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Abstract: In this paper, we consider interaction between spot and forward trading under demand and 

cost uncertainty, deriving the equilibrium of the multi-player dynamic games. The stochastic 

programming and worst-case analysis models based on discrete scenarios are developed to analyze the 

impact of demand uncertainty and risk aversion on oligopoly (forward and spot) markets’ structure in 

terms of the forwards and spot pricing, traded quantities and production. A real case of the Iberian 

electricity market is studied to illustrate performance of the models. The numerical experiments show 

that cost uncertainty impacts on the strategic decisions more than demand uncertainty.  
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1 Introduction 
Market design has been the topic of analysis, for many years, of a large stream of literature 

researching how market rules, regulation, and behavioral issues, such as perfect vs. bounded 

rationality, interact in conditioning the companies’ strategies and market performance, in terms of the 

consumer and firms’ surpluses. This analysis has been particularly interesting in the case of 

oligopolistic markets in which a small number of firms interact in the production of a good or service 

delivered to the final consumers.  
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An oligopolistic market (in which this analysis has been particularly active) and  in the newly 

liberalized electricity markets in which a few large players (possibly holding a set of generation plans 

using different technologies) interact in proving electricity to final consumers. This industry is 

particularly difficult to analyze due to the very different technical features of the generation 

technologies and the nature of electricity which, at the same time, can be perceived as a commodity 

and as a service (as, currently, it is not economically viable to store in large scale required by the 

electricity distribution network).  

 

Some of the major research issues addressed in the context of electricity market design have been: the 

nature of the electricity pricing as, for example, the relationship between day-ahead and real time 

energy markets (e.g., Bunn and Oliveira, 2001; Borenstein et al., 2008), of auction mechanism, 

such as supply function offers (e.g., Bunn and Oliveira, 2001; Anderson and Hu, 2008b); 
abuse of market power by the large incumbent firms (e.g., Bunn and Oliveira, 2003); investment 

incentives and real option games (e.g., Oliveira, 2008; Siddiqui and Fleten, 2010; Siddiqui and 

Takashima, 2012; Nagl et al., 2013); transmission constraints and their impact on the market clearing 

prices and on market power (e.g., Limpaitoon et al., 2011; Weijde and Hobbs, 2011; Rosellon et al., 

2012; Schuler, 2012; Kunz, 2013); sustainable electricity generation and CO2 emissions (e.g., 

Limpaitoon et al., 2011; Green and Vasilakos, 2012; Leuthold et al., 2012; Schuler, 2012; Kunz, 

2013; Nagl et al., 2013; Henriot, 2014).  

 

A comprehensive understanding of the relationship between futures and spot electricity 

markets is critical for market players. In particular, the relationship between oligopolistic structure 

and the trade of productive assets in the electricity market (e.g., Bunn and Oliveira, 2007, 2008; 

Downward et al., 2011) and the impact of the introduction of futures markets for electricity on the 

behavior of players, prices and production under uncertainty (e.g., Gulpinar and Oliveira, 2012; 

Oliveira et al., 2013) have been studied. This is also the main topic addressed in this article.   

 

The relationship between spot markets and forward contracts, in oligopolistic industries, is a 

problematic one. On one hand it has been argued that the ability to engage in sequential forward 

contracts, or to trade in futures markets (organized exchanges for trading contracts on the future 

delivery of products and services in specific spot markets) ahead of the spot trading, can be profitable 

for the producers, in detriment of consumers: for example, Greenstone (1981) explained how some 

coffee producing countries, in the 1970s, used futures markets in their attempt to increase profits, 

buying their own production forward, and taking delivery.  
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On the other hand, in analyzing this relationship between forward contracts and spot markets, in the 

context of oligopolies, Allaz and Vila (1992, 1993) have shown that forward contracts increase 

competition between producers, reducing prices and profitability. On this topic, Thille (2003) has  

 

included inventories in his analysis, showing that, in this case, prices tend to be higher than in the 

Allaz-Vila model, but lower than in the Cournot model without forward trading. Bushnell (2007) has 

provided a solution for the Allaz-Vila model with N-players that he uses to analyze electricity 

markets. The relationship between forward contracts and spot markets has been tested empirically by 

Herguera (2000) who found evidence supporting the hypothesis that, given a concentrated market 

structure, the introduction of forward contracts leads to lower spot prices; this thesis has also been 

corroborated by Le Coq and Orzen (2006) in laboratory experiments.  

