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Abstract: We study the fleet portfolio management problem of a firm that aims to minimize its cost 

and risk (Recursive Expected Conditional Value at Risk), simultaneously, in a stochastic multi-period 

setting by deciding which technologies to use in its fleet. We propose a model using real options 

(return and swap) to account for different uncertainties (technological and regulatory change and 

demand shifts). We analyze how changes in fuel prices and technological change influence the value 

of the options. We validate the results using a real-world case study conducted in the UK. 
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1. Introduction 

Leasing contracts are an important component of fleet management decisions. Leasing companies and 

(large) firms negotiate lease agreements and their conditions. Then, after negotiating with various 

leasing companies, a firm decides which lease company wins the contract.  

An important development in this market is the increased importance of electrical vehicles (EVs) 

as batteries become cheaper and better. Book et al. (2009) have predicted that in China, Japan, North 

America, and Western Europe, 1.5 million EVs will be sold in 2020, accounting for some 2.7% of the 

total automotive market in these regions. In terms of market segments, EVs are most likely to be 

introduced in the city car segment, where they will take the form of small city cars used mainly for 

commuting within the city. Dinger et al. (2010) have forecasted that battery costs will decline steeply 

as production volumes increase. Individual parts will become less expensive thanks to the effects of 

experience and scale. Equipment costs will also drop, lowering depreciation. Their analysis suggests 

that from 2009 to 2020, the price of NCA (Nickel Cobalt Aluminium) batteries, which are those 

mostly used in EVs, will have decreased by 60 to 65 percent. In addition, (Nykvist and Nilsson, 2015) 

show that industry-wide cost estimates decreased by approximately 14% annually between 2007 and 

2014, from above US$1,000 per kWh to around US$410 per kWh, and that the cost of battery packs 

used by market-leading EV manufacturers are even lower, at US$300 per kWh, and have decreased by 

8% annually. On the other hand, other technologies such as diesel and petrol may not be economically 

efficient in the future. Moreover, these are mature technologies with highly negotiable lease prices, 

even for shorter lease contracts. Therefore, in order to better manage the replacement policy for a fleet 

of vehicles, the decision makers need to understand the impact of technological evolution on the 

performance of the leased vehicles.  

Moreover, besides technological change, there are other factors that may affect the value of a 

technology such as a regime shift in fuel prices, a modification in the regulatory environment, or 

changes in the demand profiles for the services of the fleet vehicles (e.g., G´omez et al., 2011). 

Regime changes (e.g., Janczura and Weron, 2010) in fuel prices seem to have become ever more 

frequent with strong shifts in natural gas prices and petroleum prices, moving significantly within a 

very short time, and remaining at the new levels for a long and unpredictable time. Regulatory 

uncertainty also plays a role in increasing the risk inherent in lease contracts and investment in 

general. For example, the increasing pro-EV legislation in several countries (e.g., Jensen et al., 2014), 

by banning older polluting vehicles from the centre of cities, by restricting fossil fuel vehicles to be 

used during a limited number of days per week, or by placing a ban on these types of vehicles 

altogether (as was the case recently in several Scandinavian countries), has a strong impact on the 

value of a real option by increasing contract flexibility. A more mundane and simple example where 

these options may create value is when a firm is able to better deal with an unforeseen demand shift as 
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a result of which a van that was perfect for a given task at the time of the lease may not be optimal for 

the duration of the contract, either due to little or excessive use.  

Currently, companies tend to deal with these issues by continuing to use vehicles that are not as 

efficient as they could be (in terms of technological change) or buy transferring the inappropriate 

vehicles to other departments to be used for tasks for which they were not designed in the first place. 

For these main reasons, it is important to analyse how contract design can be used as an important 

management tool, and to measure the value that a firm can derive from having flexible contracts. This 

important issue of contract flexibility enables a firm to better adapt to technological and regulatory 

changes, and to unforeseen shifts in demand conditions.  

The major contribution of this article is that it provides contract flexibility by incorporating 

various options in the lease contracts, whereby contracts can be changed if the lessees pay a price to 

exercise the option. These options allow a firm to better adapt to changes in what is required of the 

leased vehicles and to take into account the technological life-cycle of EVs. We study how real 

options can be used to provide flexibility for the leasing contracts in the fleet system, taking into 

account the technological development of EVs and the possibility of changes to what is required of 

the leased vehicles. Moreover, we analyse how the use of options not only affects the expected cost, 

but also the risk of the leasing contract. In this article, we use the Recursive Expected Conditional 

Value at Risk (RECVaR) developed by Ansaripoor et al. (2016) as a risk measure.  

This article is structured as follows. In Section 2, we present a broad review of the literature 

pertaining to fleet replacement problems and real options, and their different applications, specifically 

in terms of environmental and sustainability development issues. In Section 3, we develop a general 

model for flexible lease contracts comprising different options. In Section 4, we derive the analytical 

results. In Section 5, we present the computational results and develop insights based on the solved 

model. In addition, in Section 5, we extend our analysis by considering the technological changes that 

have affected EVs. Section 6 concludes the article. 

 

2. Literature Review on the Fleet Replacement and Real Options 

Decision support systems for fleet operations, capacity decisions, routing problems, and humanitarian 

operations are well represented in the logistics literature (e.g., Couilard, 1993; Lau et al., 2003; Ghiani 

et al., 2004; Pedraza-Martinez et al., 2011, 2013; Eftekhar et al., 2013). For example, the literature on 

humanitarian operations has studied fleet management in the context of both relief operations and 

development programs. The focus of humanitarian operations varies to reflect the different 

transportation requirements of the three objectives: maximizing responsiveness and demand coverage 

for relief operations; reducing costs; and increasing fleet utilization for development programs 

(Pedraza Martinez et al., 2011). We focus our review on parallel replacement models and real options. 
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We also give a brief introduction to risk measures, all of which are central to the issues discussed in 

this article. 

