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Summary: 

In this chapter we review the basic concepts on automata games, including best response, 

inference, equilibrium and complex system dynamics. We describe how the concept of Nash 

equilibrium is used to analyze the properties of automata systems and discuss its limitations. 

We explain why we think the topics of automata inference, the modeling of evolving 

automata, and the analysis of the relationship between emotions and reason, are interesting 

areas for further research.  
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INTRODUCTION 

 

Automata based systems have been used extensively in complex business modeling, for 

example, to represent Markov systems (e.g., Stewart et al., 1995; Uysal & Dayar, 1998; 

Gusak et al., 2003; Fuh & Yeh, 2001; Sbeity et al., 2008), in the development of 

classification systems (Gérard et al., 2005), in the analysis of commuters behavior (van 

Ackere & Larsen, 2004), to design electricity markets (Bunn & Oliveira, 2007, 2008), in the 

planning of real-options (Oliveira, 2010a), to study human-computer interaction 

(Gmytrasiewicz & Lisetti, 2002; Altuntas et al., 2007; Kim et al., 2010; Muller et al., 2013), 

to represent the relationship between emotions and reason (Oliveira, 2010c), in devising 

product differentiation strategies (Oliveira, 2010b), and in forecasting and production control 

(Liu et al., 2011). 

The analysis of the behavior of such systems is very often based on the concepts of 

game theory, such as Nash equilibrium (e.g., Fudenberg & Tirole, 1991). The Nash 

equilibrium is a powerful tool for analyzing industries where there are strategic 

interdependences between players. However, it does not explain the process by which 

decision makers acquire equilibrium beliefs, failing to determine a unique equilibrium 

solution in many games, and, therefore, failing to predict, or prescribe, rational behavior 

(e.g., van Huyck et al., 1990; Samuelson, 1997; Fudenberg & Levine, 1998).  

In games with multiple equilibria the Nash equilibrium fails to predict the players’ 

behaviors. In this case, empirical studies (e.g., Roth & Erev, 1995) have shown that models 

of bounded rationality predict better than the Nash equilibrium does how people, 

organizations and markets behave (at least in the short run). A first attempt from the game 

theory literature to address this issue was to refine the concept of Nash equilibrium by 

including additional criteria. First, a player does not choose dominated strategies (Fudenberg 



& Tirole, 1991: 8). Second, choices in information sets not in the equilibrium path must be 

optimal choices (in order to avoid non-credible threats). This is called the rationalizability 

criterion (Bernheim, 1984; Pearce, 1984). However, the problem with equilibria selection still 

exists as different refinements select different equilibria. Furthermore, rationalizable 

strategies may be too demanding as they assume common knowledge of rationality.  

Therefore, in order to model complex games, possibly with multiple equilibria, 

computer models which incorporate boundedly rational players are used as a mechanism for 

inductive equilibrium selection, and to test the validity of the perfect-rationality predictions. 

This methodological jump from perfect-rationality to bounded rationality has theoretical and 

philosophical implications. It corresponds to a switch from a “normative theory” to a 

“positive theory.” The normative theory prescribes what each player in a game should do in 

order to promote his interests optimally (von Neumann & Morgenstern, 1953; van Damme, 

1991: 1), whereas the positive theory describes how agents actually decide, as this line of 

research tries to understand how people and institutions behave (e.g., Samuelson, 1997: 3).  

Simon (1972) was the first to emphasize the need to model bounded rationality in 

order to capture human and organizational behavior: see Sent (2004) for a review of Herbert 

Simon’s work. As Aumann (1997) explains, people and organizations use “rules of thumb” 

that they learned from experience when acting. In other words, people do not optimize even 

in simple decision problems, e.g., Salant (2011). This argument underlines the need to model 

the opponent’s behavior, which was formalized in Rubinstein (1986, 1998) using finite 

automata - see Hopcroft & Ullman (1979) or Cecherini-Silberstein et al. (2012) for an 

introduction to automata theory. In order for inference of the opponents’ strategic behavior to 

be possible some rules need to regulate the definition of strategies. Rubinstein (1986) 

proposed the finite automaton as a tool to model an agent’s behavior. Salant (2011) has used 

automata to implement choice rules. An automaton is a decision rule, or a strategy, consisting 



of a finite set of states, a transition function (that defines the rules of transition between 

states) and a behavioral function (defining an agent’s behavior in each state of the 

automaton). Rubenstein suggested that repeated games with finite automata could capture a 

player’s bounded rationality (considering automata with a bounded number of states). At the 

same time, the introduction of finite automata constrains the type of strategies played: only 

regular strategies are admissible (i.e., given the same input, a player reacts always in the same 

manner). It is noteworthy, however, that long before Rubinstein had proposed the automata 

game, Schreider (1964) presented the formalism of dynamic programming to solve discrete 

deterministic problems using finite automata and introduced its possible application to game 

theory. In automata theory there are four major central issues: the complexity of computing 

the best response automaton, the equilibrium in automata games, automata inference and, 

finally, the dynamics problem. 