 

In the context of the electricity markets, this issue has been analyzed by Bushnell (2007) who 

developed a symmetric model of the relationship between futures and spot markets with 

multiple generators; the optimal trading strategies, in electricity markets, that account for the 

interaction between spot and futures markets have been developed by Carrión et al. (2007) 

for retailers, and Conejo et al. (2008) for generators. Anderson and Hu (2008), in a setting in 

which the generators trade with retailers, have shown that forward hedging mitigates market power; 

Murphy and Smeers (2005) and Kazempour et al. (2012) have analyzed how futures markets 

impact investment in electricity markets; Gulpinar and Oliveira (2012) have developed an 

algorithm for the worst-case analysis of the relationship between future and spot markets in 

the context of oligopolies, which they exemplify with the electricity industry; Oliveira et al. 

(2013) have analyzed the interaction between futures and spot markets in the electricity 

supply chain, taking into consideration two-part-tariffs and the contracts for differences; and 

Huisman and Kilic (2012) and Bunn and Chen (2013) have analyzed the forward risk premium (the 

difference between the average settlement price in the futures contract and the corresponding average 

spot price) in electricity markets, whereas Bunn and Chen (2013), using a MS-VAR model to account 

for endogenous and nonlinear price drivers, concluded that whereas daily premia tend to be driven by 

“operational aspects” the monthly premia tend to reflect “fundamental expectations”, Huisman and 

Kilic (2012) have emphasized that the pricing of forward contracts needs to take into consideration if 

the electricity is generated mainly from fossil fuels or from renewable (hydro, wind and solar 

generation) as way prices reflect expectations and risk premiums differs; Herraiz and Monroy (2013) 

have analyze the liquidity of the futures market in the MIBEL (Iberian Electricity Market), concluding 

that the market still has poor liquidity; Kalantzis and Milonas (2013) have analyzed the impact of 

futures trading on spot price volatility, focusing on the France and German electricity markets, 
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concluding that in the integrated market (and in the French market) the introduction of a futures 

market reduced spot price volatility. 
 

In this paper, we extend the stochastic programming and robust models (e.g., Gulpinar and Rustem, 

2007a,b) introduced in Gulpinar and Oliveira (2012) by incorporating uncertainty not only on the 

demand intercept but also on the demand slope and in the production cost. We derive equilibrium 

conditions for the two-stage dynamic games of producers within oligopolistic markets, both for risk 

neutral and risk-averse players. Finally, we analyze the case of the Iberian electricity market to 

explain the strategic behavior of the main producers in terms of optimal and worst-case strategies.  

 

The rest of the paper is organized as follows. In Section 2, we present a stochastic two-stage oligopoly 

market model. In Section 3 we model demand and production cost uncertainties using discrete 

scenarios and introduce scenario based stochastic programming model that maximizes expected total 

profit. Section 4 introduces a robust trading approach for two-stage oligopoly model using worst-case 

analysis over the scenarios. We present computational results in Section 5. Section 6 gives a short 

summary and our conclusions. 

 

2 Problem Statement: Stochastic Two-stage Oligopoly Market Model 
 

In the paper, we use tilde  to denote randomness; for instance “ ” represents random variable

. A description of the notation is given in Table 1. 

Table 1: Description of notation.  
 

Notation   Description 
N   number of producers that are represented by index of  
K   total number of discrete rival scenarios that are indexed by  

   total production of producer i 

   total forward trade in period 1 by producer i 

   forward price at period 1 

   equilibrium spot price at period 0 

   total production of oligopolistic market 

   profit of producer i in the spot market 

   profit of producer i in the forward market 

   total profit of producer i during the planning horizon 

        Random Variables 
   marginal cost of producer i 

   intercept and factor loading of demand function 
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In this section we first formulate the two-stage model mathematically and then derive the equilibrium.  

For the two-stage model, we consider N producers, represented by indices i = 1,…, N. Each producer 

trades in forward and spot markets within an oligopolistic industry during planning horizon. The game 

between producers starts under spot price uncertainty, at the first stage. The firms decide how much to 

contract forward for the production to be delivered at the second stage. Then, the spot trading takes 

place and production occurs.  

