresses as the exploration rate decreases. The

result of this assumption is that, as the decision-maker gains more knowledge, sub-optimal prices

are explored less often. The learning rate is set in a similar manner and also decreases with time.

The learning rate for each state-action pair is denoted by α(xkt , a
k
t ). The learning rate α(xkt , a

k
t ) is

equal to 1/nk(xt, at), where nk(xt, at) is the equal to 1 plus the number of times the state-action

pair (xt, at) was visited by the process (xkt , a
k
t ) before time k.

The algorithm starts by initializing the Q-value and the following steps are repeated for each

episode k. All the eligibility traces for all state-action pairs are set to zero. The starting state, xkt

(the total number of inventory) and akt (the price for the product) are chosen. After choosing this

price the next state xkt+1(remaining capacity) and the immediate revenue gained, rkt are observed.

The price akt+1 in the next state is chosen using the (non-greedy) policy π. The temporal difference

error (δ) is calculated and the eligibility trace ekt (x
k
t , a

k
t ) is updated to 1. Then all the Q-values of
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Table 1: Q(λ) An online policy TD dynamic pricing algorithm for products in finite selling horizon

Initialise k = 1 and ∀ t Q1
t (x

1
t , a

1
t );

Repeat for each episode k →∞
Step 1: All traces are set to zero at the beginning of the sales horizon

∀ t, xt, at, ekt (xt, at)= 0;
Step 2: We initialize the initial capacities and price set xkt , a

k
t

Step 3: Repeat t = 1 to m (for each decision step in the selling horizon)
Step 3.1: Take price akt , observe the reward rkt and remaining capacities xkt+1

Step 3.2: We choose a price akt+1 for state xkt+1 using ε-policy π
Greedy price a∗t+1 ← argmaxat+1Q

k
t+1(x

k
t+1, at+1)

Step 3.3: TD error is δkt ← rkt + ηQk
t+1(x

k
t+1, a

∗
t+1)−Qk

t (x
k
t , a

k
t )

Step 4.: Update the (xkt , a
k
t ) pair’s trace ek(xkt , a

k
t )← 1

Step 4.1: ∀ i ≤ t ∈ T , ∀ xi, ai Update all Q-values according to their eligibility traces
Step 4.2: Qk+1

t (xi, ai)← Qk
i (xi, ai) + α(xki , a

k
i )δ

k
t e
k
t (xi, ai)

Step 4.3: If akt+1 = a∗t+1, then ekt+1(xi, ai)← λekt (xi, ai)
else ekt+1(xi, ai)← 0

Step 5: xkt ← xkt+1, a
k
t ← akt+1, k ← k + 1

the state-action pairs, are updated using their eligibility traces. All eligibility traces are updated:

if the price akt+1 is a greedy (optimal so far) action then all traces are multiplied by a parameter

λ; if akt+1 is an exploration action then all traces are set to zero. Then the next state xkt+1 at time

t + 1 and action akt+1 becomes the new xkt and akt . The process is repeated until the last time m,

for each episode.

4 Analytical Results

In this section it will be proven that the Q(λ) algorithm converges when demand is non-stationary

within a selling horizon. Additionally it will be proven that the Q(λ) algorithm has a faster

learning rate than the simple Q-learning algorithm and therefore converges faster. A general proof

of convergence for the Q-learning algorithm is described in Szepesvri and Littman [32]. In this

article we prove the convergence of Q(λ) in a non-stationary environment.

A non-stationary MDP has different state-spaces, actions, transition probabilities and reward

values at each time-step. The actions taken at each state are time-dependent. Consider a non-

stationary discounted finite MDP with a discount factor 0 < η < 1. At episode k a pricing decision

is made at each time t ∈ T = (1, 2, ...,m). Each time-step is associated in a finite state space
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X and a finite set of pricing actions A(xt). At episode k, for each time t ∈ T , we are given a

four-tuple < xkt , a
k
t , x

k
t+1, r

k
t >.

Assumption 4.1 (Sampling Assumptions) Consider a non-stationary finite MDP,

where pt(xt+1|xt, at) are the transition probabilities and r(xt, at) are the immediate expected rewards.

Let < xkt , a
k
t , x

k
t , r

k
t > be a fixed stochastic process, for each time t, and let F k be an increasing

sequence of σ-fields (the history space) for which < xkt , a
k
t , x

k
t−1, r

k
t−1, ...., x

0
0 > are measurable.

Then assume that the following holds for all t ∈ T :

1. pt(x
k
t+1 = xt+1|xt = xkt , at = akt , F

k) = pt(xt+1|xt, at).

2. E[rkt |xt = xkt , at = akt , F
k] = r(xt, at) and var[rkt |xkt , akt , F k] is bounded independently of k.

The Q(λ) updating is represented by Eq. (6), where 0 < η < 1. At time t for every state and

action visited in episode k. Let ji denote the time where the last greedy action was chosen for time

i, i.e., the last time where a greedy action was taken and Qm+1(xm+1, am+1) = 0. For i = 1, .., t.,

Qk+1
t (xki , a

k
i ) = Qk

t (x
k
i , a

k
i ) +

ji∑
t′=i

λt
′−iα(xkt′ , a

k
t′)[r

k
t′ + ηmax

at′+1

Qk
t′+1(x

k
t′+1, at′+1)

−Qk
t′(x

k
t′ , a

k
t′)].