 

THE FINITE AUTOMATA GAME 

 

An automata game in the extensive form is a 5-tuple 

. N denotes the number of players. Zi represents a 

finite non-empty set of possible outcomes of the game, and each  is a function of the 

actions of each player, , where  represents an action of player i and 

 represents his opponents’ actions. The outcomes of the game represent the 

information received by each player at the end of every stage. This information, or outcome, 

is a function of the actions of each player in the stage game, and it is different for each one of 

the players, as each one only knows the outcome of his own actions.  represents the 

utility function of player i, i.e., it is the payoff a player i perceives to have received from his 
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action, given the perceived outcome.  stands for a finite non-empty set of internal states of 

player i.  is a non-empty set of all possible actions of player i. The automata game G is an 

extensive form game where each player evolves a certain decision rule that may change at a 

certain iteration of the game. This decision rule, the automaton Ai, defines how a player reacts 

to the outcomes received from the environment.  

A finite automaton used by the player i is a 5-tuple  in which: 

Qi is a finite non-empty set of internal states;  is the initial internal state;  is the set of all 

the possible actions;  is a transition function  and  is a behavioral 

function  associating an action to each possible internal state. At stage one each 

player i plays . At a stage t , after each player executing his actions with an 

outcome , each automaton Ai moves from the state  to the state . 

Then each player i chooses a new move .  

In an automata game, as Mor et al. (1996) put it, a player engages in three tasks at the 

same time: to define the strategy to play the game, to learn the opponents’ strategies, and 

finally if the other players are also learning, to influence the opponents’ beliefs. This line of 

research assumes that some of the players are not perfectly rational and that their limitations 

may be learned and exploited by the other players in the game. 

 

COMPUTING THE BEST RESPONSE AUTOMATON 

 

The complexity of computing the best response automaton aims to capture an agent’s 

rationality and the cost of operating an automaton (e.g., Neyman, 1998). To measure this 

complexity has become a central issue in automata game theory. Rubinstein (1986) and 
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Neyman (1998) used the number of states in an automaton as a measure of the agent’s 

complexity. Moreover, as the behavior and the transition functions are costly to operate, the 

decision-maker reduces these costs by minimizing the number of states in his automaton. 

Therefore, a player has profit maximization as his main objective and lexicographically he 

minimizes the number of states in the automaton (i.e., given two automata with the same 

expected profit the agent chooses the simplest one).  

Banks and Sundaram (1990) generalized this measure of complexity in order to 

include the costs of monitoring the opponent’s behavior. They argued that one needs to 

measure the “transitional complexity” in order to capture the full complexity of an 

automaton. Additionally, they compared the complexity of two automata taking into account 

both the number of states and the number of transitions between them. Banks and Sundaram, 

as well as Piccione (1992), have modeled best response in automata games within a 

discounted infinite stage model. In this context, Piccione proved the equivalence between the 

policy derived by best response and the stationary policy computed by dynamic 

programming. 

Gilboa (1988) defined the problem faced by a player using a finite automaton: to 

choose the best-response automaton, given the choices of the other players. He defined Nash 

equilibrium of the automata game as the choice of an automaton, for each player, such that no 

player can increase his payoff by unilaterally changing his automaton. He focused on the 

complexity of computing the best response automaton and not on the complexity of 

implementing it. This is a very strong criticism of the previous literature. He argued that 

limitations on the number of states do not capture bounded rationality, which is a restriction 

on the capabilities of an agent to design a strategy, while the constraint on the number of 

states only captures a limitation on the implementation of a strategy. Furthermore, also on this 

topic, Papadimitriou (1992) has shown that there is a trade-off between the designing and the 



implementation complexities. In other words, the problem of computing the best response 

automaton with a constraint on the possible number of states is NP-complete whereas, if no 

constraint is given, this problem can be solved in polynomial time. 

Gilboa’s work gave rise to a series of papers on the complexity of computing the best 

response automaton. Ben-Porath (1990) has analyzed the calculation of the best response 

automaton under uncertainty (assuming that the opponent has a set of possible automata to 

use during the game). He proved that, when there is uncertainty concerning the automata the 

other players use (and he studied a game against nature), the problem of computing the best 

response automaton is NP-Complete, meaning that there is no polynomial algorithm to solve 

it. Finally, a probabilistic automaton that chooses actions randomly can also capture 

uncertainty. Freund et al. (1995) demonstrated that, in this case, the complexity of finding the 

best response automaton against a random opponent is equivalent to the complexity of the 

deterministic case. Gossner and Hernandez (2003) have also studied the complexity of 

coordinated play in automata games, allowing for a few mismatches, proving that for any 

sequence of actions there is an automaton which achieves coordination with a ratio close to 1.  