2.1. Parallel Replacement Models and Real Options 

These models can generally be categorised into two main groups based on different fleet (asset) 

characteristics: homogenous and heterogeneous. In the homogeneous replacement model, a group of 

similar vehicles in terms of type and age that form a cluster (each cluster or group cannot be 

decomposed into smaller clusters) have to be replaced simultaneously. In the heterogeneous model, 

multiple heterogeneous assets, such as fleets with different vehicle types, have to be optimised 

simultaneously. For instance, vehicles of the same type and age may be replaced at different periods 

(years) because of a firm’s restricted budget for the procurement of new vehicles. The heterogeneous 

models are closer to the real-world commercial fleet replacement problem. The problems associated 

with such models are solved by integer programming and, generally, the input variables are assumed 

to be deterministic (e.g., Simms et al., 1984; Hartman, 1999, 2000, 2004). Generally, dynamic 

programming is the methodology applied to solve homogenous models. The advantage of the 

homogenous model is that it assumes probabilistic distributions for input variables in the optimisation 

model (e.g., Bellman, 1955; Bean et al., 1984; Oakford et al., 1984; Hartman, 2001; Hartman and 

Murphy, 2006).  

As an example of parallel replacement, Keles and Hartman (2004) studied the fleet replacement 

policies for a city transit bus operator in Europe. The main factors that were included in their 

replacement decisions were the ability to select from multiple manufacturers, as well as purchase 

price, government regulations, capital budgeting constraints and economies of scale.  

Although the machine or vehicle replacement literature is replete with models that deal with 

budget constraints (Chand et al., 2000), variable utilisation (Bethuyne, 1998), stochastic demands 

(Hartman, 2001), heterogeneous vehicle types (Hartman, 2004), and humanitarian operations 

(Pedraza-Martinez et al., 2011, 2013; Eftekhar et al., 2013), to our knowledge, flexible lease contracts 

and risk management issues have yet to be considered. 

Because in this article we use real options as a tool to increase contract flexibility, we briefly 

examine this concept and its importance in the management science literature. The concept of real 

options can be traced back to Myers (1977) who used options to study investment projects in real 

assets. Indeed, a real option is a right to make a decision, as in for instance, an option to make a 

capital investment. In contrast to financial options, a real option is not tradable. For example, a firm’s 

owner cannot sell the option to extend his/her company to another person; only s/he can make this 

decision for the company. In addition, short-term lease contracts are a characteristic of many business 

companies; for example, apartment leasing or service operations generally involve expensive facilities 

for doing special tasks (e.g., Grenadier, 1995). With the real options methodology, a project is 
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assumed to incorporate an option which determines the generation of cash flow, and the optimal 

investment policies are just the optimal rules for exercising the option (e.g., Anderson, 2014). 

Real options have been used for capital planning in many applications in different industries. 

Specifically, early real options literature focused mainly on the oil and gas upstream industry (e.g., 

Brennan and Schwartz, 1985; Paddock and Siegel, 1988). For example, Murphy and Oliveira (2010, 

2013) proposed the use of option contracts as instruments to manage the US Strategic Petroleum 

Reserve, as they signal the government commitment to act during a disruption, provide more risk-

management opportunities to the refinery industry, and reimburse some of the costs of maintaining the 

reserve. Since our research relates to environmental and sustainability development in different 

industries, we focus on the literature related to this application of real options. 

Avadikyan and Llerena (2010), by taking a real options reasoning approach, provided a more 

robust justification of companies’ investment decisions regarding hybrid vehicles (HVs) as a 

technological strategy in order to have the flexibility to overcome market and policy uncertainties. 

Specifically, they introduced four types of growth option strategies for HVs, which are: (1) an option 

to keep the existing technological situation and providing a long-term hedging strategy for coping 

with uncertainties; (2) an option to limit HV project risks; (3) an option to diversify; and (4) a 

platform with an internal flexibility option.  

By using a real option approach, Kleindorfer et al. (2012) have extended the EV adoption 

decision after considering the effects of uncertainty in fuel, carbon, and battery prices. They proposed 

a model for optimal EV-Internal combustion vehicles (ICV) replacement decisions in a dynamic 

setting in the fleet system of a company in France’s postal sector. In their model, there is no flexibility 

within the terms of the leasing contract, and they have assumed a six-year planning horizon for it. 

Moreover, they have considered four replacement policies which are (1) ICV-only policy; (2) Static 

policy; (3) Dynamic policy; and (4) Perfect information policy.  In the ICV-only policy, just ICV 

replacement decisions are considered. In the Static policy, decisions for the entire planning horizon 

are made at the beginning of the horizon, and in Dynamic policy, decisions are made in each time 

period, based on the awareness of the latest uncertainties. Finally, in the hypothetical case of Perfect 

information policy, the decision-maker has perfect information about future uncertainty realizations. 

To sum up, we understand that there is also a gap in the literature as no researcher to date has 

tackled the issue of replacing fleet vehicles with alternative fuel vehicles, and using real options 

analysis to design leasing contracts that are flexible enough to accommodate existing uncertainties. 

Specifically, our approach is different from those in recent literature pertaining to the adoption of new 

vehicle technologies (e.g., Drake and Spinler, 2013; Kleindorfer et al., 2012; Wang et al., 2013), in 

terms of stochastic parameters in the model and different options for the leasing contracts. In this 

article, we extend our approach to the problem that we considered in our previous work, (Ansaripoor 

et al., 2014, 2016) by taking into account the uncertainties that exist in a real-world situation. These 
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uncertainties are CO2 prices, fuel prices, mileage covered by a vehicle, and fuel consumption. We 

design a lease contract that gives us three vehicle-leasing options. The first choice is the base contract 

that has no option over four years. However, if the car is returned, the penalty is very high. The 

second alternative is to lease the vehicle with the option to return the vehicle by paying a small 

penalty. Finally, the third choice is to lease the vehicle with the swap option where a small penalty is 

paid for returning the vehicle and choosing another vehicle. In order to evaluate these leasing 

contracts, we can use real option theory. 

