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Reinforcement Learning for Business Modeling 

 

INTRODUCTION 

Inter-temporal decision making is an important but difficult class of problems that analyze the 

interdependence between sequences of decisions in time. These tend to be very complex 

problems with very important applications to real world problems such as, for instance, product 

differentiation (e.g., Hsu & Wang, 2004), portfolio optimization (e.g., Bae et al., 2013; Kraft & 

Steffensen, 2013), inventory management (e.g., Murphy and Oliveira, 2010), futures and options 

valuation (e.g., Gulpinar and Oliveira, 2012), among many others. In all the models listed so far, 

if there is uncertainty in the parameters characterized by known distributions models which are 

solved using different variations of stochastic dynamic programming. 

However, there are planning problems in which the information about the uncertain 

parameters is very limited and either the transition probabilities between states are unknown or 

the rewards received in each state are difficult to estimate, or both. Such issues with incomplete 

information can arise due to lack of information about consumer behavior, lack of knowledge 

about the competitors’ behavior, or due to uncertainty associated with regulatory policy, for 

example.  

One methodology that is able to derive dynamic optimal policies in the context of limited 

information about transition probabilities or rewards is reinforcement learning (Sutton, 1988; 

Weiss, 1995; Bertsekas and Tsitsiklis, 1996). By using an algorithm of reinforcement learning, 

an agent plays a game in the extensive form with incomplete information where, at the end of 

each stage, the player only observes the outcome of the game (the transition among states) and 

the reward he receives. Applications of reinforcement learning algorithms include, among many 

others, scheduling problems (Zhang et al., 2011), and Raju et al. (2006). 
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The reinforcement learning algorithms can approximate the best policy to play within a 

certain environment without building an explicit model of it. In the first type of model presented 

(the n-armed bandit), an agent decides how to play in the next iteration given the expected utility 

(profit) of each possible action. Other reinforcement learning algorithms, such as temporal 

differences or Q-learning, are more complex. The agent evaluates each action (in the possible 

states of the world) taking into account its possible repercussions on the future behavior of the 

system.  

This chapter summarizes the reinforcement learning theory emphasizing its relationship 

with dynamic programming (reinforcement learning algorithms may replace dynamic 

programming when a full model of the environment is not available) and analyzing its limitations 

as a tool for modeling human and organizational behavior.  

 

THE REINFORCEMENT LEARNING PROBLEM 

Before proceeding, this section presents the terminology used in models of learning, which 

follows Singh (1994). The first concept presented is the Markov property (Howard, 1971). Let 

 1 1 0' | , ,...,t t tP s s s s s  , 1 0', , ,...,t ts s s s  represent the transition probability from state st to a 

state 's , where st is the state of a dynamic system at time t. If the state has the Markov Property, 

it contains all the information to determine the transition probabilities and, in this case, the model 

transition dynamics is  1 ' |t tP s s s  . If every state has the Markov Property, the environment 

and the task as a whole also have the Markov Property. A Markovian decision process is 

characterized by a tuple (policy, reward function, value function, model of the environment).  

A policy asA )(:  is a rule of behavior that transforms states into actions. A reward 

function ta
iju defines the utility that an agent receives from choosing an action ta  in a certain state 
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i, at a given time t. The ultimate goal of an agent is to maximize the total reward received in the 

long-run, his Return (Rt). If the horizon is finite with T stages, then Rt = 
1

t

t t
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s ,su

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t t

a

s ,su 
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If the time horizon is infinite, the return is the discounted sum (where 0    1 is the discount 

parameter) of each one of the rewards Rt = 
10

k

t kk
u



  . 

A value function, V(s), specifies the value of the state s, i.e., the total value of rewards an 

agent expects to receive until the end of the horizon by entering that state immediately. When the 

problem has discrete state spaces and actions, and if the agent has a perfect knowledge of the 

transition probabilities and rewards, in order to compute the optimal policy there is no need to 

interact with the environment. The method used to compute the optimal policy is dynamic 

programming (e.g., Bertsekas, 2000). 

A model of the environment is the set of state transition probabilities and transition 

rewards associated with every action in each state. This model is just optional in reinforcement 

learning but it is essential for dynamic programming. One of the advantages of reinforcement 

learning is that it enables an agent to have forward-looking behaviour without having an explicit 

or complete model of the environment. However, an agent is required to interact a very large 

number of times with the environment. 