(6)

Eq. (6) represents an off-line updating algorithm meaning that all state-action pairs visited before

and including time t, are updated at the same time. The Q-values are updated according to the

temporal difference error (Step 3.3 in Table 1) and their eligibility traces (Step 4.3) represented

as λt
′−i in Eq.(6). Theorem 4.1 proves that when using Q(λ) in a non-stationary selling horizon,

the Q-values converge. This is an extension of a theorem by Szepesvari and Littman (1999), who

proved that when using the Q-learning algorithm the Q-values converge.

Theorem 4.1 Consider Q(λ) in a non-stationary finite MDP where the sequence < xkt , a
k
t , x

k
t , r

k
t >

satisfies assumption 4.1. Assume that the learning rate sequence α(xkt , a
k
t ) satisfies the following:

1. 0 ≤ α(xkt , a
k
t ),

∑∞
k=0 α(xkt , a

k
t ) = ∞,

∑∞
k=0(α(xkt , a

k
t ))

2 < ∞ and both hold uniformly and w.p.1

and

2. α(xt, at) = 0 if α(xt, at) 6= α(xkt , a
k
t ) w.p.1. Then the values defined by Eq. 6 converge.
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This theorem shows that the Q(λ) in a Markovian environment converges if there are a suffi-

cient number of episodes. It will now be proven that the Q(λ) in a non-stationary finite horizon

converges more rapidly than the standard Q-learning algorithm, Theorem 4.2.

In order to compare the two methods we start by describing the way the respective Q-values are

updated in Eq. (7) and (8), where Qm+1(xm+1, am+1) = 0.

Q′t
k+1(xkt , a

k
t ) = (1− α(xkt , a

k
t ))Q

k
t (x

k
t , a

k
t ) + α(xkt , a

k
t )(r

k
t + ηmax

at+1

Qk
t+1(x

k
t+1, at+1)) (7)

On the other hand the Q(λ) updates the Q-values at each iteration. Where ji denotes the period

where the last greedy action was chosen for time i and whereQm+1(xm+1, am+1) = 0. For i = 1, .., t.,

Q′′t
k+1(xki , a

k
i ) = Qk

t (x
k
i , a

k
i ) +

ji∑
t′=i

λt
′−iα(xkt′ , a

k
t′)[r

k
t′ + ηmax

at′+1

Qk
t′+1(x

k
t′+1, at′+1)

−Qk
t (x

k
t′ , a

k
t′)].

(8)

The eligibility traces are used to speed up the learning process by tracking visited state-action

pairs and adding a portion of the reward received from each decision to each state-action pair

visited in an episode. Instead of updating a state-action pair at each iteration, as the Q-learning

algorithm does, the Q-learning with eligibility traces updates the Q-values of all pairs with eligi-

bilities different from zero, allowing the rewards to be carried over several state-action pairs. Let

Q+ be a fixed point.

Theorem 4.2 For every natural number k, ∀xt ∈ X, a ∈ A(xt) and ∀ t = 1, 2, ..,m,

|Q′kt (xt, at)−Q+
t (xt, at)| ≥ |Q′′kt (xt, at)−Q+

t (xt, at)|.

Theorem 4.2 proves that the Q(λ) strictly dominates Q-learning and therefore the policies produced

by Q(λ), in the learning process, lead to higher revenues.
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5 Numerical Results and Qualitative Insights

5.1 Model-Free versus Parameterized Structure

The model-free approach is now compared with a parametric learning algorithm. To begin with a

one step process is considered so that the Q-learning and Q(λ) perform with the same efficiency.

The performance of three algorithms is explored: (i) The Q-learning algorithm, (ii) the Q-learning

algorithm where Q-values are set to the best estimated demand function and (iii) a learning algo-

rithm where the parametric structure is known but the parameter values (the tuning parameters)

are unknown [26].

The performance of these algorithms is measured by the percentage deviation from the optimal

policy. The optimal policy is computed with full information using dynamic programming. Our

results are based on running 103 independent simulation replications from which we averaged the

revenues. The discount factor used in all the numerical results was η = 0.999, because as η tends

to 1 the reinforcement learning algorithms in (6) and (7) converge to the optimal policy [33].

Table 2 summarizes results for the two underlying models, the exponential demand model

λ(a) = θexp(−l2a); θ = l1exp(1) and the linear demand model λ(a) = h1 − h2a, using different

parameter values. Here a denotes the pricing action.

