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Analysing the Effect of Demand Uncertainty in
Dynamic Pricing with EAs

Siddhartha Shakya, Fernando Oliveira, and Gilbert Owusu

Abstract Dynamic pricing is a pricing strategy where a firm adjust thegfor their
products and services as a function of its perceived dentatdifferent times. In this
paper, we show how Evolutionary algorithms (EA) can be usathalyse the effect
of demand uncertainty in dynamic pricing. The experimerdsanducted in a range
of dynamic pricing problems considering a number of difféitochastic scenarios
with a number of different EAs. The results are analysed¢ctvsuggest that higher
demand fluctuation may not have adverse effect to the profibmparison to the
lower demand fluctuation, and that the reliability of EA farding accurate policy
could be higher when there is higher fluctuation then wherettsdower fluctuation.

1 Introduction

Pricing is one of the most important decisions that a firm sdednake in order to
survive in a competitive marketplace. If done carefullgah be a valuable tool for
the firm to achieve a number of different business goals, asghnofit maximisation,
demand management, value creation, etc. Conversely, appicorg policy could
lead to a loss, and consequently extinction of the firm. Dyiogamicing [27] [15][3]

is a pricing strategy where a firm adjust the price for theodurcts and services
as a function of its perceived demand at different timesdifiaally, it has been
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applied in service industries, such as airlines, hotelsrantils [16]. For example,
in airlines, the price for a seat changes according to the tBmaining prior to the
flight and number of available seats. Recent developmernitganmation technol-
ogy and eCommerce have led the dynamic pricing to spreadeowéde range of
other industries such as retail [11][6][1], wholesale [28H auctions [24].

In this paper we show how the evolutionary models can be ugatihamic pric-
ing in a stochastic setting where the demand is uncertainni@tivation is to use
such pricing approach to control demand and manage resoureeservice indus-
try [28][18]. In the type of problems we are analyzing, rem@umanagement is the
effective workforce utilization for a given calendarisedniv demand profile, while
meeting a set of constraints such as quality of service t®rgenflict resolution
schemes, such as overtime and borrowing additional woeckf{t7]. The system
described in [18] integrates various Artificial Intelliggmand Operational Research
techniques in order to forecast demand for specific proguadservices at regional
level, and to optimize the allocation of resources to eaghadithe region. Our aim
is to use evolutionary algorithms as an alternative teammip manage resources
by means of effective pricing. In particular, we extend thedel presented in [26]
and implement several evolutionary algorithms (EA) [7]$oiving them. We anal-
yse the performance of these algorithms in finding optimafiprand also analyse
the effect of demand uncertainty have on total profit and erréfiability of these
algorithms.

EAs have been successfully applied in wide range of seardhoptimization
problems. They are inspired by Darwin’s theory of evolutiehereselectionand
variation work together to evolve a better solution. Different EA hasi pro-
posed using different approaches to selection and vamiatiothis paper we in-
vestigate two EAs to solve dynamic pricing problems, narttedygenetic algorithm
(GA) [7][12] and the estimation of distribution algorithr(lEDA) [10],[14]. GA and
EDA differ in the way they implement the variation operatarparticular, GA uses
crossoverand mutationapproach to variation. In contrast, EDA uses probabilistic
approach to variation, where a probabilistic model is baiitl sampled to gener-
ate new solutions. EDA is a relatively new area in evolutigr@mputation field
and are being increasingly applied to real-world optim@aproblems. They are
often reported to perform better than the traditional GAs[22]. It is, therefore,
interesting to see the performance of both EDA and GA witlardg to dynamic
pricing.