 

Let  be total production of producer i at time 1. The total production of oligopolistic market is 

determined as . Let  and  denote equilibrium spot price (at time period zero) and 

forward price (at time period 1), respectively. Let  fi  represent total forward trade of producer i for 

. Unlike the model introduced by Allaz and Vila (1993), we relax the binding pre-

commitment constraints in forward contracts. In other words, the producers are allowed to sell and 

buy forward. Therefore, forward trading variable fi can be positive (or negative) that implies forward 

selling (or forward buying) for player i.  

 

We consider two main sources of uncertainty on demand and marginal production cost. Demand 

uncertainty is described by parameters,  and , of the inverse demand function that is defined as  

 

The uncertain production cost  for producer i = 1,…,N  impacts on the variable cost, . For 

the quantities traded in the spot market, , the profit of producer i gained in the spot market at 

time zero is computed as . The forward profit at time 1 for producer i  is 

. Then the total profit  of producer i  is computed as sum of profits earned in spot and 

forward markets during the planning horizon  

 

Each producer aims to maximize the expected total profit. Then the stochastic two-stage problem is 
formulated as 

 
From a mathematical perspective, the process of finding a solution of such game starts at time zero, 

when we compute the equilibrium production and spot trading for each firm. Then, given these  

equilibrium outcomes, we compute the equilibrium forward trading at time 1. In the absence of 

arbitrage opportunities the transaction price, in each period, is equal to the spot price.  
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The Cournot-Nash equilibrium in the spot market is defined as a vector of outputs 

such that the first-order necessary and second-order sufficient conditions for all producers are 

satisfied. The optimality condition at time zero, , provides the reaction functions  

 

On the other hand, the Cournot-Nash equilibrium productions are obtained as   

 
The spot price at equilibrium at time zero is computed by substituting equilibrium productions in 

  as .  

In order to determine optimal trading strategies of the producers at various degree of risk aversion, we 

formulate the stochastic and robust profit maximization problems in view of rival scenarios for 

random demand and production cost.   

 

3 Scenario-based Analysis   
 
Stochastic programming requires a coherent representation of uncertainty. This is expressed 

in terms of a multivariate continuous distribution. Hence, a decision model is generated with 

internal sampling or a discrete approximation of the underlying continuous distribution. A 

method to obtain the discrete outcomes for the random variables is referred to as scenario 

generation. The discretization of the random values and the probability space leads to a 

framework in which a random variable takes finitely many values. Thus, the factors driving 

the risky events are approximated by a discrete set of scenarios, or sequence of events. In 

literature, there are several variants of the moment matching procedure (Hoyland et al. 2003) 

and simulation and clustering based approaches (Gulpinar et al. 2004) to generate scenarios. 

 

In this section we describe scenario based formulation of the stochastic two-stage market model 

assuming that demand and cost random variables are discretised by a finite number of scenarios. Let’s 

consider K number of scenarios that are represented as  and the associated branching 

probabilities,  so that   
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The two-stage stochastic market model takes into account a firm’s attitude towards risk due to 

uncertainty on the spot price and production cost. Moreover, at time one, the optimal decisions 

(obtained by scenario based stochastic market model) on the quantity to trade forward and equilibrium 

price in the forward markets only depend on the expected value of random parameters. At time 

zero,the spot market takes place in which quantities produced and spot prices are decided already 

taking into account the specific realizations of the scenarios about demand and marginal production 

cost.  

 

Total market production depends on scenario u, and is accumulated over all producers in spot market,

. The inverse demand function in scenario u is defined as   . The 

spot profit of producer i at scenario u is formulated as . Under no-

arbitrage condition, the forward price is . Allaz (1992) proved that for as long as there 

is a arbitrageur in the market, even with risk-averse decision makers, this condition holds. In fact, as 

arbitrage is the process of making a profit out of market inefficiencies, with no risk, the degree of risk 

aversion of the decision makers has no impact on this condition. Solving the profit maximization 

problem for each producer in the spot market, we find the reaction functions as 

 

Similarly, the closed form of Cournot-Nash equilibrium productions for each producer i under 

scenario u can be computed as   

         
 

The scenario-based stochastic market model maximizes the expected profit of each producer in view 

of all discrete scenarios and is stated as follows;    
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where the scenario based parameters  as well as the pre-specified parameters K and N 

are inputs to the nonlinear program. Note that the size of this model increases as the number of 

producers and discrete scenarios increases.  