On this same topic, Lehrer and Solan (2006) have addressed the concept of 

excludability in the context of automata games with vector payoffs, analyzing the conditions 

under which, in a two-players game, one of the players has a strategy that ensures that if the 

opponent uses an automaton the average payoff in the long-run is bounded away from the set. 

A related issue regards the conditions under which such complex systems can emerge 

from evolution rather than from optimal design. Kilani (2007) has proposed an evolutionary 

model of finite automata showing that, in the case of long interactions, cooperation emerges 

as an equilibrium strategy. Oliveira (2010c) has analyzed how automata can be used to model 

emotions in agent-based systems in which agents co-evolve endogenous rules of behavior. He 

proved that best response is not sufficient to define complete and consistent rules of behavior 



and that, instead, emotions are necessary to enable the agent to improve his behavior when 

adapting to others.   

 

EQUILIBRIUM IN AUTOMATA GAMES 

 

The computation of the equilibrium of the automata game is the second major issue addressed 

in the literature. Abreu and Rubinstein (1988) have shown that automata games have Nash 

equilibria. This proof is available in a setting where there are two players that play a one-shot 

game with complete information and, therefore, assuming that the players always use the 

same automaton. Furthermore, Abreu and Rubinstein proved that in a Nash equilibrium of an 

automata game (with two players), each player uses a finite automaton with an equal number 

of states. Since the automata are finite, the game eventually reaches a cycle where it repeats 

the pairs of states played. This introduces a partition of state pairs into those belonging to a 

cycle and those only played at the beginning of the game. The states of a player’s automaton 

that appear in a cycle are all distinct: the other states appear in the beginning of the play and 

are never repeated. Therefore, in equilibrium, there is a one-to-one correspondence between 

the stage-game actions of the two automata.  

However, even in such a simple setting the use of the Nash equilibrium as a tool of 

analysis is an issue. Gilboa (1988) criticizes the concept of Nash equilibrium as the number 

of players in a game is usually not known. In addition, Gilboa and Zemel (1989) do not 

support the use of the Nash equilibrium concept in the analysis of automata games as the 

problem of determining its existence or its uniqueness is NP-Hard. Finally, Babichenko 

(2010) has analyzed the game in which every player knows only his own payoff function 

(with uncoupled automata) showing that, in this case, there are pure Nash equilibria. It should 

be noted that in Oliveira (2010 b, c) the players infer or compute the best response against an 



aggregated automaton of the automata used by all his opponents and that the player only 

observes his own payoff function and, for this reason, these are also uncoupled automata, as 

defined in Babichenko (2010). 

 

AUTOMATA INFERENCE 

 

In an automata game, a player faces not only the control problem (to optimize his automaton 

against a given opponent) but also an inference problem (to learn the rule or rules of behavior 

used by his opponent or opponents).  

There are two major branches in the automata learning literature that address the 

inference problem (e.g., Angluin, 1987; Gold, 1978; Oliveira, 2010b): active and passive 

learning. A learning algorithm tries to infer the automaton generating a stream of data. Active 

learning is the inference problem faced by a player who has the ability to influence the input 

generation process, i.e., he is able to select the inputs for the automaton generating the data. 

In a passive learning problem, a player has no control over the inputs supplied to an 

automaton. 

Thus, the actions of the learning player, in an active learning algorithm, affect the 

output of the automaton generating the data. Hence, each player faces an active learning 

problem. In this case, Angluin (1987) has proved that a learning algorithm that attempts to 

infer the behavior of an automaton, provided with counterexamples by a benevolent teacher, 

and with the possibility of controlling the inputs to the target automaton, can learn the 

automaton’s correct structure in polynomial time. Furthermore, Angluin also defines the 

minimum requirements to learn the best possible rational model of an automaton’s behavior: 

completeness and consistency. The completeness requirement implies that a player holds a 

forecast for every action in every state of the automaton model. The consistency requirement 



implies that a player holds a correct model of the automaton he is inferring. A model is 

correct if, in a certain state, it does not forecast different transitions for the same action. Thus, 

the completeness and consistency requirements enable a player to infer a model where the 

transition and behavioral functions are complete and have no contradictions.  

However, Angluin’s algorithm is not satisfactory in modeling competitive games as in 

most game-theoretical models there is a very high cost in experimenting with opponents. This 

was first realized by Carmel and Markovitch (1996, 1999). They developed an algorithm to 

infer the automaton used by an opponent. The player inferring his opponent’s behavior uses 

as only source of information his own experiences in interacting with that given opponent. 