2.2. Measures of Risk Based on Value at Risk 

In recent years, authorities have taken a greater interest in the effects of unexpected losses connected 

with extreme events affecting financial markets. As a consequence, more attention is being given to 

the risks taken by financial institutions. This is the background that explains the choice of Value at 

Risk (VaR) as a synthetic risk measure, which can express the market risk of a financial asset or of a 

portfolio. VaR (e.g., Anderson, 2014) measures the worst expected loss for a given time period under 

normal market confidence at a given confidence level for the period. However, VaR is unstable and 

difficult to work with when losses are not normally distributed (Rockafellar and Uryasev, 2000). 

An alternative risk measure that does quantify the losses that might be encountered in the 

distribution tail is Conditional Value at Risk (CVaR); VaR calculates the maximum loss expected 

with a degree of confidence, whereas CVaR calculates the expected value of losses if they are greater 

than or equal to the VaR and it takes into account the magnitude of losses (Rockafellar and Uryasev, 

2000). CVaR is a consistent risk measure since it is sub-additive and convex (Artzner et al., 1997). 

Moreover, it can be optimized using linear programming and non-smooth optimization algorithms, 

which allow the handling of portfolios with a very large number of instruments and scenarios 

(Rockafellar and Uryasev, 2000). However, despite these advantages, in a dynamic setting CVaR does 

not satisfy the time consistency principle (Shapiro, 2011; Boda and Filar, 2006). 

Ansaripoor et al. (2016) introduced a recursive formulation of CVaR, the RECVaR, which takes 

into account the time consistency issue (Rudloff et al., 2014; Detlefsen and Scandolo, 2005) in a 

dynamic setting. Their approach is different from that of Shapiro (2009, 2011), where the cost-to-go 

function concept was used to satisfy the time consistency principle, as they provide a recursive 

formulation of the CVaR for a scenario tree, explicitly computing the CVaR of the parent node as a 

function of the CVaR of the respective children nodes. Ansaripoor et al. (2016) have concluded that 

the RECVaR provides more intuitive and robust results because it takes into account the risks that 

exist in the middle stages of the scenario tree, whereas Shapiro’s (2011) formulation is not sensitive to 

these kinds of risks. For these reasons, we use RECVaR as a risk measure. 
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3. A General Model for a Fleet Management System with Flexible Lease Contracts  

In this section, we introduce a multi-stage stochastic programming model in order to obtain the 

optimal number of vehicles to be leased, taking into account the constraints to minimize expected cost 

and risk, during the planning horizon. As shown in Figure 1, we consider three types of contracts 

including different options. The first choice is the base contract that has no option. However, if the car 

is returned, the penalty cost is very high. With the second type of contract, the vehicle is leased with 

the option to return it by paying a small penalty. Finally, the third one is the swap contract which 

allows the lessee to pay a very small penalty for returning the vehicle and selecting another vehicle. 

The notation used is summarized in Tables 1(a) and 1(b). In addition, in Figure 1, at each node, 

 is a vector of stochastic processes which are CO2 prices, fuel prices, mileage 

driven, and fuel consumption for fossil fuel technologies, per 100 miles, respectively. 

 

Figure 1: The node-based tree for a generic lease contract with options to choose from the base 

contract, the return early contract, and the swap contract 

We consider five technologies: fossil fuels (petrol, diesel), hybrids (petrol, diesel), and EVs. In 

equation (1), rni and on represent the running costs and the consumption of fossil fuels, and hybrids, 

per 100 miles, at each node, respectively. In addition, the running cost for EVs, per 100 miles, rni, is 

calculated using equation (2). We also take into account the cost of fuel prices for each technology 

and CO2 emissions, at each node, in (1) and (2), by including the parameters fni and , respectively. 

Furthermore,  denotes the CO2 emissions (g/litre) for fossil fuels and hybrids, and ce shows the CO2 

emissions for EVs (g/mile).  

( , , , )p
ni n ni n nc f D ox =

p
nc

 ci
g



8 
 

, i = fossil fuels, hybrids                                           (1) 

, i = electric                                                                (2) 

So, based on equations (1) and (2), we can calculate the total annual running cost per vehicle at 

each node, , using equation (3), in which Dn represents annual mileage driven at node n. 

                                                                                          (3)  

Table 1(a). Indices and variables of the model  

i I={fossil fuels, hybrids, and electric}  

a A= {1, 2,.., A} index for age of the vehicles 

n N= {1,2,…,N}index for nodes in scenario tree 

t T= {1, 2, .. ,T}index for time periods in year over planning horizon 

st S= {1, 2,.., St} index for number of branches (states)  at each stage 

c C={1,2,…,C} index for different types of contracts  

 : Tree structure for parent nodes n and child nodes m 

: Tree structure for parent nodes n and stage t 

xniac: Total number of vehicles with technology i, age a, contract c currently leased at node n  

y+
nic: Number of new vehicles with technology i, contract c, which company leases at node n 

y-
niac: Number of vehicles with technology i , age a , contract c, which company returns  at node  n 

: Value at risk at confidence level of β at node n  

 : Auxiliary variable for linearization of minimum function  

: Conditional value at risk at confidence level of β at node n 

zn: Positive stochastic variables for loss function at node n  

Ln: Loss function at node n 

Qn: Total expected cost function at node n 

 

The total investment (fixed) cost per vehicle is represented by (4) for fossil fuels and hybrid 

technologies, and by (5) for EVs. As we are taking into account the leasing contracts for different 

types of vehicles in the fleet system, we use the annual lease cost which is represented by li, to obtain 

the fixed cost at each node. Moreover, for EVs we have an extra investment cost, which is the annual 

leasing cost of batteries, represented in equation (5) by Me.  