An algorithm that works on-line learns the value function and controls a real environment 

at the same time. On-line algorithms present a trade-off between exploration (an attempt to 

improve the knowledge possessed at a certain time) and exploitation (an attempt to profit from 

the knowledge of the environment). In order to increase its knowledge of the environment an 

agent may have to choose sub-optimal actions. If an agent chooses only optimal actions, he may 

end up exploiting a local optimum, not converging to the global optimum solution. Off-line 

algorithms use simulated experience with a model of the environment and do not face the 
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exploitation vs. exploration trade-off. These algorithms learn the control policy before applying 

it to the real world. Note that the distinction between on-line and off-line algorithms, and real 

versus simulated world, is somewhat misleading. An algorithm that does not require a model of 

the environment can solve a problem in which a model is available. In this case, a player uses the 

model to simulate the real world.  

Next, dynamic programming and three main approaches to reinforcement learning are 

discussed, namely the n-armed bandit, the temporal differences and the Q-learning algorithms. 

As seen in the previous presentation, reinforcement learning and dynamic programming can be 

used to solve the same type of problems, as both aim to computing the optimal policies given 

that the environment follows a Markov process. Therefore, this chapter describes reinforcement 

learning as a generic problem of which dynamic programming is a special case: this approach 

follows Sutton and Barto (1998), Bertsekas and Tsitsiklis (1996) and Kaelbling et al. (1996). 

 

DYNAMIC PROGRAMMING 

Bellman (1957) defined dynamic programming as the mathematical theory of multi-stage 

decision processes, and defined decision process as a system (possibly stochastic) in which the 

decision-maker has a choice of transformations that may be applied to the system at any time. He 

also distinguishes single-stage (only one decision has to be made) from multi-stage decision 

processes (where the decision-maker has to take a sequence of decisions). A decision maker 

solves a dynamic programming problem when he understands the structure of the optimal policy. 

This means that the decision-maker understands the system characteristics, which determine the 

decisions at any particular stage of the process. An optimal policy has the property that whatever 

the initial state and initial decisions are, the remaining decisions must constitute an optimal 
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policy with regard to the state resulting from the first decision (this is the Principle of 

Optimality). 

Therefore, the dynamic programming problem is the one of computing the optimal 

policies, given that the environment follows a Markovian process and a known model of the 

environment. Consequently, it implies the solution of two related problems: prediction (policy 

evaluation) and control.  

The prediction problem consists of estimating the value of each state of the environment 

for a certain policy  . Let E represent the expected value of a policy , and let  ,s a  

represents the probability of executing action a in state s, following a policy  . Further, let '

a

ssP  

stand for the probability of the system moving from state s  to state 's , conditional on the agent 

choosing action a. Then the state-value function ( )V s  represents the expected return of state s, 

following a policy  such that    ssREsV tt  \
 , or equivalently 

 ' '

'

( ) ( , ) ( ')a a

ss ss

a s

V s s a P u V s     . 

The control problem takes into account that a given policy influences the value of a given 

action. Thus, let the action-value function ( , )Q s a represent the expected return of an action a, 

in state s, following policy . Then,    aassREasQ ttt  ,\, 
  represents the action-value 

function, which is equivalent to  ' '

'

( , ) ( ')a a

ss ss

s

Q s a P u V s   . 

It is then intuitive that a value function imposes a partial order on the space of policies. A 

policy  is better than or equal to a policy '  if and only if its expected value is higher than or 

equal to the expected return of policy ' . More formally,    '' V s V s     , for all 

.s S  
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As it is possible to have a partial ordering on the space of policies, it is also possible to 

define optimal value functions. The optimal state-value function 
*( ) max ( ),V s V s s S


    

represents the maximum expected value of a state s. Therefore, the optimal action-value function 

*( , ) max ( , ), , ( )Q s a Q s a s S a A s


     represents the maximum expected value of an action a 

in state s. Consequently, an optimal policy    gives the association between states of the world 

and actions that maximise the expected return, ),(* asQ :  *

' '

'

( ) arg max ( ')a a

ss ss
a

s

s P u V s   , 

s S  . 