The Q-learning algorithm does not make any assumptions about the structure of the demand

function (beyond the assumptions made in Section 4). The Q-learning with the best estimated

(BE) demand function algorithm (Q-learning BE) initializes the Q-values to a demand function

that the decision-maker believes to be sensible. For the exponential demand model it initialized

the Q-values using the demand function λ(a) = 15exp(−0.5a) and for the linear model using

λ(a) = 30 − 5a. The demand function (linear or exponential) is an input parameter to generate

simulation data, the Q-learning algorithm and Q-learning algorithm with best estimated demand

function do not know the demand function but, use the simulated data to guess the best price at

each point of time in the horizon. The parametric algorithm knows the structure of the demand

function, e.g., linear but does not know the parameter values, i.e., l1 and l2 but uses the simulation

data to estimate the parameter values.

The Q-learning BE algorithm learns in the same manner as the Q-learning algorithm (as seen
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in Table 1), with the only difference being that its Q-values are initialised to an estimated demand

function as opposed to zero’s with the Q-learning algorithm. The Q-learning BE algorithm as-

sumes some prior knowledge of demand and will therefore initially selects actions less randomly in

comparison to the Q-learning algorithm. The Q-learning and Q-learning BE algorithm converge

to the same policy.

In all cases, the initial capacity level was x = 20, the selling horizon was T = 1 and the feasible

price set was {0.1, 10}.

Table 2: Performance of algorithms measured as a percentage of the optimal policy for different
demand functions

Demand Q-learning Q-learning with BE Parametric

Exponential
l1 = 10, l2 = 0.5 93.2 98.1 97.1
l1 = 15, l2 = 1 94.3 97.2 97.5
l1 = 20, l2 = 0.75 93 96.3 98.2
l1 = 25, l2 = 3 94.2 92.9 98.0
l1 = 30, l2 = 0.5 94.5 98.1 97.8

Linear
h1 = 50, h2 = 4 94.2 95.1 97.6
h1 = 35, h2 = 2 93.2 94.3 97.3
h1 = 30, h2 = 3 93.4 96.1 97.2
h1 = 20, h2 = 2.5 92.5 96 97.2
h1 = 15, h2 = 1.5 93.7 97.1 98

The less structure is assumed a priori, the higher the profit loss relative to the full information

benchmark; this is the cost caused by increasing uncertainty with regard to the demand model.

An additional fundamental difference between the various policies is the degree to which the price

domain is explored.

The Q-learning algorithm essentially needs to explore the entire domain; the Q-learning with

the best estimated function has some prior knowledge so initially smarter pricing decisions are

made; the parametric policy with unknown parameters explores prices to ensure precision. When

a single parameter is unknown, one can infer information about the parameter from observations

of demand at a single price. After the first stage a∗ can be estimated but we continue learning, to

ensure the estimate of a∗ becomes more precise.

It was illustrated in the previous experiment that more refined information regarding the de-
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mand model yields higher revenues. However if a parametric structure of demand is postulated,

which is incorrect relative to the true underlying demand model, there is a danger of model mis-

specification. This misspecification risk can be eliminated via reinforcement learning algorithms,

but at the price of settling for more modest performance revenue-wise. An illustration of this

trade-off is now given. The time horizon is fixed to be T = 1 and the set of feasible prices is fixed

to be {0.1, 10}. Table 3 depicts the performance of the three algorithms for two underlying de-

mand models for various parameter values. In the first set of experiments the parametric algorithm

first assumes an exponential parametric structure for the demand function, λ(a) = θexp(−l2a);

θ = l1exp(1) , but the underlying demand model is linear λ(a) = (h1 − h2a). In the second set of

experiments the parametric algorithm is assumed to be linear but the underlying demand model

is assumed by the parametric algorithm as exponential.

The Q-learning with the best estimated (BE) function algorithm (Q-learning BE) also initial-

izes the Q-values assuming the same parametric structure (misspecified model) as the parametric

algorithm. For the first set of experiments the BE demand function: λ(a) = 15exp(−2a) and for

the second set of experiments is λ(a) = 30 − 5a. The inventory x = 20 is used for all the ex-

periments. The results depicted in the Table 3 are based on running 103 independent simulations

from which the performance indicators were derived by averaging their revenues. The percentage

deviation from the optimal policy for the three algorithms was calculated.

The purpose of this comparison is to illustrate how the model-free approaches are robust to

modeling errors and assumptions. The parametric algorithm outperforms its model-free algorithm

counterpart when the assumed parametric model is consistent with the true demand function;

otherwise the parametric algorithm leads to a non-optimal policy. The parametric algorithm

assumes a demand structure and learns the parameter values using the simulated data. If the

assumed demand structure (for example, linear) is different from the actual demand structure (for

example exponential) then the parametric algorithm does not learn the optimal policy.

If the model is misspecified, the performance of the parametric algorithm fails to achieve the

full revenues asymptotically. The model-free learning approach eliminates the risk stemming from

model misspecification but at a price of extracting lower revenues than its parametric counterpart.