( )                            p g
ni n ni n ir o f c c n N= + " Î

100                             e p
ni ni nr f c c n N= + " Î

nil

  
λ ni=

rni

100
Dn                       ∀n∈N ,i ∈I

Î
Î
Î
Î
Î
Î

,n mY

,t nW

n
ba

nP

n
bf



9 
 

                              i = fossil fuels, hybrid                                                                 (4)    

                                       i = electric                                                                                 (5) 

Table 1(b). Parameters of the model 

 

ρ: Coefficient for relation between value and price of an option 

ω: Parameter for trade-off of risk and cost in the objective function 

β : Confidence level for calculating RECVaR and VaR 

: Value of the option for technology type i, age a, contract c at node n 

Pniac : Premium of the option for technology type i, age a, contract c at node n 

: Penalties for returning the vehicles with technology i, age a, contract c  

 : Coefficient vector for penalties of contract c 

 : Annual learning rate for the technological development of batteries for EVs 

hn: Number of vehicles at node n 

fni: Fuel price for technology i, at node n 

on: Fuel consumption, litres per 100 mile,  at node n 

Dn: Annual mileage covered at node n 

Qnia : Expected cost per vehicle for technology i, age a, at node n 

rni: Running cost per 100 miles for technology i at node n  

: CO2 prices, per g, at node n 

ce: CO2 emissions, g per mile, for electrical technology  

: CO2 emissions, g per litre, for fossil fuel/hybrid technology  

li: Annual lease cost for each technology i  

M e: Annual lease cost for EV batteries 

λni: Total annual running cost per vehicle for technology i at node n 

μi: Total annual fixed cost per vehicle for technology i  

 

The penalty for returning the vehicles, , is calculated by equation (6), where  is the 

coefficient vector of penalties for different type of contracts and A is the maximum age of the vehicle 

during the leasing period. Moreover, equations (7)-(9) show the value of different options. 

                                                                                                                  (6)    

               i ilµ =

i i el Mµ = +

niacV 

iacg

cq

d

p
nc

g
ic

iacg cq

( )      <iac c iA a a Ag q µ= -
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Equation (7) represents the value of the contract without any option, i.e., the base contract. 

Equations (8) and (9) represent the value of the contracts that include the return and swap options, 

respectively. In addition, in equations (7)-(9), Qnia is the expected cost per vehicle for each technology 

at age a, which is calculated by equation (10). 

                                                                                                          (7) 

                                                                              (8) 

                                                           (9) 

                                                                   (10)  

Finally, the premium of each option, Pniac, is obtained by equation (11), in which is a coefficient for 

relation between value and price of an option and is between 0 and 1. In addition,  is the value of 

the option for technology type i, age a, contract c, at node n.                                     

                                                                                        (11)    

Our objective is to minimize the weighted average of RECVaR and the expected cost at the root 

node. The firm aims to address the mixed integer multi-stage stochastic programming (MIP) model 

using equations (1)-(25). The objective function (12) minimizes the weighted average of expected 

cost, Q1, and RECVaR, , at the root node. If  ( ) equals 1, only the expected cost is 

minimized, and if  is equal to zero, only RECVaR is minimized. We have four decision variables.  

The first decision variable is y+
nic which denotes the number of new vehicles with technology i and 

contract c which are replaced at node n. The second one is  which represents the number of 

vehicles with technology i, age a, contract c that are returned at node n. The third one is VaR, at each 

node, . Finally, the last one is zn, which denotes the losses that are beyond VaR at each node. 

 

                                                                                                              (12) 

s.t. 

                                                                                                          (13) 

  Vnia1
0 = 0   ∀n∈N ,i ∈I , a ∈A

  Vnia2
0 = max(0,Qnia −γ ia2 )  ∀n∈N ,i ∈I , a ∈A

  
Vnia3

0 = max(0,Qnia − min
i≠ j

(Qnij )−γ nia3)  ∀n∈N ,i ∈I , a ∈A

  
Qnia = µi + λni +

1
St

Qmi(a+1)  ∀n∈N ,i ∈I , a ∈A
ψ (n,m)
∑

r
0
niacV

  Pniac = ρVniac
0  ∀n∈N ,i ∈I , a ∈A,c ∈C

1
bf w  0 ≤ω ≤1

w

niacy-

n
ba

1 1
, , ,

(1 )
nic niac n ny y z
Min Q

b

b

a
w w f

+ -
+ -

  
x1i1c

c
∑

a
∑ = hn   ∀n∈N ,i ∈I
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                                                                                                      (14) 

                                         (15)            

                                             (16)                                      

                                                                                                        (17)     

                                               (18) 

                                                                                                              (19) 

                                                                                                                (20)     

                                                                                     (21)     

                                                                                                      (22) 

                                               (23) 

                                                                                                                          (24) 

                                                                                     (25) 

Constraints (13) show the initial condition of the fleet system at each node, hn, and should be 

equal to the total number of the vehicles under different types of contracts,  , at the root node. 

In constraints (14), we determine the number of new leased vehicles with a specific contract, at each 

node, y+
nic, required to replace the retired vehicles at the corresponding node, xni1c. In addition, 

constraints (15) show that the planning horizon for decision variables, y+
nic and is A years and 

after that there will be no new leased vehicles, and no returned vehicles in the fleet system. In 

  y
+

nic = xni1c    ∀n∈N ,i ∈I ,c ∈C
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nic  and y−
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addition, the vehicles that are at age one (a=1) cannot be returned.  Constraints (16) show that the 

total number of vehicles, at each child node, xmiac, is equal to the number of new leased vehicles, y+
mic, 

plus the number of vehicles which are left, , after returning vehicles, ,with age 

more than one. Moreover, constraints (17) indicate that the total number of vehicles for all 

technologies, contracts, and ages, , at each node, should be greater than or equal to the 

number of vehicles which are needed, , at the corresponding node. Constraints (18) show the total 

loss function (total cost), Ln, at each node. The first term in constraints (18),

, represents the sum of running cost, λni, fixed cost, μi , premium 

of the options, , at the corresponding node. The second term, , shows the 

penalty cost for returning the vehicles for base and swap contracts, and the third term, 

, represents the penalty cost for contracts with the return option. Finally, the fourth 

term, , shows the amount of money that is refunded when the swapping option 

is selected. Constraints (19-20) are represented for the linearization of minimum function,

, used in (18). Constraints (21) represent the recursive formula 

for calculating the total expected cost function, at each node, Qn, which is equal to the loss function, 

Ln, at the corresponding node plus the average of cost functions, , in successor nodes. 