The objectives of this paper are to: a) analyze the perfocmahevolutionary al-
gorithms as tools to approximate optimal behaviour in dyiegricing; b) compare
the algorithms under different scenarios with differexiels of demand uncertainty;
and c) analyse the effect of demand uncertainty have on tfe.pr

The paper is structured as follows. Section 2 presents thieemetical model
of uncertainty for dynamic pricing. Section 3 describes § wearepresenting the
dynamic pricing problem for solving them using EA, and ala@g an overview of
the implemented EAs. Section 4 describes the experimesgalts and presents the
analysis of the results. Finally, section 5 concludes theepa
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2 A Mathematical Model of Dynamic Pricing

Depending on the nature of the product (or service), andxpeaed demand be-
haviour, a company has to choose between short-term ortemngprofits. Short-
term profit is to take advantage of the dynamics of demanditiirout a week, or
even during a day. Long-term profit is to model the long-templications of short-
term pricing and investment policies with the goal of maximg the long-term, for
example months or years, profit. This section describes ardimpricing model
that can be used for analyzing both short-term and long-peofits.

The total profit, (7), earned from a product during the planning horizon can be
modelled as

N
= - 1
t;(RQt GQ) (1)

Here,N is the number of periods in planning horizd, is the total sales (or the
production) of the product (which is equal to, or less thae,demand for the prod-
uct), R is the average price of the product, &ids the cost of producing one extra
productin period, RQ; is the total revenue at periodandC;Q is the variable cost
at periodt. In the situations where the demand is uncertain, the sale®e given
by the sum of expected salE$Q;) and a stochastic term modelling the fluctuation
in demand as

Q& =E(Q)+& )

Here,& represents the fluctuation in demand. We give it as a normdboma vari-
able, upper and lower bounded by the positive and negatpected sales respec-
tively. This can be written as

7 min{E(Q),N(0,0E(Q,))} if N(0,0E(Q)) >0

where,o > 0 is the fraction ofE(Q;) representing the strength of the fluctuation.
Higher o represents high fluctuation in demand and loweepresents lower fluc-
tuation in demand. From (1) and (2), the total profit can bétamias

N
”:t;(E(QI)+£t)(H_Ct) (4)

Therefore, the expected profit can be written as
N
E(M) = ZE(Q)(H—Q) (5)
t=

Also, the expected salé5Q;) in a periodt depends on the price for the productin
that period and the price for the product in other period$alanning horizon.
For example, in airlines (or hotels), sales for seats (om®)dn a given day depend
on their price on that day and on other days within the plaghiorizon, which are
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visible to customers. We represent this price-demandoelstip linearly as

E(Q) = bot + byPL+baPo+ ...+ bR + ... + bnePh (6)

where by is the intercept of the linear model representing the custdrase (total
customers willing to buy the product in peritg andbj; are the parameters known
as slopes which represent the impact of price at frhave on the demand at tirhe
Note that, in general, the paramelbgris negative, since higher price for the product
in a period is likely to decrease the demand for that produtttat period.

Inversely, the price for the produBt in a period can be written in terms of the
expected sales for the product in that period and the exgyseles in other periods
in the planning horizon as

R =an +arE(Q1) +axE(Q2) + ... + aE(Qr) + ... + antE(Qn) (7

where,ay is the intercept an@;j: are the parameters representing the impact of
sales at timg have on the price at time Note that, in general, the paramesar
is negative, since higher sales for the product in a periditedy to be due to the
lower price for that product in that period.

From (4) and (7) we get the general model for the total profthvgtochastic
demand as

N N
] :t;(E(Qt)Jret) (aOt‘i‘leath(Qj)—Ct) (8)

The model of stochastic dynamic pricing presented herdfisrdnt than the model
presented in [26]. Here, rather than applying the singletststic term to total profit,
we apply stochastic term to each individual periods in otdeaccurately model
individual demand fluctuations in different selling persod

Now let us define some additional constraints a firm needspos®awhen defin-
ing its policy for pricing a given product.

a. Capacity constraints - These are the number of produatible in a given
period, and have the lower and upper bounds, represented fo 1..N as

M; < @t — Lower bound for the capacity constraint
K: > Q; — Upper bound for the capacity constraint 9)

b. Price caps - These are the selling price of a product in @gderiod, and also
have lower and upper bounds, represented fdr-all..N as

P; < R — Lower bound for the price cap
P; > R — Upper bound for the price cap (10)