The compromise for this is to initialize the starting Q-values to the best estimated function and
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Table 3: Performance of algorithms measured as a percentage of the optimal policy for different
demand functions

True Demand Q-learning Q-learning with BE Parametric (misspecified)

Linear
h1 = 40, h2 = 2.5 92.9 93.2 82
h1 = 20, h2 = 1.5 94.2 94.9 82.9
h1 = 60, h2 = 5 94.3 94.2 80.0
h1 = 30, h2 = 0.5 92.7 93.1 81.1
h1 = 20, h2 = 0.2 94.5 94.6 82.1

Exponential
l1 = 10, l2 = 1 93.2 93.1 64.3
l1 = 15, l2 = 3 92.0 94.2 63.1
l1 = 30, l2 = 4 90.2 93.2 63.2
l1 = 20, l2 = 3 93.2 94.2 65.2
l1 = 10, l2 = 0.5 92.1 93.1 62.1

then continue learning under the model-free approach. The difference then is that when a greedy

action is taken, it is likely to yield more revenue than an action chosen by a model with no or very

little information about demand.

5.2 Q-learning versus Q(λ)

Next, the performances of the Q-learning, Q-learning with BE, Q(λ), Q(λ) with BE, parametric

(well defined) and parametric (misspecified) algorithms are compared. Consider a single-leg flight

problem where the airline company does not know customer demand, i.e., it has no explicit model

of customer buying behavior, and only observes realized demand after taking pricing action in

different states. The demand data is generated using the following assumptions:

1. Time dependent Poisson Distribution. Customer arrival rate is a Poisson distribution with

discrete times for the mean arrival µ(t). It is assumed that the mean arrival rate decreases at a

linear rate µ(t) - 5t . This assumption is stochastic and has an autocorrelation element of demand.

The initial customer arrival rate is drawn randomly from a uniform distribution [b, c]. For these

experiments, b=50 and c=100.

2. The customer’s reservation price (how much the customer is willing to pay) for the service

increases exponentially as the decision time-steps get closer to expiring. Customers who do not

buy the product do not wait for a cheaper price. The time horizon is fixed to be a discrete set
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T = {1, 10} and the set of feasible prices is fixed to be {70, 120}. The stock is a discrete set

{10, 100}.

The performance of these algorithms is measured by the percentage deviation from the optimal

policy. The optimal policy is the policy under full information about demand. The results given

here are based on running 103 independent simulation replications from which the average revenues

were computed. The best estimated demand for the Q-learning and Q(λ) is defined by 75 -

5t ∗ exp(−2/t ∗ a/100), the parametric well-defined is defined as µ(t) - β1t ∗ exp(−β2/t ∗ a/100)

and the parametric misspecified is µ(t)exp(−β1) ∗ exp(−β2/t ∗ a/100). Table 4 summarizes the

performance of the algorithms.

Table 4: Performance of algorithms measured as a percentage of the optimal policy

Algorithm

Q-learning 72.3
Q-learning with BE 74.4

Q(λ) 91.4
Q(λ) with BE 94.1

Parametric (well-defined) 97.4
Parametric (misspecified) 60.1

Next, the Q-learning and Q(λ) algorithms are examined in more detail. To compare the

performance of the Q(λ) algorithm to the simple Q-learning, the total expected revenue generated

by both algorithms together with their confidence intervals were computed for the entire selling

horizon and initialized at a given state-action pair. The Q-values are compared for a capacity of

100 seats at a decision time where there are 10 days to departure and the unit price is 70. Figure

1 shows that the Q(λ) yields more revenue than the simple Q-learning algorithm.

The model based on the example described earlier for 2∗103 flights was run 103 times. Samples

were generated for both the algorithms to test the significant difference between the total expected

revenue for different numbers of iterations. The 95% confidence intervals were calculated for the

total expected revenues for 50, 500, 1000 and 2000 episodes, respectively.

The convergence of the algorithm in Figure 1 starts with the decision maker assuming no prior

knowledge of demand. In Figure 1, the decision-maker learns how to make over 60% of his profit

within the first 50 episodes. This information regarding demand can be used to generate a demand

function and if this demand function is correct an optimal policy can be established after a few
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Figure 1: Comparison of the expected revenue from Q-learning and Q(λ) as a function of the
number of episodes

more episodes. Two algorithms can be run simultaneously. The first would assume a demand

function based on the information gained in the first 50 episodes, from which it can then learn

the parameter values of the demand function thereafter. The second can learn the Q-values using

the simulated data assuming no model. Therefore, by running both algorithms, the risk of miss-

specifying the demand model is removed. In Table 5, LC and UC represent the lower and upper

value of the confidence interval, respectively.