In order to take into account the time consistency issue of CVaR (Shapiro, 2011), we have used 

constraints (22) and (23), which have been proven to be time-consistent (Ansaripoor et al., 2016). In 

addition, constraints (24) show that the Value at Risk (VaR),  , in the final stage should be zero 

because, in this stage, there is no uncertainty and all values of stochastic processes have been realized. 

Finally, constraints (25) show the integer values of, xniac, y+
nic, , , and non-negative,  and 

zn, decision variables. 

 

4. Analysing the Main Properties of the Model 

In this section, we consider the impact of using option contracts on the expected cost and risk 

(RECVaR) of the fleet. Firstly, we test whether we can reduce the expected cost of the fleet system by 

using option contracts. This is the conventional goal of risk-neutral fleet managers. In order to provide 

a formal proof for it, in Proposition 1, we firstly provide a prerequisite proposition and then we 
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proceed with the main proposition related to the effect of using option contracts on the expected cost 

of the fleet. 

Let  stand for the change in the loss function per vehicle, type i, for contract c, at node n, 

compared to the case without using any contract c;  let  represent the change of expected cost 

per vehicle for contract c, at age a, at node n, compared to when there is no contract c; let  

be the expected change of loss function per vehicle, type i, at child m, at age one, compared to the 

case without using any contract c, and  represent the expected of expected change of loss 

function per vehicle, type i, at child node of child node m, at age 2, compared to the case without 

using any contract c, and  represent the expected of expected change of loss function 

per vehicle, type i, at child node of child node m, at age A, compared to the case where there is no 

contract c.  

 

Proposition 1: If then the change of the expected cost at parent node n, , 

for contract c , at age a, compared to the case without using any contract c is :  
                                             

 

Proposition 2: If  then  

 

 

 Proposition 2 explains that if we return a vehicle with contract c, at age a, at node n, the amount 

which is saved, compared to the case where there is no contract c, is equal to the change of expected 

cost per vehicle of type i, contract c, at parent node n, and at age a, minus the penalty, , which is 

incurred if the vehicle is returned under contract c. In proposition 2,  denotes the average 

running costs for the remaining periods at age a, for technology i, and option contract c. The penalty 

can be obtained by equation (6) for each contract. The amount which is saved is equal to the ex-ante 

value of the option contract c, i.e., .  

Therefore, we can conclude that the total cost of the fleet system decreases by using option 

contract c, compared to the case without any contract c, if the sum of the ex-ante values of  for 

all the vehicles for any contract c, has a positive value. 

Next, we consider the situation where one of the option contracts is chosen instead of the other 

one. The general conclusion is that by selecting the appropriate values of the parameters, we have the 

flexibility to choose from different contract options. This is a very important issue which gives 
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managers the flexibility to choose the contract which matches the condition of their fleet management 

system. 

Let  denote, for the ex-post value of option contract c, technology i, at age a, at node n, and 

 represent the probability that contract c is used. Then, for ex-post value of option contracts, we use 

(26). In equation (26),  is the premium of option contract c, which can be obtained with equation 

(11). 

 

                                                                       (26)                                                                                                                                                                                  

 

Proposition 3: If ,  , then the contract with ex-post value of is 

used instead of the contract with ex-post value of when 

 

 

We now explain the effect of using contracts on the risk (RECVaR) of the fleet management 

system. The next proposition proves that, by using option contracts, the value of RECVaR decreases. 

 

Proposition 4: Let  and   represent the value of RECVaR with and without contracts, 

respectively. Then we have,  

 

So far, we have considered the effect, on the expected cost and on the RECVaR, of using the 

option contracts. Now we want to answer the question: what is the change of value per year for the 

swap option of leasing EVs instead of fossil vehicles, taking into consideration the technological need 

to change the batteries of EVs, which is expected to occur in the future? This is also an interesting 

issue which can be a good justification for considering EVs in the fleet replacement decisions for 

managers by using the swap option. Before answering this question, we provide a proposition 

whereby we can obtain the time that it takes EVs to be more efficient than other technologies, and 

then we present another proposition to study the idea that we have mentioned.  

Now, we are ready to provide a proposition for calculating the time during our planning horizon 

in which EVs are more cost efficient than other technologies. Let  stand for the annual fixed cost 

of the EVs, at time zero,  denote the annual fixed cost of EVs in year t, and  represent the 
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density function of the First Passage Time (FTP) for the stochastic process . The FTP is the 

expected time when  crosses a threshold (Withmore, 1986).  

 

Proposition 5: Let i stand for fossil fuel or hybrid vehicles. The expected number of years for EVs to 

be more cost efficient than technology i is: 

  

Next, we want to analyze the change of the value of the option to swap fossil fuel or hybrid 

vehicles in favour of leasing EVs per year, taking into consideration the technological issue of having 

to change EV batteries. The reason for doing this is that we can swap a fossil fuel vehicle for EVs and 

we can reduce the expected cost.  

 

Proposition 6: Let  denote the difference of change of annual fixed cost of EVs and technology i, 

in year t, and T represents the length of the planning horizon. The value of the option to swap a fossil 

fuel or hybrid vehicle for an EV increases, per year, by .                                                 

 

5. Implementation and Computational Experiments 

This article is motivated by the problem faced by a large firm in the UK that aims to reduce, 

simultaneously, the costs and risks associated with its vehicle fleet. The firm leases a large fleet of 

vehicles used by its engineers. Generally, an engineer is assigned a vehicle for the whole lifetime of 

the lease. Vehicles are assigned depending on the engineer’s specialization. Currently, their fleet 

comprises only diesel vehicles with different capacities (small, light, medium size vehicles). The size 

of the vehicle is an important feature because, depending on their specialization, the engineers have to 

carry different materials, and therefore require a vehicle with sufficient capacity. For instance, power 

engineers need light vans with enough carrying capacity. We consider small vans to be those 

weighing 300 kg; light vans weigh 500 kg and have a greater carrying capacity. Medium vans can be 

used for any purpose, but there are only a few of these because they are far more expensive to lease 

and maintain. 