1 Linear models are widely used for representing the pricedemand relationship, both in re-
search and in practice. There are, however, other modedh, asexponentialand multinomial
logit [27][23], that could be similarly used to represent thistieinship. Testing these models is
out of the scope of this paper and could be the part of thedutark.
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Given the parametera;, the upper bound and lower bound to both the capacity
constraint and the price cap, and also thdor € representing the fluctuation in
demand, our goal is to find a poli&/(Q;) (from which, using 7, we get th@) for

all' t = {1..N} that maximize the total profit, i.e. maximiZ@ in the equation (8).
Since equation (8) is nonlinear and requires to satisfy tcaimés defined in (9) and
(10), this problem is a nonlinear constrained optimizaficwblem.

3 Optimising Stochastic DP models using EAs

A general constrained optimization problem can be definedagf (x), x€ SC
R" subject to the linear or nonlinear constraigféx) <0, i=1,...m. Herem
is the total number of constraints. One of the most popularswa solving con-
strained optimization problems with EAs is by usingenalty functionThe idea is
to construct a function that penalizes the original obyedtiinction for violating the
constraints in the model. In order to avoid the penalty, figerithm tries to focus
its search on the feasible part of the search space. Hereavenessuch technique
adopted from [19] and also implemented by [26], and defing#malty function as

F(x) = f(x) —h(kH(x), x€ SC R (11)

where, f(x) is the original objective function (in our case it is defined /8 in
equation (8))h(k)H (x) is the penalising part of the function, whétéx) is the main
penalty factor (equals to 0 when no constraints are vio)atedh(k) is known as the
dynamically modified penalty value that intensifies the lei@enalty according to
the algorithm’s current iteratiok Due to the limited space, we do not describe these
factors in detall, interested readers are referred to [26]. [

Solution representation for EA: A solution,, is represented as a $&(Q) =
{E(Q1),E(Q2),...,E(Qn)}, where eachE(Q;) is represented by a bit-string of
lengthl. The total length of a bit-string solutios,= {X1, %2, ...,Xn} , wherex €
{0,1}, is therefore, equal to=1 x N . The goal of an algorithm is to maximize the
modified objective function defined in (11).

Overview of the used EAs: We adopt the approach presented in [26] and imple-
ment two EDAs and a GA for solving this problem. They includgp®ation Based
Incremental Learning (PBIL) algorithm [2]), Distributidgstimation using Markov
Random Field with direct sampling (DEUMalgorithm [25] and a GA [7]. We also
find it interesting to use a non-population based algoritimovkn as Simulated An-
nealing (SA) [9] for this problem. Let us describe the workflof these algorithms.

PBIL

1. Initialize a probability vectop = {p1, p2, ..., pn} With eachp; = 0.5. Here,p;
represents the probability gf taking value 1 in the solution
2. Generate a populatidghconsisting oM solutions by sampling probabilities
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. Select seD from P consisting ofN best solutions
. Estimate probabilities of = 1, for eachx;, as

_ ZXED,Xi:].Xi

p(xi =1) N

. Update eaclp; in pusingpi = pi+A(p(x =1) — pi). Here, 0< A <1lisa
parameter of the algorithm known as the learning rate
. Go to step 2 until termination criteria are meet

DEUMgq

N -

. Generate a populatioR, consisting oMM solutions
. Select a sdd from P consisting ofN best solutions, wherd < M.
. For each solutiorx, in D, build a linear equation of the form

N(F(X)) = ag+ a1X1 + a2X2 + ... + OnXn

Where, functiom (F (x)) < 0 is set to—In(F(x)), for whichF(x), the fitness of
the solutiorx, should be> 1; a = {ap, o1, 02, ...,an} are equation parameters.
. Solve the build system of N equations to estinmate
. Usea to estimate the distributiop(x) = [, p(x), where

1 1
pxi =1) = 118’ px =—-1) = 1iepa

Here,( (inverse temperature coefficient) is sefe- g- 7; g is current iteration
of the algorithm and is the parameter known as the cooling rate