 

Next we derive the trading strategy of producer i at time one using the optimality conditions. 

Substituting Cournot-Nash equilibrium productions in the inverse demand function provides the 

equilibrium spot price at time zero under scenario u as  

 

Using no arbitrage conditions, the expected profit objective function is simplified  

 

Then the optimization problem (2) becomes  
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The optimal forward trading can be obtained by using the optimality conditions of the unconstrained 

optimization problem that is derived by substituting (1) and (2) into (4). The solution of the first-order 

optimality condition 

 

provides the reaction functions for the forward contracts as follows    

 

 

The total forward trading of N producers in the oligopoly can be computed given the number of 

producers in the market and expected values of all random variables as follows;  

 
Using this property, we can compute the forward contracting in equilibrium in a closed form as

 
 

that depends on only expected values of all random parameters and total number of producers.  In the 

same manner, we can compute the expected spot price,   

 
and the expected production of player i under scenario u as 

 

It is worthwhile to mention that these calculations reduce impact of scenarios due to variability on the 

optimal strategy and also allow eliminating the computational burden of the scenario based market 

model to find the optimal trading strategy.
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4  Robust Worst-case Analysis with Rival Scenarios 
 

As described before, the scenario based stochastic model relies on the expected performance of the 

underlying system in view of rival scenarios. When making decisions under various uncertainties, it is 

reasonable to evaluate the best policy in view of the worst-case uncertain effect. Worst-case analysis 

is an important tool to address the inherent error for forecasting uncertainty. This entails 

minimax formulations of the stochastic system (see for instance, Rustem and Howe 2002).  

 

The discrete minimax problem arises when the worst-case needs to be determined over a discrete set 

of rival scenarios. The optimal strategy corresponding to the worst-case is called minimax strategy 

and is determined by all scenarios simultaneously.  The robust nature of minimax actually comes from 

the guaranteed best lower-bound performance in view of the worst-case. The minimax strategy 

ensures that the performance improves if the worst-case is not realized. Since minimax optimal 

strategy is determined in view of all the scenarios, it is robust to the realization of worst-case 

scenarios than considering a single scenario or an arbitrary pooling of scenarios. It is 

therefore suitable for situations which need protection against risk of adopting a strategy 

based on the wrong scenario, Gulpinar & Rustem (2007). 

 

Let us now formulate worst-case two-stage market model. Each producer’s aim is to optimize the 

worst-case total profit in spot and forward markets. Then max-min formulation of the two-stage 

problem is  

 
where  . This problem is equivalent to  

 
Introducing Lagrangean multipliers  associated with each constraint, we can construct the 

Lagrangean function as  The KKT optimality conditions are 

derived as follows;   
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Note that the first condition also includes partial derivatives 

 

and equilibrium production under rival scenarios. It is not straightforward to find the robust forward 

trading in a closed form as in the case of the stochastic programming formulation. Instead, we 

construct a complementarity problem that consists of a system of nonlinear equations for the KKT 

conditions of all producers. For numerical experiments, we used the GAMS solver.      

 

5 Computational Experiments in the Iberian Electricity Market 
 

In order to test performance of the stochastic and robust optimization models, we design numerical 

experiments using real data of the Iberian electricity market. Specifically, the goal of conducting the 

experiments is to answer the following questions: 

• What is the impact of demand and marginal cost uncertain parameters on trading strategies 

obtained at different degrees of risk aversion? 

• How do the stochastic and robust profit maximization models perform at various seasonal 

days when the underlying uncertainty is represented by finite number scenarios?  

 

5.1 Market Structure and Data used in the Case Study 

 

The Iberian electricity market was created in the early 2000’s and resulted from the merger of the 

Portuguese and Spanish electricity markets in the context of the larger plan to integrate the European 

electricity market in order to improve efficiency and reduce consumer prices. This market is 

characterized by a very marked seasonality in the electricity consumption and in the availability of the 

different technologies to generate electricity, due to the very high dependency on renewable 

electricity sources, hydro, wind, and solar power plants.  
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There are four major players in this market, Iberdrola (25 GW), Endesa (18 GW), Gas Natural Fenosa 

(13 GW), and EDP (17 GW). In Figure 1 (the sources are REE, 2012 and REN, 2012) we depict 

the relationship between the marginal cost and installed capacity for the four large firms in the market. 