We use the historical data for fuel prices from Jan. 2000 to Dec. 2015. As can be seen from Table 

2, when we consider the average correlation coefficient in each year between fuel prices from Jan. 

2000 to Dec. 2015, the diesel and petrol prices have a very high correlation coefficient of 0.876 but a 

negative correlation of (-0.126) and (-0.162) with electricity, respectively. (In this article, we use 

electricity and electricity charge prices interchangeably. However, the price of electricity is the price 

of each charge for a 22 kWh battery). Based on this observation, we can generate the simulated 
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scenarios for fuel prices with the above correlation matrix using the expected forecasted prices from 

2016 to the end of 2023 (Table 3).  

 

Table 2.  Correlation matrix for fuel prices from Jan. 2000 to Dec. 2015  

 

At each stage (year), we want to have the minimum number of vehicles in the fleet system, 

taking into account that the contracts for the vehicles will be retired by the end of the fourth year. 

Moreover, we assume an initial condition where there is a 2016 fleet system consisting of 2369 diesel 

vehicles with different capacities (small, light, medium), all of which are at age one, i.e., new leased 

vehicles. It is assumed that all vehicles are vans. There are options for returning or swapping the 

vehicles that are at age two, three, and four. Indeed, the vehicles that are at age one or new leased 

vehicles cannot be returned or swapped. We also consider four technologies: petrol, hybrid-petrol, 

hybrid-diesel, and EVs. We assume that other technologies have different capacities (small, light, and 

medium), such as diesel vans. The leasing costs for each capacity and technology are summarised in 

Table 4. 

Table 3: Average forecasted fuel prices (£) from 2016 to 2023 

 

Table 4: The annual leasing costs (£) for vehicles with different capacities and technologies 

 

For the petrol and hybrid technologies, we use their expected values of fuel consumption as a 

base for diesel technology for different type of vehicles as represented in Table 5. By multiplying the 

fuel consumption coefficient vector, [1.31, 1, 0.93, 0.8], we obtain the corresponding fuel 

consumption of petrol, diesel, petrol-hybrid, and diesel-hybrid for each capacity, respectively. The 
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benchmark is indicated by the number 1 and corresponds to diesel technology. For EVs, we take into 

account the forecasted electricity prices shown in Table 3 for small capacity as a base, and by 

multiplying the ratio of power of batteries, [1, 1.18, 1.77], for small, light and medium, respectively, 

by which we can obtain the electricity prices for each type of EV. The benchmark is the first 

component of the vector and is shown by 1. Furthermore, for the monthly lease cost of batteries for 

EVs, we assume that the base price for small capacity (22 kWh) is £79, and for obtaining the monthly 

cost of batteries for other capacities, we multiply by the same ratio vector: [1, 1.18, 1.77].  The CO2 

emissions for petrol, diesel, hybrid-petrol and hybrid-diesel are 2310, 2680, 1719, and 2177 (g/litre), 

respectively. Moreover, the CO2 emissions for EVs are 81 g/mile and for obtaining CO2 emissions for 

other capacities of vehicles we use the same ratio vectors as was explained before. 

Given these constraints, we want to minimize the weighted average of total expected costs and 

RECVaR during the planning horizon. Our goal is to determine the optimal policy from 2017 to 2020. 

Note that in order to calculate this policy, we need to continue the calculation for the stochastic 

variables from 2021 to the end of 2023 (until the end of life of the vehicles leased during the period of 

analysis). 

 

Table 5: Fuel consumption and mileage data per vehicle 

 

 

5.1. Solving the Fleet Replacement Problem 

The model presented in Section 3 has been implemented and solved using CPLEX running on a 

laptop with a 4.2 GHz processor and 30 GB RAM. For the means and standard deviations of 

corresponding distributions, we have used the information in Table 5. For simulating the CO2 prices, 

we have assumed a uniform distribution between £5×10-6/g and £20×10-6/g. The number of vehicles at 

each node for each type of vehicle has a normal distribution with the mean equal to the number of 

vehicles in each type (Table 5).  

We used the method of Høyland and Wallace (2001) to generate scenarios which is the general 

method of scenario generation by matching statistical properties to specific targets. The method 
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generates a set of discrete scenarios so that statistical properties of the random variables match 

specified target values. We have used Tables 2 and 3 for fuel prices and Table 5 for mileage and fuel 

consumption. 

We have solved the problem for all vehicle types but we have presented only the results for light 

vans. Moreover, for value of ω, we assumed ω equals to 0.5 in which the weights for expected cost 

and RECVaR in the objective function are equal.  

We considered three values of ρ equal to 0, 0.1, and 0.25 for relation between value and premium 

of an option. Moreover, the coefficient vector for penalties of different contracts, θc, is equal to 1, 0.5, 

and 0.1 for contracts with no option (c = 1), return option (c = 2), and swap option (c = 3), 

respectively. We denote different technologies by D, P, H-P, H-D, and E for Diesel, Petrol, Hybrid-

Petrol, Hybrid-Diesel, and Electric, respectively. Finally, the results are converged by using 10165 

scenarios. The results are shown in Table 6. 

As seen from Table 6, when ρ equals zero, i.e., the options are free, we have different 

combinations of contracts for the leasing of vehicles. In addition, diesel technology has the biggest 

portion of leased vehicles in different contracts. For example, in 2018 we have 932 diesel vehicles at 

age 2, which are swapped for other contracts. However, we do not have any returned vehicles with 

base contracts. Now we change the value of ρ to 0.1, i.e., we should pay for return and swap contracts 

which is 10% of their value, calculated in equations 8-9. As seen, the vehicles are leased with base 

contracts and contracts with the swap option. In addition, we have returned vehicles with base 

contracts and contracts with the swap option. However, there are no returned vehicles with the option 

to return. An interesting observation regarding the returned vehicles with base contracts is the fact that 

there is a trade-off between the penalty and the price of an option. Finally, when ρ is 0.25 or more, we 

have just leased and returned vehicles with base contracts. In addition, there is no vehicle swap. We 

have provided a formal proof for these results in Proposition 3.  