Oliveira (2010b) has modeled quasi-perfect learning which studies the behavior of 

individuals or organizations that can get the correct answer to any of their queries (as they are 

very knowledgeable) but are not provided with counterexamples (as no benevolent teacher 

exists to guide learning in such environments) proving that even in such conditions the 

correct automaton can be learned if the algorithm uses a long enough planning horizon. 

 

 

AUTOMATA DYNAMICS 

 

As recognised by Rubinstein (1998) the automata game, as formulated in this literature, is a 

one-shot game in which the players cannot alter the automaton and where dynamic aspects 

are not considered. 

However, recently, there have been several attempts (coming from the artificial 

intelligence area) to incorporate dynamic issues into automata games. Carmel and 

Markovitch (1999) developed an algorithm that enables a player to infer a model of his 

opponent by interacting with him. This algorithm incorporates an endogenous exploration 



mechanism that enables a player to plan his actions in advance (an agent modifies his 

behavior and learns from the interaction with his opponent). Thus, a player attempts to profit 

from his knowledge and, at the same time, tries to improve the inferred model when his 

predictions are incorrect. Nonetheless, this research still assumes a stationary opponent, i.e., it 

assumes that the opponent does not change his automaton.  

In the study of the relationship between emotions and reason Oliveira (2010c) has 

proposed a setting in which the agents are allowed to change their automaton by using several 

possible operations, including emotions and best-response, allowing all the agents to readjust 

to each others’ behaviors during the adaptation process. This model considers that the players 

are evolving over time in a non-stationary environment. 

 

CONCLUSIONS AND FUTURE TRENDS 

 

The modeling of automata enables the design of an agent that infers his opponent’s behaviors 

and exploits this knowledge by creating better strategies to play the game. This methodology 

seems a promising avenue in creating models of systems of companies that use rules of 

behavior, enabling the analysis of behaviors that are not planned but, instead, evolve over 

time.  

 Automata based models have been used to capture human-machine cooperation 

systems, allowing the development of human machine cooperation in dynamic settings 

(Gmytrasiewicz & Lisetti, 2002; Altuntas et al., 2007; Kim et al., 2010). This topic seems to 

be of interest for future research as with the increasing automation of the working place, and 

of society in general, the study of the human-machine interaction will, certainly, be central to 

the development of the society of the future.  



 The use of automata theory to represent the relationship between emotions and reason 

in the construction of rules of behavior seems to be an interesting research direction 

(Oliveira, 2010c). We envision that experimental studies with people to test these theories 

could lead to important discoveries on the interaction between emotion and reason in game 

playing. 

 Automata inference, both in the passive and active forms, seems to be a promising 

topic as well, as it has the potential to transform data on the behavior of people and 

organizations into decision rules that explain their internal decision processes. This 

knowledge is of interest to model competitor’s behavior and it is very relevant for the 

management of complex organizations, possibly allowing a better structuring of decision 

systems. 
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KEY TERMS & DEFINITIONS 

 

Active Learning: during the process of automata inference the player needs to 

estimate the internal states of the process observed (together with the respective behavioral 

and transition functions) by observing the sequence of inputs and outputs. If the player has 

control over the inputs provided to the automaton generating the data we have an active 

learning process. 

 

Automaton: it is a decision rule, or a strategy, consisting of a finite set of states, a 

transition function (that defines the rules of transition between states) and a behavioral 

function (defining an agent’s behavior in each state of the automaton). 

 

Automata Game: it is a game in which the players’ strategies are rules of behavior 

encapsulated in an automaton that describes how the agent behaves in each state and how he 

reacts to changes in his environment. The automata employed by the agents may have been 



the result of an optimization procedure at the start of the game or have evolved through 

learning over time.  

 

Automata Inference: the player attempts to learn the automata that can better 

describe the rules of behavior used by the process he interacts with or employed by a given 

opponent or set of opponents. Automata learning includes the observation of the inputs and 

outputs produced by a given system and, from these data, the estimation of the states in the 

automaton and respective behavioral and transition functions. There are two types of 

inference processes, active and passive learning, depending on how much control the player 

has on the inputs to the system (or opponent) he is observing.   

 

Best Response Automaton: it is the rule of behavior (composed by the internal states 

and by the behavior and transition functions) that maximizes the expected utility received by 

the automaton when employed against a given opponent’s automaton. 

 

Nash Equilibrium of the Automata Game: it is a state of the automata game in 

which the choice of automaton by each player is such that no player can increase his payoff 

by unilaterally changing his automaton. 

 

Passive Learning: it is the process used by an agent to learn the automaton representing the 

behavior of a different system when he has no control over the inputs supplied to an 

automaton. In this case the agent is a passive observer of the behavior of the system without 

interacting with it.  
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