All the other small generators are price takers. For this reason, we have analyzed the workings of our 

model in four different typical days, two summer days, one winter day and one spring day.  We design 

simulation experiments to analyze the relationship between forward and spot trading in the electricity 

market (in which the demand is traded 1 month ahead of the actual delivery in the spot market).   

 

 
Figure 1: Relationship between Marginal Cost and Capacity for the four major companies. 

 

The demand is uncertain and depends on the weather conditions. We assume that the demand slope is 

the same in all the days analyzed and a day is characterized by the change in the expected level of the  

 

demand intercept and respective standard deviation. In this condition, for the same level of 

production, the elasticity of demand is larger in the days with lower demand, as the customers are 

more price-sensitive. In high demand periods most of the customers will need to consume, possibly 

for economic reasons, but also due to weather conditions (in this case for heating requirements) and 

the demand is less price-sensitive.  

 

In all these experiments the demand intercept and slope are assumed to follow a normal distribution.  

Statistics of random parameters’ distributions are presented in terms of expected value and standard 

deviation of demand (at various specific seasonal days) and marginal production cost (for different 
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technologies) at each specific day in Table 2. The demand scenarios are based on the market data 

from the REN (2012) and the cost data was based on Brinckerhoff (2011) and the Royal Academy 

of Engineering (2004). The expected value of the demand intercept ranges from 230 GWh in the 

High Demand Summer day to 40 GWh in the Low Demand Winter day, with the respective standard 

deviations ranging from 4.8 GWh in the High Demand Summer day to 2.0 GWh in the Low Demand 

Summer day. The expected value of the demand slope is fixed at 3.0 for all the days, with a respective 

standard deviation set at 0.2.  

 

Table 2: Statistics of Demand and Marginal Cost Random Parameters  
 

 

 

 

 

 

 

 

 

 

 

 

 

The marginal costs of the different technologies considered are also assumed to be normally 

distributed and are characterized by the expected value and standard deviation depicted in Table 2. 

The hydro-power, wind-turbines and solar have a zero marginal cost, nuclear has a generation cost of 

7 euros/MWh (with a standard deviation of 0.3 euros/MWh), gas has a marginal cost of 27 

euros/MWh (with a standard deviation of 4.2 euros/MWh) and coal has a marginal cost of 31 

euros/MWh (with a standard deviation of 3.3 euros/MWh). 

 

Table 3 (the source of which is REN, 2012) describes the percentage of the total capacity available 

for hydro and wind power plants in the four typical days considered. In the summer day only 3% of 

hydro capacity is available as water is scarce during this time of the year and used for human 

consumption and irrigation in agriculture. In the winter and spring water is very abundant but only 

25% and 20% of the total capacity, respectively, can be used for electricity generation, due to the 

inter-temporal management of the water reserves.  

 

 
Parameters Seasonal  Days and 

Technologies 
 

Expect 
Value 

Standard 
Deviation 

 High Demand Summer  230 4.8 
Demand Intercept (a) High Demand Spring  200 3.2 
 (GWh) Average Demand Summer  150 2.0 
 Low Demand Winter  40 2.0 
 High Demand Summer  3.0 0.2 
Demand  Slope (b) High Demand Spring  3.0 0.2 
(GWh)  Average Demand Summer  3.0 0.2 
 Low Demand Winter  3.0 0.2 
 Hydro-power/Wind/Solar  0 0 
Marginal Production Nuclear  7 0.3 
Cost (C) Gas 27 4.2 
(Euros/MWh) Coal  31 3.3 
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Wind it is a very unstable resource, changing in intensity and regularity throughout the year. During 

the summer about 20% of the installed capacity can be used to generate electricity whereas during the 

winter and spring the winder is stronger and more regular allowing the use of, approximately, 30% 

and 25% of the installed capacity, respectively.  

 

Table 3: Load factors (in %) for hydro and wind power plants for the four typical days. 