Table 5: The expected revenue at different iterations for the Q-learning and Q(λ) Algorithm

No Episodes mean Q(λ) Mean Q-learning LC Q(λ) UC Q(λ) LC Q-learning HC Q-learning

50 4966 4555 3997 5931 4362 4097
500 8934 6083 8050 9798 5750 6504
1000 9290 6631 8584 10050 6224 7097
2000 9660 7130 8985 10307 6731 7549

It can be deduced from Table 5 that for 500, 1000, and 2000 episodes the confidence intervals

for the algorithms do not overlap, hence this indicates that there is a significant difference between

the total expected revenue for the two algorithms. At iteration number 50 the algorithms produce

similar results because the rate of exploration is higher in the beginning and it reduces as the

number of iterations increases. The Q(λ) make updates in a similar manner to the Q-learning
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traces when the exploration rate is high. The total expected revenue for Q(λ) is consistently

higher. For this example, it is evident that the Q(λ) algorithm outperforms the simple Q-learning

algorithm and, therefore, delivers higher expected revenue.

The sensitivity of the algorithms with respect to exploration levels was also analyzed. The

sensitivity analysis was performed in order to clarify the empirical performance of Q(λ) and to

compare it with the standard Q-learning algorithm. Figure 2 presents the performance of two

exploration rates, 0.01 and 0.5. The plots show that both exploration rates produce generally

similar results in terms of the total expected revenue gained at the Q-value with a capacity of 100,

ten days to departure and a unit price of 70.

Figure 2: Comparison of the expected revenue from Q-learning and Q(λ) as a function of the
number of flights

In Table 6 the total revenue for 2 ∗ 103 flights at different exploration rates are reported as

a percentage. The maximum result is set to 100%. The results show that a lower exploration

rate produces higher total expected revenue. Exploration is important because it helps reduce the

likelihood of the decision-maker exercising a suboptimal policy. More exploration is not better in
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Table 6: The percentage of the maximum received at different exploration rates.

Algorithm 1/k 0.01 0.05 0.1 0.5

Q-learning 91.28 91.28 91.28 90.09 82.38
Q(λ) 100 99.8 99.9 93.68 84.55

this case because the decision-maker is making less money when he exercises non-optimal pricing

actions too often as in rate 0.5. The exploration rate (1/k) produces the highest total revenue. It

is not rational to repeatedly try non-optimal pricing actions and it may be in the decision-maker’s

best interest to reduce this rate of exploration as he becomes more knowledgeable with time.

Q(λ) produces better results when the rate of exploration is lower. This is because when

the exploration rate is high it will perform updates in a similar manner to the Q-learning. The

sensitivity analysis discussed above shows that the Q(λ) algorithm outperforms the standard Q-

learning algorithm for all the exploration rates tested. The Q-learning algorithm, because of its

temporal adjacent based credit assignment, may fail to learn the true expected revenue value of an

action in a finite number of episodes. However, the Q(λ) algorithm is able to update estimates of

the Q-values based more on rewards and less on estimates from successor states, and its learning

rate is much faster. The trace mechanism provides an immediate propagation of the reinforcement

signal information, assigning credit in various degrees to possibly many more than one state-action

pair that is immediately affected in one-step Q-learning. The slow backwards propagation of credit

that is associated with Q-learning is potentially accelerated. The Q-values are therefore more likely

to converge to their true value within a finite number of episodes.

Another reason for the difference in total expected revenue between the Q-learning algorithm

and the Q(λ) algorithm is that demand between successive days exhibits autocorrelation. The

customer arrival rate is drawn randomly at the initial state from a uniform distribution. As time

increases the number of customers arriving decreases exponentially. As the service approaches

expiry, fewer customers arrive to purchase the service. Since the customer arrival rate at the start

of the selling horizon is stochastic, the customer arrival rate at the subsequent time intervals is

stochastic and autocorrelated. Hence, when a low customer arrival rate is drawn at the initial state,

the optimal dynamic pricing policy will be different compared to when a higher initial customer

rate is drawn. The Q-learning with eligibility traces algorithm is able to distinguish a pricing path
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according to the demand at the previous stage (time), hence the autocorrelation between demand

at each decision is captured and aids in finding the optimal policy.

Having compared the average performance of the Q-learning and Q(λ) in different settings, as

reported in Tables 4, 5 and 6, and in Figures 1 and 2, we now analyze two very specific examples

of the behavior of the algorithms in pricing different flights. With this purpose in Figure 3 we

report the revenue for each one of the 2000 flights generated using monte-carlo simulation. Figure

3 allows us to observe an example of the raw data used to generate the Q-values reported in Table

5. The specific revenues reported for each one of the 2000 flights are stochastic, as the customer

arrival rate is generated at random.

From Figure 3 we observe that the algorithms have converged to different pricing policies. In

this case the autocorrelation of demand plays a role in searching for the optimal policy. Whereas

the Q-learning algorithm managed to increase the average revenue by reducing the number of

flights with low revenues (at the cost of peak revenue which never goes above 7500), but still

have many flights with revenues below 5500; the Q(λ) algorithm was able to increase the average

revenue by reduding the number of flights with low revenue (there is no flight with revenue below

5500) and at the same time keeping the policy that allows the company to receive large revenues

at the peak times. This superior performance of the Q(λ) is justified by its ability to take into

account the autocorrelation of demand in its pricing policies. This property is explained more

clearly in the next example.