. GeneratéM new solution by sampling(x) to replaceP and go to step 2 until
termination criteria are meet

GA

=

o

. Generate a populatidhconsisting oM solutions

. Build a breeding pool by selectifgpromising solutions fror® using a selection
strategy

. Perform crossover on the breeding pool to generate thelgtign of new solu-
tions

. Perform mutation on new solutions

. Replace® by new solutions and go to step 2 until termination critermraeet
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SA

1. Randomly generate a solutions: {x1,%, ..., Xn}
2. Fori=1tor do

a. Randomly mutate a variablexrto getx’
b. SetAF =F(X) —F(x)
c. Setx = X with probability

1 if AF <0
ID(’()_{eﬂF/T it AF >0

Where, temperature coefficientwas set tol = 1/i - T; here,i is the current
iteration andr is the parameter of the algorithm called the cooling rate

3. Terminate with answex.

The two implemented EDAs, PBIL and DEUjboth fall in the category of uni-
variate EDAs, and assume that the variables in the soluimmsidependent. Other
categories of EDA include, bivariate EDA [4][21], assumatgnost pair-wise inter-
action between variables, and multivariate EDA [20][1B]&ssuming interaction
between multiple variables. Our motivation behind usingvamate EDAS is two
fold. Firstly, they are simple, and, therefore, often qlyaonverge to the optima,
resulting in higher efficiency. This is particularly impant in dynamic environment,
where the pricing decisions have to be frequently changecbi®lly, the number of
problems that has been shown to be solved by them is sunglsisarge.

4 Experiments and Results

We perform three sets of experiments for both sort-term and-term analysis,
where each set modelled different scenarios.

For short-term analysis, we assume that the production fivem day is a neg-
ative function of the price on that day and a positive functid the prices on other
days of the week. More specifically, we assume that at anyndivee t: a) Produc-
tion decreases by one unit for each unit increase in pricenbjpcrease in sales
in a given day reduces the sales during other days of the Viregther, the cost of
an additional unit of production was assumed to be zero ¢aliscare fixed, i.e. no
incremental cost) and the minimum production for each dayalso assumed to be
zero. Moreover, it was assumed that demand is higher dundjrist few days of



Siddhartha Shakya, Fernando Oliveira, and Gilbert Owusu

the weel?. These are reflected in table 1 showing the setup fa;alAlso, for ex-
periment 1, maximum production capacit§, was set to 1000 units and maximum
price, R, was set to 250/unit (i.e., higher production flexibilitydalower pricing
flexibility), for experiment 2M; was set to 1000 units ari®l was set to 1000/unit
(i.e., higher production flexibility and higher pricing fibxity), and for experiment

3, M; was set to 300 units arfd was set to 1000/unit during all seven days of the
week (i.e., lower production flexibility and higher pricifigxibility).

Table 1 aj; for all three short-term experimentsable 2 aj; for long-term experiments no 1

[HENENEIENENEENEN| IS ENE ENEN ENENIEA|
1][900-1.0[0.1]0.1]0.1[ 0.1] 0.1] 0.1 1][3000-1.0] 0.0]0.0[ 0.0] 0.0] 0.0[ 0.0
2|[800[0.0[-1.0/0.1]0.1[ 0.1] 0.1 0.0 2][300 0.5[-1.0,0.0] 0.0] 0.0 0.0] 0.0
3][800[0.0[0.0[-1.0[0.1[ 0.1] 0.1 0.1 3][3000 0.0[0.5[-1.0, 0.0[0.0[0.0] 0.0
4][700{0.0[0.0[0.0[-1.0/0.10.1[ 0.1 4[[3000 0.0[0.0[0.5[-1.0,0.0{0.0] 0.0
5[[600[0.0[0.0] 0.0/ 0.0[-1.0/ 0.1 0.1 5[[3000 0.0[0.0[0.0] 0.5[-1.0[0.0] 0.0
6][500[0.0[0.0] 0.0/ 0.0[0.0]-1.0, 0.1 6][3000 0.0]0.0[0.0]0.0[0.5/-1.0 0.0
7][400[0.0[0.0] 0.0/ 0.0[0.0] 0.0[-L.0 7][3004 0.0/ 0.0{0.0[0.0{0.0[ 0.5[-1.0