Technologies  

High  
Demand 
Summer 

High 
Demand 

Spring 

Average 
Demand 
Summer 

Low  
Demand 

Winter 
Hydro (%) 3 20 3 25 
Wind  (%) 20 25 20 30 

 

Moreover, in order to generate the marginal costs for each one of the scenarios we need to consider 

the correlation between the different fuel prices. Whereas the prices of the renewable plants remain at 

zero, and the marginal cost of the nuclear power plants is also uncorrelated with the rest of the fuel 

prices, the correlation coefficient between gas and coal prices is about 0.93, and it needs to be 

considered when generating the marginal costs of these technologies in the different scenarios. 

 

As not only the fuel costs but also the load factors for hydro and wind are stochastic (as well as 

possible maintenance and unscheduled downtime for the other plants are unpredictable), the actual 

technology setting the price (the marginal technology), at any given time, is also stochastic. There are 

six major technologies used to generate electricity in the Iberian electricity market (hydro, nuclear, 

wind, solar, gas and coal). In Table 4, for each typical day, we represent the probability that a given 

technology is the marginal plant, for a given generation firm. It should be noted that any plant with a 

marginal cost above (below) the one set by the marginal plant it will not produce (i.e. generate 

electricity at full capacity). 

 

Table 4: Probability Distribution for the Marginal Plants, per Generator and Typical Day 

 
Seasonal Days Technology  EDP Endesa 

Gas 
Natural Iberdrola 

High Demand     Coal 0.75 0.7 0.8 0.05 
Summer    Gas 0.25 0.3 0.2 0.95 
High Demand     Coal 0.3 0.3 0.6 0.0 
Spring    Gas 0.7 0.7 0.4 1.0 
Average Demand     Nuclear  1.0 0.7 0.4 
Summer    Wind 1.0  0.3 0.6 
Low Demand     Hydro 0.6 1.0 0.5 0.4 
Winter    Wind 0.4  0.5 0.6 
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For the High Demand Summer day the two possible marginal technologies are coal and gas, as the 

cheaper technologies are scarce (hydro) and demand is high: in this case, Iberdrola will have a gas 

marginal plant 95% of the time whereas the other three incumbents are more likely to have a coal 

marginal plant, EDP (75%), Endesa (70%), and Gas Natural (80%). In the spring day as hydro is 

relatively more abundant the gas plants have a higher probability of being marginal. In the Low 

Demand Winter day the price is set by the technologies with lower marginal costs: hydro and wind for 

EDP, Gas Natural and Iberdrola, and hydro for Endesa. 

 

5.2 Simulation Results 

 

We have the possible outcomes of the trading decisions in the Iberian electricity market using 20000 

scenarios for the risk neutral and the worst case models, in four hypothetical periods High Demand 

Summer (HDS), High Demand Spring (HDP), Average Demand Summer (ADS), and Low Demand 

Winter (LDW). The price in the futures market (in euros/MWh) resulting from the simulations, per 

degree of risk aversion, and typical day, is described in Table 5. When the generators are risk averse 

the price are significantly higher across all the typical days, with a price increase of about 30% in the 

Average Demand Spring day to 122% in the Low Demand Winter day. This suggests that, across all 

the typical days, risk-averse generators produce less electricity, increasing prices.  

 

Table 5: Future Price per Typical day and Degree of Risk Aversion 

Seasonality 
Scenarios 

Risk Neutral 
Strategy 

Risk Averse  
Strategy 

HDS 41.71 54.53 
HDP 38.18 49.74 
ADS 12.19 18.37 
LDW 2.33 5.18 

 

In Table 6, we present the amount of optimal trading in futures market (GWh) and expected trading in 

the spot market (GWh) obtained by solving the scenario based stochastic program and robust models. 

We observe that amount of trading for all companies by any strategy in both markets shows similar 

characteristics. More precisely, the risk neutral strategy for each company suggests trading in futures 

market (as well as expected trading in spot market) more than trading by the risk-averse strategy at 

any seasonal days apart from two cases. In these two cases, both EDP and Endesa’s trading in future 

markets obtained by the risk averse strategies (15.2 and 9, respectively) are more than their trading 

provided by the risk neutral strategies (12.3 and 5.31) at Average Demand Summer, as can be seen 

from Table 6. In addition, the risk averse strategy of both companies Gas Natural and Iberdrola does 

not trade at all in futures markets at the same seasonal typical day.  
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In totals, the trading in the futures market is larger in the risk neutral agents, for the same scenario, 

when compared with the risk-averse agents of any company. The same patterns are also observed for 

the expected spot trading.  