Q-learning is designed to work when the expected value of the pay-off from choosing a particular

action from a particular state is independent of antecedent states. On the other hand the Q(λ)

works well when the payoffs of sequential actions are autocorrelated. This idea is illustrated in the

next example where there are two days left before the service expires.

Figure 4 illustrates different demand pathways. If the decision-maker is at state x2, (there are

60 seats remaining) two days before the flight departs and he sets the price at 100, the next day,

he reviews his stock level and changes the price. He now has 40 seats remaining (state x3), is at

the final decision step, one day before departure, he takes the pricing action a3 (150), and sells all

the stock. However, the same pricing action a3 will yield zero revenue if the initial state was x1,

and the pricing action a1. This is because the process follows a different demand path.
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Figure 3: Revenue generated for 2000 flights for Q-learning and Q(λ) Algorithms

What we mean is that the demand for the service is different for different customer arrival rates

and different antecedent pricing actions. The previously visited state, time, action (stock levels,

days left before departure and pricing action) tuple encapsulate information, implicitly, about the

future demand. If it is more likely that state x3 is reached from state x2 and pricing action a2

then the agent soon learns that action a3 is profitable in state x3. Now if the actions are credited

and selected according to the updating rule based on the Q-values of the temporary states, as

in Q-learning, then when the decision-maker encounters state x1 he will believe that action a3 is

performing well and thus assigns undue credit to action, a1. If 100 simulation runs were conducted

and from them 85 of the runs went from state x2 to state x3, then the Q-value using Q-learning for

state x1, two days before departure at price 120 would be approximately 5100 and the Q-learning

with eligibility traces will give the value to be approximately zero, its true value.

Alternatively, if state x1 and x2 are equally likely to occur then the Q-learning algorithm

would fail to learn the optimal price sequence for state x2 with two days left before departure, as

a2 and a3 rather than a4 and a5. The Q-learning algorithm will assign Q(602, 1002) = 5000 and

Q(602, 902) = 6900, when in fact the true value of Q(602, 1002) is 8000. The Q-learning algorithm,
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Figure 4: Decision tree for pricing outcomes

because of its temporal adjacency based credit assignment, will fail to learn the true expected

value for an action due to this biasing effect. With the Q(λ) algorithm the Q-values will converge

and, in the process, implicitly learn the demand autocorrelation.

Using the Q(λ) when there is autocorrelation in demand the Q-values are estimated by Eq. (9):

Q∗t (xt, at) = max
at

[r(xt, at) +
∑

xt+1∈X×T

pt(xt+1|xt, at)ηmax
at+1

Q∗t+1(xt+1, at+1|xt, at)]. (9)

where Q∗t+1(xt+1, at+1|xt, at),

Q∗t+1(xt+1, at+1|xt, at) = max
at+1

[r(xt+1, at+1|xt, at)+∑
xt+2∈X×T

pt+1(xt+2|xt+1, at+1, xt, at)ηmax
at+2

(Q∗t+2(xt+2, at+2|xt+1, at+1)].
(10)

whilst using the Q-learning algorithm updates of the Q-values are estimated by Eq. (11):

Q∗t (xt, at) = max
at

[r(xt, at) +
∑

xt+1∈X×T

pt(xt+1|xt, at)ηmax
at+1

Q∗t+1(xt+1, at+1)] (11)

It is clear from this example that the eligibility trace learner has an important advantage

when demand in the selling horizon is autocorrelated, since, if necessary, it is possible to take
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into account the biasing effects of preceding states in assigning credit. The Q-learning algorithm

does not take into account the autocorrelation of demand between decision time-steps in the

selling horizon and the revenue generated by its policy is significantly lower. This illustrates the

effect of simplified model assumptions on the resulting policy and revenue gained, emphasizing

the advantages of using a reinforcement learning algorithm, in particular, the Q(λ) algorithm.

Models used in literature have made simplified assumptions about the real-world demand process,

especially when the demand between time intervals in the selling horizon is autocorrelated.

6 Conclusion

This paper uses reinforcement learning to solve the dynamic pricing problem with finite inventory

and non-stationary demand. The Q(λ) algorithm was used to solve the non-stationary Markov

decision process. We have shown analytically, and using simulation, that the Q(λ) converges and

produces a better policy than the standard Q-learning algorithm.

The learning models offer many advantages: they allow the decision-maker to make pricing

decisions without neither knowing the values of exogenous variables (i.e., competitors prices) nor

the structural form of the demand function. We show that the parametric algorithm outperforms

the non-parametric algorithm when the assumed parametric model is consistent with the true

demand function, otherwise the parametric model leads to loss owing to a model misspecification

error. The presented learning algorithm can take advantage of both approaches, the initial Q-values

can be set to the best believed demand function and, if this is the correct model, convergence will

be much faster than when no prior knowledge of demand is assumed. If the true model is different

from the assumed structure, then after observing realized demand data, the algorithm derives a

policy for the correct underlying demand model.