Table 3 aj; for long-term experiments no 2 and 3

[t]] 2o [au [2x | aa [aa [3i | aet [an ]
1][3000-1.0/ 0.0] 0.0[ 0.0] 0.0] 0.0[ 0.0
3000 0.9-1.0[0.0/0.0[ 0.0/ 0.0 0.0
30000.0{0.9]-1.0,0.0[ 0.0/ 0.0[0.0
3000 0.0[ 0.0/ 0.9]-1.00.00.0[ 0.0
30000.0{0.0/0.0/0.9[-1.0/ 0.0/ 0.0
3000 0.0[0.0]0.0[0.0]0.9]-1.0,0.0
3000 0.0]0.0]0.0[0.0]0.0[0.9]-1.0

N[OOI WN

For long-term analysis, we assumed that the production ieaa i a negative
function of the average price in that year and positive fiomcof the production
during previous year. More specifically, we assumed thanhgtgaven time t: a)
production decreases by one unit for each pound increasgcis p) the company
keeps a given proportion of its customers from the previ@as.yThese are reflected
in table 2 and 3 showing the setup for aj{. Further, in all three experiments, the
cost of an additional unit production was assumed to be Eenoexperiment 1, the
maximum production capacitlyj;, was set to 3000 units during the first 4 years and
set to 6000 units during the last 3 years, no maximum pRgayas set and it was
assumed that the company keeps 50% of its customers fronreéli®ps year. For
experiment 2, thé/; was set to 3000 units during the first 4 years and set to 6000
units during the last 3 years, no maximum price was set andstagsumed that the

2 This is a typical scenario for products, or services, whaseahd is higher during working days
of the week, such as airline seats, mobile phone use, andes&wrant lunch hour sales
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company keeps 90% of its customers from the previous yeaexgeriment 3, the
M: was set to 3000 units during all 7 years, no maximum price wasusd it was
assumed that the company keeps 90% of its customers fromehi®ps year.

Also, for each of these three scenarios in both short-tedi@rg-term environ-
ment, we experiment with eleven different setups for denfarduation ranging
from o = 0 (i.e. no fluctuation) t@ = 1 (i.e. very high fluctuation).

In terms of the algorithms, we set the size of the bit stringresenting each
E(Q) to | = 12. Therefore the solution length, was equal td x N = 84. Since,
there were a very high number of simulations involved, usioglerate size df= 12
significantly reduced the simulation time. Also, in ordemp@rameterise the algo-
rithms, we conduct a range of experiments using wide rangemmeter setups
for each algorithm and choose the setup that had the begirpenfice. Such an
empirical approach to parameterisation is typical in EAeezsh. Following were
the setups used for each of the algorithm: In each executieralgorithm was al-
lowed to do a fixed number of fithess evaluations. This was leigu&00000 for
PBIL, DEUMy and GA, and 600000 for SA. The number of fithess evaluation
for PBIL, DEUMy4 and GA was calculated as the product of their population size
PS= 400, and the maximum number of generatiovi& = 1000. For all experi-
ments, the learning rate for PBIL was set to 0.02 and cookitg for DEUM; was
set to 0.02. For SA a very small cooling rate of 0.00001 waslu$@ best solu-
tions were selected in PBIL and DEUMor estimating the marginal probabilities.
For GA, one-point crossover was used with crossover prdibabét to 0.7 and the
mutation probability set to 0.01.

4.1 Results

A total of 100 executions of each algorithm were done for eagieriment and the
best policy together with the total profit found in each ex@ruwas recorded. The
average total profit (Mean), the standard deviation of {otadit (Stdev), and the best
total profit (Max) out of all 100 executions for each of theaithms are shown in
Table 4 for short-term experiment 1, in Table 5 for shortrt@xperiment 2 and in
Table 6 for short-term experiment 3 for five different setaps . Similarly, Table
7, 8 and 9 shows the results for long-term experiments 1, Zardpectively.