 

Table 6: Optimal trading in the futures market and expected trading in spot markets (GWh) 

 Risk Neutral Strategy Risk Averse Strategy 
 HDS HDP ADS LDW HDS HDP ADS LDW 
Companies Trading in Future Market 
EDP 11.71 10.17 12.34 2.37 5.99 5.02 15.29 1.18 
Endesa 11.71 10.15 5.31 2.37 5.72 4.93 9 1.18 
Gas Natural 11.33 8.96 7.43 2.37 6.4 4.91 0 1.18 
Iberdrola 12.52 11.35 9.52 2.37 6.73 6.49 0 1.18 
Total 47.27 40.63 34.6 9.48 24.84 21.35 24.29 4.72 
Companies Expected Trading in Spot Market 
EDP 15.62 13.56 16.46 3.15 14.24 12.26 21.46 2.92 
Endesa 15.62 13.54 7.08 3.15 14.03 12.17 12.83 2.91 
Gas Natural 15.1 11.94 9.91 3.15 14.58 11.75 4.54 2.92 
Iberdrola 16.69 15.13 12.69 3.15 15.91 14.13 5.23 2.92 
Total 63.03 54.17 46.14 12.6 58.76 50.31 44.06 11.67 

 

In order to compare the performance of risk neutral and risk averse strategies of each company and to 

establish relationship between amounts of trading in futures market and expected trading in spot 

market, we compute ratios (%) that are presented in Table 7. The ratio between futures trading and 

expected spot trading is about 75% for the risk neutral agents, it ranges from 40.4% to 45.9% for the 

risk-averse agents, in the High and Low Demand days, and it is 0%, for Gas Natural and Iberdrola, 

and about 70% for EDP and Endesa, in the Average Demand day.    

 

Table 7: Ratio of Futures and Expected Spot Trading (%) for companies at various seasonal days 

 Risk Neutral Strategy Risk Averse Strategy 
 Company HDS HDP ADS LDW HDS HDP ADS LDW 
EDP 75.0 75.0 75.0 75.2 42.1 40.9 71.2 40.4 
Endesa 75.0 75.0 75.0 75.2 40.8 40.5 70.1 40.4 
Gas Natural 75.0 75.0 75.0 75.2 43.9 41.8 0.0 40.4 
Iberdrola 75.0 75.0 75.0 75.2 42.3 45.9 0.0 40.4 
Total 75.0 75.0 75.0 75.2 42.3 42.4 55.1 40.4 

 

Across all firms and typical days we find that the proportion of forward trading decreases with risk 

aversion. The exception to the general behavior of lower production by risk-averse agents happens in 

the spring period when EDP and Endesa increase dramatically their production and forward trading, 
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affecting negatively Gas Natural and Iberdrola. These results are interesting as they complement 

Gulpinar and Oliveira (2012), who have analyzed the effect of demand uncertainty on futures trading, 

reporting that risk-aversion increases futures trading as the risk-averse generators, due to a prisoners’ 

dilemma effect, would trend to increase trading in the futures market, increasing production and 

decreasing prices.  

On the contrary, in this case study, which includes demand and cost uncertainty, the latter dominates 

the former, and the risk-averse generators tend to sell lower proportion in the futures market, 

increasing prices and decreasing production. The effect of this behavior on expected profit is reported 

in Table 8. In fact risk aversion, in the presence of cost uncertainty, leads to a similar effect to 

collusive behavior, increasing the expected profit, when comparing risk-neutral and risk-averse 

agents, across all scenarios. The relationship between demand, cost and profits is not linear, due to the 

different load factors in the different periods. EDP is a particularly interesting case as it makes the 

highest profit in the spring period (due to the abundance of water), especially in the simulation where 

the agents are risk-averse.  