Moreover, as seen from Figure 2, the values of RECVaR and expected cost when ρ is equal to 

zero, are less than the case when ρ is not equal to zero. The reason is that using contracts with options 

decreases the whole RECVaR and the expected cost. In other words, when more contracts are used in 

the fleet system, the total cost and the RECVaR are minimized. Indeed, the lower the price of the 

options, the lower is the RECVaR and the expected cost. For example, when ρ decreases from 0.25 to 

0, we have £3.56M (12%) decrease in RECVaR and £2.99M (11%) in expected cost. We have proved 

these results in Propositions 2 and 4 regarding the effect of option contracts on the expected cost and 

on RECVaR, respectively. 
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Table 6: Optimal policy for light vans, ω=0.5, 10165 scenarios, θc= (1, 0.5, 0.1), and ρ=0, 0.1, and 

0.25  

 

 
Figure 2: The values of RECVaR and expected cost for Light Vans, ω=0.5, 10165 scenarios, θc= (1, 

0.5, 0.1) 
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5.2 Modelling the Effect of Technology Development  

 

In this section, we consider the progress that is expected in the next decade regarding the technology 

of batteries and the EVs market, and its subsequent effect on the suggested portfolio system of the 

company. 

Dinger et al. (2010) mention that the current cost of an automotive lithium-ion battery pack is 

between $1000 and $1200 per kWh. They further predict that this price will decrease to between $250 

and $500 per kWh at scaled production. Hence, for the 15kWh battery (Figure 3), the price is 

expected to drop from $16000 to $6000. 

 

 

 

Figure 3: BCG outlook for battery costs from 2009 to 2020, Dinger et al. (2010) 

As mentioned in Proposition 5, we can model the effect of technology development of EVs using 

a FTP process. So, we can use the Ornstein–Unhlenbeck process (e.g., Kleindorfer et al., 2012) as the 

FTP process to generate the scenarios at each node for lease costs for EVs with appropriate 

parameters. We have used this stochastic process because, in the long run, the battery costs and 

leasing costs for EVs will gradually decrease and stabilise, as is the case with the other technologies. 

The Ornstein-Unhlenbeck process equation is represented by (41). 
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In (41)  is the total annual fixed (investment) cost of EVs at each parent node n,  is the 

total annual fixed cost of EVs per vehicle at root node, and is the average total annual fixed cost of 

EVs per vehicle in the long run. According to Dinger et al. (2010), we assume  to be 40% of the 

current total annual fixed cost of EVs. In addition, δ is the annual learning rate, z is the quantile for 

standard normal distribution and, finally,  is the standard deviation of . 

The results are represented in Table 7. The learning rate, δ, is equal to 1.2 (Dinger et al., 2010). 

For other parameters, we have taken into account the previous assumptions presented in Section 5. As 

seen from Table 7, the preferred leased vehicles are those with EV technology. In some cases, diesel 

is chosen. But there are no optimal choices for other types of leased vehicles. Next, we consider each 

case in more detail and examine the corresponding optimal policies regarding the contracts.  

When ρ equals zero, i.e., the options are free, we have different combinations of contracts for the 

leasing of vehicles. For instance, in 2018 we have 808 EVs at age 2, which are swapped. However, we 

do not have any returned vehicles under the base contract. Next, we change the value of ρ to 0.1. As 

seen, the vehicles are leased under the base contract, and contracts with the swap option, except in 

2017 when 32 diesel vehicles are leased under the return option. In addition, we have vehicles 

returned under the base contract, and contracts with the swap option. However, there are no returned 

vehicles under the return option contract. Finally, when ρ is 0.25 or more, we have just leased and 

returned vehicles under the base contract. In addition, there is no vehicle swap.  

Like the previous section, the values for the RECVaR and expected cost are reduced when ρ is 

decreased for three values of annual learning rate of technological change for EVs (Figure 4). For 

example, if δ is equal to 1.2, when ρ reduces from 0.25 to 0, we have a decrease of £2.11M (8%) in 

RECVaR and £1.63M (7%) in expected cost. We have proved this result in Propositions 2 and 4. In 

addition, as seen in Figure 4, by increasing the learning rate from 1.2 to 2, because we have more EVs 

in the fleet system and they are more expensive than diesel, the slope of increase in expected cost, 

when ρ increases from 0 to 0.25, is decreased.  

If we also compare the RECVaR and expected cost for each corresponding ρ in Figures 2 and 4, 

we conclude that we have a reduction in values of RECVaR and expected cost for all values ρ, in 

Figure 4. For example, when ρ equals 0, and δ is equal to 1.2, we have £3.03M (11%) reduction in 

RECVaR and £0.83M (4%) in expected cost.  We have found that the greater the number of EVs in 

the fleet system, the lower is the RECVaR. So, the reduction in RECVaR is higher than the expected 

cost. This is also true for other values ρ and δ. 

 

 

 

neµ 1eµ
_

eµ
_

eµ

s neµ



22 
 

Table 7: Optimal policy for light vans with technological development of EVs, ω=0.5, 10165 

scenarios, θc= (1, 0.5, 0.1), δ=1.2, and ρ=0, 0.1, and 0.25 
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Figure 4: The values of RECVaR and expected cost for light vans with technological development of 

EVs, ω=0.5, 10165 scenarios, θc= (1,0.5,0.1), δ=1.2,1.5, and 2 

6. Conclusions 

In this article, we have developed a new model in a dynamic setting in order to give vehicle leasing 

contracts some flexibility that takes into consideration several uncertainties including CO2 prices, fuel 

prices, mileage covered and fuel consumption, using the real options methodology and RECVaR. Our 

approach is different from that of Kleindorfer et al. (2012), in terms of the model’s stochastic 

parameters, the use of RECVaR, and the different options available for the leasing contracts.  