Also, a reliability factor RL) measuring the reliability of the policy found by the
algorithm is shown in the tables along with the other threg¢rice For each algo-
rithm, the reliability factor is the total percentage of sumhere thdinal population
of the algorithm converged to a feasible policy, i.e. the satsfying all the con-
straints. If the final population in all of the runs convergedhe feasible solution,
theRL of the suggested policy is very high, since this indicatesiiigh probability

3 Since SA was not performing well in comparison to other dthors, we allowed it to do more
evaluation, in order to see whether its performance willrbproved

4 Although we perform experiment with 11 different setupsofdue to the space limitation, we
only present the tables with 5 different setups
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Table 4 Short-term 1 Table 5 Short-term 2
o[metrid SA| PBIL |DEUMg| GA o[metriq SA | PBIL |DEUMg| GA
Mean|N/A[924938 923564|94293 0.0] Mean1160461173280117325]117324
0.0| StdeyN/A| 3188 | 4176 | 5998 Stdey 7524 | 165 | 233 | 283
Max|N/A [927935 938937|949923 Max|1173253117329911732991173294
RL| 0% | 100% | 100% | 100% RL| 100% | 100% | 100% | 100%
0.2] Mear|N/A[907226 904476|91453 0.2| Mear{1129388116611%1161623116345
StdeyN/A| 8454 | 10579 | 10167 Stdey 22396 | 4313 | 6453 | 5829
Max|N/A|928237 934521(93726 Max|116778311727471172320117194]
RL|0%| 46% | 46% | 48% RL| 91% | 100% | 100% | 100%
0.5 Mear|N/A[899674 898091] N/A 0.5 Mean1086776¢114988] 1138054113658
StdeyN/A | 13946| 14223 | N/A Stdey 40797 | 5965 | 12182 | 12827
Max|N/A (925939 931484 N/A Max|115555¢11598211163172115696
RL|0%| 26% | 28% | 2% RL| 69% | 100% | 98% | 100%
0.8/ Mear|N/A 886883 890867] N/A 0.8| Mear{108574111517031140924113923
StdeyN/A| 1452 | 16913 | N/A Stdey 31044 | 5526 | 9257 | 10383
Max|N/A|917616 934883 N/A Max|1144443116095¢11571051159019
RL| 0% 19% | 15% | 0% RL| 55% | 100% | 98% | 100%
1.0l Mean|N/A[878393 884754] NJA 1.0 Mear| 10841851153184114189]114013
StdeyN/A| 17150| 17642 | N/A Stdey 28600 | 4160 | 8779 | 8746
Max|N/A (911963 926150 N/A Max 1154232T116004j115832&11156692{
RL| 0% 12% | 11% | 0% RL| 60% | 100% | 98% | 100%

Table 6 Short-term 3

o[metrid SA | PBIL [DEUMg4] GA
0.0] Mear{96897(96897( 968970/96897
Stdey 0.00 | 0.01 | 0.00 | 0.21
Max|96897096897( 968970|96897(
RL| 100% | 100%| 100% | 100%
0.2] Mear|80392484769] 849495(78672
Stdey 33489| 10418| 17122 | 14848
Max| 883369869569 888038|840324
RL| 66% | 47% | 27% | 84%
0.5 Mear|{690419695027 710566/59364
Stdey 51689| 23680| 31968 | 26811
Max|811061764219 793566|674953
RL| 38% | 49% | 39% | 86%
0.8] Mear| 627084582653 59754157121
Stdey 53243| 7547 | 25650 | 13810
Max|77435661082() 713464|646189
RL| 36% | 99% | 63% | 98%
1.0] Mear{60756(58240] 577594|57069,
Stdey 60597| 3837 | 18248 | 13769
Max|807870591071 661086|655611
RL| 37% | 100% | 72% | 95%