Additionally, decisions are made using real-time demand since inventory is tracked in real-time

and used to determine the current demand level. This paper analyzes how companies can both

learn and optimize their pricing strategies while interacting with their customers. In particular the

Q(λ) algorithm performs particularly well in situations where the demand between successive days

exhibits autocorrelation. Thus it is possible to learn the autocorrelation of the real-time customer

arrival rates and customer reservations along with any other influential factors implicitly within
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the selling horizon.

7 Appendix

Proof of Theorem 4.1

By relying on the observation made by Szepesvri and Littman [32] then one can deduce that

the Q-learning with eligibility traces in a non-stationary finite horizon is a relaxation process.

In order to prove Theorem 4.1 , we start by analyzing if the Q(λ) updating process meets the

conditions of Szepesvri and Littman [32, p.2025] corollary 1 by identifying the set of possible state

actions X × T × A(XT ). If we let fk(xt, at) be defined by equation (12):

fk(xt, at) =

 α(xkt , a
k
t ) if (xt, at) = (xkt , a

k
t );

0 otherwise .
(12)

and ∀ t ∈ T , (P kQt)(xt, at) = rkt + ηminat+1 Q
k
t+1(x

k
t+1, at+1) then we see that condition 1 and

2 of corollary 1 are satisfied because ‖ α(., .) ‖→ 0 and k →∞ w.p.1, so for large enough k, fk ≤ 1.

It remains to be proven that for a fixed function Qt ∈ B(X×T×A), the Q(λ) updating process

(xt, at) is defined by Eq. 13, if (xt, at) = (xkt , a
k
t ) and where Qm+1(xm+1, am+1) = 0 and jt denote

the time where the last greedy action was chosen for time t.

Q̂k+1
t (xkt , a

k
t ) = Q̂k

t (x
k
t , a

k
t ) +

jt∑
t′=t

λt
′−tα(xkt′ , a

k
t′)[r

k
t′ + ηmax

at′+1

Qk
t′+1(x

k
t′+1, at′+1)

− Q̂k
t′(x

k
t′ , a

k
t′)].

(13)

converges to HQt, where H is defined by Eq. (14).

(HQt)(xt, at) = r(xt, at) +
∑

xt+1∈X

pt(xt+1 | xt, at)ηmax
at+1

Q̃t+1(xt+1, at+1) (14)

When using Lemma 1 from Szepesvri and Littman [32, p.2024] this is straightforward. We

observe that the different components of Q̂k
t are decoupled, that is Q̂k

t (xt, at) does not depend on
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Q̂k
t (x
′
t, a
′
t) and vice versa whenever (xt, at) 6= (x′t, a

′
t). Thus it is sufficient to prove the convergence

of the one-dimensional process Q̂k
t (xt, at) to (HQt)(xt, at) for any fixed pair (xt, at) and identify

Qk
t of Lemma 1 with Q̂k

t (xt, at) as defined by Eq. (13).

Let F k be the field σ-field this is adapted to < xkt , a
k
t , x

k
t−1, r

k
t−1, ...., x

0
0, a

0
0 > If k ≥ 1 and then

F 0 adapted to (x00, a
0
0). We now rewrite the Q(λ) updating process in the form of Lemma 1 as

shown in Eq. (15)-(17).

We start by splitting Eq. (13) in order to define it in the form of the equation in lemma 1

Q̂k+1
t (xkt , a

k
t ) = (1− α(xkt , a

k
t ))Q̂

k
t (x

k
t , a

k
t ) + α(xkt , a

k
t )[r

k
t + ηmax

at+1

Qk
t+1(x

k
t+1, at+1)]

+

jt∑
t′=t+1

λt
′−tα(xkt′ , a

k
t′)[r

k
t′ + ηmax

at′+1

Qk
t′+1(x

k
t′+1, at′+1)− Q̂k

t′(x
k
t′ , a

k
t′)].

(15)

Updating the Q-values using eligibility traces allows for a better estimate of the Q-values of future

successive state-action pair. This allows one to obtain a better estimate of the maxat+1 Q
k
t+1(x

k
t+1, at+1).

Let maxat+1 Q̃
k
t+1(x

k
t+1, at+1) be defined as Eq. (16)

max
at+1

Q̃k
t+1(x

k
t+1, at+1) = max

at+1

Qk
t+1(x

k
t+1, at+1) + 1/α(xkt , a

k
t )[

jt∑
t′=t+1

(λ)t
′−tα(xkt′ , a

k
t′)[r

k
t′

+ ηmax
at′+1

Qk
t′+1(x

k
t′+1, at′+1)− Q̂k

t (x
k
t′ , a

k
t′)]]

(16)

Eq. (17) represents Eq. (13) in the same form as the equation in lemma 1.

Q̂k+1
t (xkt , a

k
t ) = (1− α(xkt , a

k
t ))Q̂

k
t (x

k
t , a

k
t ) + α(xkt , a

k
t )(r

k
t + ηmax

at+1

Q̃k
t+1(x

k
t+1, at+1)) (17)

Then at episode k we have for all t ∈ T , αk = α(xkt , a
k
t ), w

k
t = rkt + η maxat+1Q̃

k
t+1(x

k
t+1, at+1).