The main findings of this study are: 

1. When the coefficient for the relationship between value and price of an option (ρ), equals 

zero, i.e., the options are free, we have different combinations of contracts for the leasing of 

vehicles. 

2. When we change the value of the coefficient for the relationship between value and price of 

an option (ρ) to 0.1, i.e., we should pay for return and swap contracts, which is 10% of their 

value, the results are changed. The vehicles are leased on the terms of the base contract and 

the contract with the swap option. In addition, we have returned vehicles with the base 

contract and the contract with the swap option. However, there are no returned vehicles with 

the option to return. Finally, when ρ is 0.25 or more, we have just the leased and returned 

vehicles with the base contract. In addition, there is no vehicle swap.  

3. When considering the technological change of EVs, the optimal technologies are different in 

the two cases. Indeed, when the effects of technology are taken into account, EVs are the 

preferred technology for leasing. However, in the absence of EV technology, the preferred 
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technology is diesel. Petrol technology is selected in a few cases when we assume that there is 

no EV option. Finally, hybrid technology is never selected as the optimal choice. 

4. The values of RECVaR and expected cost, when the coefficient for the relation between value 

and price of an option (ρ) equals zero are less than when ρ is not equal to zero. The reason is 

that using contracts with options decreases the whole RECVaR and expected cost. In other 

words, when all contracts are used in the fleet system, the total cost and the RECVaR are 

minimized. Indeed, the lower the price of the options, the lower is the RECVaR and the 

expected cost.  

 

 

Appendix A 

Proposition 1: If then the change of the expected cost at parent node n, , 

for contract c , at age a, compared to the case without any contract c is :  

                                             

 

Proof: In order to calculate the values of , based on equation (21), we can obtain (A.1). 

Because (A.1) is a recursive equation, we can replace the value of  by using equation (21) 

for child node m, and if we continue it until the maximum age of the contract, A, we can derive (A.2).  

                                                                

(A.1) 

 ■                                                  (A.2)                                         

 

We proceed to the main proposition related to the effect of using option contracts for the expected 

cost of the fleet.                                     

Let  denote the ex-ante value of the option contract c, for technology i, at age a, and at node n 

and  denote the average running costs for the remaining periods at age a, for technology i, and 

option contract c. 

 

Proposition 2: If  then  
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Proof: In order to calculate the values of  for each contract, we use equation (A.3) as we have 

benefited from the result of Proposition 1 in equation (A.2). In equation (A.3), , ,…, and 

 in all terms have two components. The first one is  which denotes the change in the 

annual fixed cost per vehicle type i, for contract c compared to the case without any contract c , and 

the second component is , , ,…, and , which represent the change of the 

annual running cost per vehicle, at node parent n, child node m, child node of child node m , and so 

on, for contract c compared to the case without contract c. Now, based on equation (A.3), we can 

derive (A.4) in which the first term, , is equal to zero because we do not return any 

vehicle at age 1, and the second term denotes the expected change of cost per vehicle which is 

incurred by having contract c, age 2, and so on. 

Moreover, if we let = , we can derive (A.5) from which we obtain, , (A.6).  

                    (A.3)                 

                      

(A.4)                                                   

                                                                                   (A.5)                                                                                                                                 

         ■                                  (A.6)                                                                        

 

Proposition 3: If ,  , then the contract with ex-post value of is 

used instead of the contract with ex-post value of when 

 

 

Proof: The general condition where the contract with the option j is used instead of the contract with 

option k can be written as (A.7). Equation (A.7) explicitly indicates that if the contract with option j is 

used instead of the contract with option k, then its ex-post value should be higher. Then, by using 

equations (A.6) and (A.7), we can derive (A.8).  
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                                              ■                                            (A.8)                              

 

Proposition 4: Let  and   represent the value of RECVaR with and without contracts, 

respectively. Then we have,  

 

Proof: We proceed by using proof by contradiction. So, let’s assume that (A.9) is true. 

                                                                                                      (A.9)                                                                                                                                                                              

Then the optimal choice is to not use contracts, and we have a lower RECVaR without options, . 

On the other hand, if we have the option to use the contracts and  then we have a lower 

RECVaR, when we exercise the options, and this will equal, . Therefore, by having the option to 

exercise contracts, we obtain .                                          ■            

 

Proposition 5: Let i stand for fossil fuel or hybrid vehicles. The expected number of years for EVs to 

be more cost efficient than technology i is: 

  

 

Proof: Because in the tree structure, in each stage t, we can map the set of nodes n, using , we 

can use t and n and in (A.10), interchangeably. Now, in order to calculate the first passage time, the 

total annual cost of EVs should equal that of other technologies, i.e. 

,i = fossil fuels, hybrids                                                              (A.10)                                                                                                   

Then by using equations (3), (4), and (A.10), we derive, 

                                                       

(A.11)                                                                                             

All the parameters in (A.11) are defined in Tables 1(a) and 1(b). Then, the expected first passage time 

equals:  

  ■                                                                (A.12)                                                       
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Proposition 6: Let  denote the difference of change in the annual fixed cost of EVs and 

technology i, in year t, and T represents the length of the planning horizon. The value of the option to 

swap a fossil fuel or hybrid vehicle for EVs increases, per year, by .                                                 

 

Proof: The value of option at time zero to swap fossil fuel or hybrid vehicles for EVs by using 

equations (9) and (10) is: 

                                            (A.13) 

                                       

Because in the tree structure, in each stage t, we can map the set of nodes n, using , we can 

use t and n and in (A.14), interchangeably. In order to calculate the change in the value of swap option 

at time t, because the only change during the planning horizon, in (A.13), is the fixed cost of EVs, we 

can write: 

■                    (A.14)                     
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