of achieving at least the suggested profit with such demahuidDsly, this is the
case when there is no demand fluctuation< 0 ). However, when uncertainty is
introduced, for some tightly constrained problems, moghefpolicy could be out
of the boundary of the constraints due to the higher fluadnati demand. The algo-
rithm would then converge to a non feasible region of thetsmiuispace. However,
even in these scenarios, few random policies could be samyth lower fluctua-
tion that satisfies the constraints, simply due to the randoor. Although, such a
policy is not likely to achieve suggested profit, the aldoritwould keep it as the
best policy, even though its final population would converga non feasible pol-
icy. In these scenariofL allows us to identify the probability of obtaining such a
false result by examining whether both the best policy fodudng entire iteration
of the algorithm and the final population of the algorithm wenged to a feasible
solution. We, therefore, tak®L as the main measure to test the performance of the
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Table 7 Long-term 1 Table 8 Long-term 2

o[metrid  SA PBIL |[DEUMq| GA o[metrid  SA PBIL [DEUMg| GA
0.0 Mear|2782194¢28206184282059962820595 0.0 Mear| 5220378;75477944 5477930$‘5477924'7

Stdey 345156| 7 672 814 Stdey 2201309 237 | 1130
Max|2820522128206185282061852820618} Max|5477795] 5477947 547794715477947

RL| 100% | 100% | 100% | 100% RL| 100% | 100% | 100% | 100%
0.2] Mear|2637247(2719893271936832687638 0.2] Mear|46971642502365445042620346345442
Stdey 706535 | 229150 | 274612 | 208255 Stdey 1928960| 686963 | 1099312| 1026420)
Max|27516273278807412781414$2748635 Max|5113654(524121065258957 14988776

R 79% | 78% | 78% | 91% RL 61% | 43% | 29% | 86%
0.5 Mear|241733102552609$255931 1923866124 0.5 Mear|4063134444166229439267093576690
Stde\ 1261215| 407533 | 570856 | 501397 Stdey 2900701| 1512555| 1842733 15950341
Max|2696934526788111269641742512842 Max|50084429489606694825195¢4168803

RL 52% | 77% | 72% | 95% R 50% | 29% | 34% | 85%
0.8 Mear|2340441{2409814$242160032358529 0.8 Mear{3725216$38197104387357 7034775462
Stdey 1059765| 396234 | 553567 | 356613 Stdeyf 3133699 399310 | 1640259| 1399360)
Max|2595058325215353260318022466333 Max|4623484(388860574300953938414691

RL 42% | 99% | 74% | 99% RL 45% | 47% | 43% | 95%
1.0] Mear{2301843{2401045}238893242363908 1.0] Mear|3638054838315131374959003463104
Stdey 1257847| 140554 438312; 268953 Stdey 3026899 380666%41579632 1495657,
Max|2570959(24281190252561552417041 Max|46097274405769344189794 140827152

RL 35% | 100% | 77% | 99% RL 46% | 57% | 48% | 97%

Table 9 Long-term 3

g|metricc  SA PBIL [ DEUMq4 GA
0.0] Mean 4863538 4863640;:863639 14863640

Stdey 843 0.00 144 2.45
Max|4863640848636408486364084863640:

RL| 100% | 100% | 100% | 100%
0.2| Mearn 4005137 426742814291739 b3831260

Stdey 1808341| 843943 | 1028819| 891778
Max|44852209450485824597333%4074474,
RL| 60% 40% 26% 79%
0.5[ Mean 3378571 3459025?534691 2804023

Stdey 3308233 1530366| 1755677 1076736
Max|43427472402963463990993$3077701
RL| 46% 43% 39% TS86%
0.8| Mean 2988497 2753691;2938715L690189

Stdey 2994800| 706814 | 1763762 803103
Max|41867831305985893504130830141011
RL| 48% 96% 45% 96%
1.0| Mear|2883050%$27362045277533642674162!
Stdey 3187659 168031 | 1216581 553008
Max|37370691276871683154262(29126644
RL| 44% 100% 57% 98%

algorithms. If two algorithms had simil&L, the mean profit was taken as the next
measurer of the performance. Also note that, the profitspited in the table repre-
sent the expected proff(/7) (5) i.e., the one without the error term included. The
value for the best performing algorithm is plotted in boldlléwing are the analysis
of the results.