The proof from here follows the same as Szepesvri and Littman [32, p.2028], the conditions of

Lemma 1 are satisfied,

1)F k be an increasing sequence of σ-fields by definition;
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2)0 ≤ αk ≤ 1 by the property of α(xkt , a
k
t );

3)αk and wk−1t are F k are measurable because of the definition of F k;

4)E[wkt |F k, αk 6= 0] = E[rkt + η maxat+1 Q̃
k
t+1(x

k
t+1, at+1)|F k] =∑

x∈X Pt(xt+1 | xt, at)(r(xt, at, xt+1)+ η maxat+1Q̃t+1(xt+1, at+1)) = (HQt)(xt, at) because of the

first part of condition 1 from Assumption 1;

5)E[(wkt )
2|F k] is uniformly bounded because xt+1 can take finite values since, by assumption X is

finite, the bounded variance of rkt (from the second part of condition 2 from assumption 1);

6)
∑∞

k=0 α
k =∞,

∑∞
k=0(α

k)2 <∞ (Condition 1 of theorem 1).

Therefore we prove that Q̂k+1
t (xkt , a

k
t ) converges to E[wkt | F k, αk 6= 0] = HQt(xt, at), which

proves Theorem 4.1. QED.

Proof of Theorem 4.2

We use mathematical induction. It is sufficient to prove for any state-action pair at any time

t as they are updated in the same manner.

Initialize Q1
t = 0

Base case: when k = 1, ∀ t = 0, 1, 2, ..,m the Q-learning update is made as follows,

Q′t
2(x1t , a

1
t ) = (1− α(x1t , a

1
t )Q

1
t (x

1
t , a

1
t ) + α(x1t , a

1
t )(r

1
t + ηmaxat+1Q

1
t (x

1
t+1, at+1))

= 0 · (1− 1) + 1/1 · (r1t + 0)

= r1t ,

where α(x1t , a
1
t )= 1. The Q(λ) update is computed as follows,

Q′′t
2(x1t , a

1
t ) = Q1

t (xt, at) +

jt∑
t′=t

λt
′−tα(x1t′ , a

1
t′)(r

1
t′ + ηmax

at′+1

Q1
t (x

1
t′+1, at′+1)−Q1

t (x
1
t′ , a

1
t′))

= 1/1(r1t ) + 1/1(λ)(r1t+1) + 1/1(λ)2(r1t+2) + ....+ 1/1(λ)k(r1jt).

Since all the initial Q-values are set to zero, jt = m. Then |Q′t2(x1t , a1t )−Q+
t (xt, at)| > |Q′′t 2(x1t , a1t )−

Q+
t (xt, at)|.
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We are learning more using the Q(λ) updating rule then, following Theorem 4.1 the difference

between the estimated Q-value and the fixed point Q-value is smaller using the Q(λ) updating rule.

Induction step: let k be an arbitrary natural number and suppose that |Q′tk(xt, at)−Q+
t (xt, at)| ≥

|Q′′t k(xt, at)−Q+
t (xt, at)|. Then if (xt, at) = (xkt , a

k
t )

|Q′tk+1(xkt , a
k
t )−Q+

t (xt, at)| = |(1− α(xkt , a
k
t ))Q

k
t (x

k
t , a

k
t ) + α(xkt , a

k
t )(r

k
t

+ ηmax
at+1

Qk
t+1(x

k
t+1, at+1)−Q+

t (xt, at))|.

Then if jt = t we have the Q(λ) update as

≥ |Qk
t (x

k
t , a

k
t )(1− α(xkt , a

k
t )) + α(xkt , a

k
t )(r

k
t + ηmax

at+1

Qk
t (x

k
t+1, at+1)

−Q+
t (xt, at))|.

This is equal to Q-learning update if the Q-value has converged to Q+. Otherwise the Q-

value, Q′′t
k+1(xkt , a

k
t ) estimated using the Q(λ), is closer to the Q+ since |Q′t2(x1t , a1t )−Q+

t (xt, at)| >

|Q′′t 2(x1t , a1t ) − Q+
t (xt, at)| holds. We can prove this by just observing the Q-value estimated for

both algorithms at the base case. Then if jt > t,

≥ Qk
t (x

k
t , a

k
t ) +

jt∑
t′=t

(λ)t
′−tα(xkt′ , a

k
t′)(r

k
t′ + ηmaxat′+1

Qk
t′+1(x

k
t′+1, at′+1)−Qk

t′(x
k
t′ , a

k
t′))−Q+

t (xt, at)|

= |Q′′t k+1(xkt , a
k
t )−Q+

t (xt, at)|. (inductive step)

Therefore |Q′tk+1(xkt , a
k
t )−Q+

t (xt, at)| ≥ |Q′′t k+1(xkt , a
k
t )−Q+

t (xt, at)| as required. QED
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