 

Table 8: Performance comparison of strategies in terms of expected profits at any typical day 

 Expected Profit (in 000 Euros/hour) Ratio (%) of Expected 
Profits 

 Risk Neutral Strategy Risk Averse Strategy 

 HDS HDP ADS LDW HDS HDP ADS LDW HDS HDP ADS LDW 
EDP 220.9 199.9 202.0 7.5 388.9 328.2 395.4 15.2 56.8 60.9 51.1 49.1 
Endesa 280.0 244.2 38.9 7.5 443.8 370.7 147.9 15.2 63.1 65.9 26.3 49.1 
Gas Nat. 216.0 155.7 76.9 7.5 399.3 289.4 65.5 15.2 54.1 53.8 117.4 49.1 
Iberdrola 335.0 323.8 126.5 7.5 540.7 475.5 88.7 15.2 62.0 68.1 142.6 49.1 
Total 1052.0 923.6 444.4 29.8 1772.5 1463.7 697.6 60.8 59.3 63.1 63.7 49.1 
 

As shown in ratios of expected profits (%)  obtained by the risk-neutral and risk-averse strategies per 

company (see the last four columns) in Table 8, the industry as a whole makes larger profits when the 

agents are risk-averse (the risk-neutral profits range from about 49% to about 64% of the risk-averse 

profits), but in the spring day both Gas Natural and Iberdrola receive larger profits when players are 

risk-neutral (about 17% and 42% more, respectively) than being risk-averse. This is due to the effect 

of the increase of EDP and Endesa’s production, in this period, which lead to a decreasing in 

production and futures trading both by Gas Natural and Iberdrola.  

 

The results reported in Table 8 are particularly interesting as they illustrate how the risk-aversion in 

games increases the expected profit, whereas in single-decision maker problems the risk aversion 

tends to decrease the expected profit in order to decrease risk. This observation becomes even more 

relevant when we consider the worst-case profits obtained by risk-neutral and risk-averse strategies. 

As illustrated in Table 9, the worst-case profit has also increased with risk-averse decision making. 
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For the industry as a whole, the worst-case profit for the risk-neutral agents ranges from 33% (HDS) 

to 57% (ADS) of the worst-case profit received by the risk-averse agents.  
 

Table 9: Performance comparison of risk-neutral and risk-averse strategies in terms of worst-case 

profits at any typical day 

 Worst-case Profit (in 000 Euros/hour)  
Ratio (%) of 

Worst-case Profits  Risk Neutral Strategy Risk Averse Strategy 
  HDS HDP ADS LDW     HDS   HDP ADS LDW HDS HDP ADS LDW 
EDP 29.2 46.5 159.4 5.5 214.4 197.3   328.4  9.8 13.6 23.6 48.5 56.4 
Endesa 134.8 128.5 23.7 5.5 300.0 271.9 107.6  9.8 44.9 47.3 22.0 56.4 
Gas Nat. 26.8 15.9 34.2 5.5 217.9 159.2 17.1  9.8 12.3 10.0 200.6 56.4 
Iberdrola 169.0 205.9 54.0 5.5 357.4 369.1 26.3  9.8 47.3 55.8 205.1 56.4 
Total 359.8 396.8 271.3 22.1 1089.7 997.4  479.5  39.1 33.0 39.8   56.6 56.4 

 

However, at the player level, in the ADS period both Gas Natural and Iberdrola managed to have a 

higher worst-case profit when the agents are risk-neutral (about double), due to the negative strong 

impact of their competitors on their expected profits, under risk-aversion.  

 

6. Conclusions 

 

In this article we analyze the strategic problem faced by producers of non-storable products and 

services (such as electricity), taking into account the interaction between forward contracts and spot 

markets, and the impact of demand and cost uncertainties on the firm’s strategies. The major 

methodological contribution is to have derived a closed form solution to solve this problem. 

 

We have applied our model to the analysis of the Iberian electricity market, in four different periods 

of the year, concluding that the effect of cost uncertainty dominates demand uncertainty. Contrary to a 

previous study on the issue of demand uncertainty (Gulpinar and Oliveira, 2012) who has reported 

that risk-averse agents trade more in the futures markets, decreasing spot prices and increasing 

production, we found that, when we consider cost uncertainty, the agents tend to reduce forward 

trading, increasing spot prices, and reducing production.  

 

Moreover, in our case study, the industry when using risk-aversion, in general, was able to increase 

both expected profits and to increase the worst-case profit. This finding was also true at a player level, 

with only two exceptions in one of the scenarios. This result is very important from a policy 

perspective: when a regulator observes that the agents are having outputs below the expected from a 
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more competitive market, it may not be enough evidence to prove collusion as this behavior may be 

the result of a risk-averse management.  
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