a. Performance of the algorithms in different scenarios: As we can see from
the tables, for all of the experiments, SA has the worst parémce compared to
other three algorithms with lowest value fRt. The performance of DEUMand
PBIL was somewhat comparable for all four metrics, with cicaally one out-
performing another. In terms of mean profit, PBIL and DEUNas the best per-
formance. Finally, GA has the highest value Rk and therefore has the overall
best performance. It can be noticed that, when there is nertaioty in demand,



Siddhartha Shakya, Fernando Oliveira, and Gilbert Owusu

the reliability of all three EAs are similar, though in termismean total profit two
EDAs, PBIL and DEUM, were better than GA (similar to [26]). However, when
demand uncertainty is introduced our results show that @Ayast cases, retained
its reliability, whereas the reliability of two EDAs decssstl.

b. Impact of demand uncertainty on total profit: It can be observed from the
tables that, in general, demand uncertainty reduces thegaifit, and is true for
all the tested algorithms. In order to show this, a graph éhgwhe best average
total profit found by the algorithms for long-term experirh@nwith 11 different
setups of is plotted in Figure (1. Note that the total profit is mapped to the ratio
between 1 and 0. It can be seen that the total profit reducesmaard fluctuation
gets higher, till it reaches to the mark of 50% £ 0.5). However, the decrement in
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profit slows as the fluctuation in demand gets very high, frofndhwards till 1.0.
Interestingly, the high fluctuation in demand results igldliincrement in the total
profit. This indicates that, in some cases, higher fluctnati@lemand may not have
extremely adverse effect to the profitin comparison to teflactuation.

c. Algorithm reliability vs. uncertainty: Another interesting observation that
we make is the effect of fluctuation in demand have on thebiditia of the re-
sults found by each algorithms. A typical illustration isgh in Figure (2), which
plots theRL found by each algorithm for long-term experiment 1 (the esrwere
similar for rest of the instances). It can be noticed thatRlhefor the algorithms
are very high (equal to 100%) when there is no fluctuation @dbmand. Once
the fluctuation is introduced the reliability decreaseswEeleer, interestingly, once
the fluctuation gets very high, the reliability of the resudtarts increasing back to
100%. As can be seen from the figure, this is true for all theséet! algorithms.
This suggests that, when there is some fluctuation in denitaisddifficult to find
a reliable policy that guarantees the profit, however iféhisrvery high fluctuation
in demand the found profit could be guaranteed. These redatissupplement the

5 Due to limited space we do not plot this graph for rest of tretdnces, though we note that the
shape of the curves were similar
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results on the impact of uncertainty on total profit wheregtdit slightly increases
once demand fluctuation is very high. The explanation far ithias follows: when
there is extreme fluctuation in demand wittcloser to 1, the fluctuating ter@ in
equation (2) is either twice the expected s&l¢®; ) or equal to zero (from equation
(3)).Itis therefore easier for the algorithm to solve thelppem with only two values
for @ than when there are higher number of possible value®{fdin case of lower
0). This therefore increases the reliability of the algarith

5 Conclusion

In this paper, we used evolutionary algorithms for solviygamic pricing prob-
lem in a stochastic setup. The model used in this paper is neatestic than the
one used in [26] since different uncertainty is imposed tthaadividual periods.
Our results show that GA is the most reliable algorithm fdvisg dynamic pric-
ing in stochastic setup with implemented model, althougtilar to [26] we found
that EDAs were better when there was no demand fluctuatioralgéefound that
higher fluctuation in demand may not have adverse effect impasison to lower
fluctuation, and could result in increased reliability of flound pricing policy.

We note that the results found in this paper apply to the ilaks. It would
be interesting to see the performance of the real valuedoveo$ these algorithms
on this problem. Also, further work should be done to théoadly justify these
empirical results. This work is under way and interestirgphes are expected in the
near future.
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