In the infinite horizon the value iteration and the policy iteration algorithms, first 

developed by Howard (1960), can approximate the optimal policy and the optimal value 

functions. The value iteration algorithm is a successive approximation method, in the space of 

the value functions V(s), that converges to the optimal value function, in the limit. The policy 

iteration algorithm is an approximation method, in the space of policies, which converges to the 

optimal policy, in the limit (Ross, 1983; Bertsekas, 2000). 

 

N-ARMED BANDIT 

In the n-armed bandit problem (see Sutton and Barto, 1998) a player needs to choose between n 

possible actions. After each action, the player receives a reward. A player’s objective is to 

choose the actions that maximize the overall reward in a certain period. Usually, this is a 

stochastic problem (the rewards are generated by a stationary stochastic process) where each 

action has a certain expected value (the expected value of the rewards received) unknown to the 

player. The player’s task is to find the action with the highest expected reward and to execute it 

as often as possible. In order to learn the expected reward associated with each action, an agent is 
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required to try non-optimal actions during a few iterations (exploration) instead of repeatedly 

choosing the action with the highest expected value at a certain time (exploitation). 

Let  aQt
 stand for the expected reward of action a, at stage t, and let a represent one of 

the possible n actions available to the agent. Further, let 1
a
tu   stand for the reward received by 

executing action a at iteration t+1. An agent attempts to estimate the true value of a, Q(a), 

computing on-line equation (1). 

     1 1. a

t t t tQ a Q a u Q a 
     , a .    (1) 

Equation (1) represents an exponential smoothing of past rewards with a weight-factor   

(also known as learning rate) such that 10  . The learning algorithm converges with 

probability one for the true action value only if the learning parameter decays over time, let us 

say 
t

t

1
 . However, only in problems with stationary rewards is this condition valid. The 

conditions for convergence with probability one are presented in equation (2), i.e., the learning 

rate converges to zero but slowly, meaning that the agent can learn fast enough to revise his 

initial expectations and slowly enough not to incorporate the effects of random events into his 

expectations.  







1

)(
t

t a  and 





1

2 )(
t

t a .    (2) 

Arthur (1991) using this type of algorithm to capture bounded rationality has found that 

computer algorithms (after calibration) learned in a very similar way to humans, in the sense that 

they also deviate from perfect-rationality. Roth and Erev (1995) used an n-armed bandit 

algorithm to capture the effect of experience, and learning, in human behavior.  

The n-armed bandit algorithm has also been used to model electricity markets. Nicolaisen 

et al. (2001), Bunn and Oliveira (2001, 2003) have simulated a wholesale electricity market 
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using agent-based computational learning. These models aimed to analyzing market power issues 

in electricity markets by simulating the interaction between different generation companies, and 

by capturing the players’ learning behavior. Next we present the problems of forecasting and 

controlling in reinforcement learning theory. 

 

TEMPORAL-DIFFERENCES ALGORITHM 

Sutton (1988) presents the temporal-difference learning algorithm as a new method for 

forecasting. The temporal differences algorithm started, back in the 50s, with Samuel’s (1959) 

checkers player and, so far, it was in the games research area that the temporal-differences 

algorithm achieved its highest success: a Gammon player (Tesauro, 1994) and a Chess player 

(Baxter et al., 2000). The temporal-difference learning can also be applied to solve control 

problems (Tesauro, 1992). Sutton (1988) has defended that whereas conventional forecasting 

methods use the difference between predicted and actual outcomes as their learning signal the 

temporal-difference algorithm looks at the difference between successive predictions: with the 

temporal-difference algorithms learning occurs whenever there is a change in predictions. In the 

multi-step prediction problems (where a forecast of an outcome at time t+lag is made at time t), 

the temporal difference methods learn to correct the predictions (for some lag), at time t, taking 

into account the forecasting errors at time lag-k, for every k  0, 1lag t   . In addition, 

temporal-difference algorithms can deal with the credit assignment problem (to identify, in the 

set of actions that a player played before a certain outcome, the action which is the responsible 

for that outcome). 

Let  tV s  stand for the value of state st, u t+1 represent the reward of received after 

executing action at, at state st (that resulted in the transition to state st+1), and  denote the 
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trajectory s0, s1, … , sn. At the end of the episode, the expected value of each state sk in the 

trajectory  is updated by the rule        1 1:k k t k kV s V s u V s V s        , in which k, k+1, 

… represents the index of each state in , 0   1 and 0 1  denote, respectively, the 

discount parameter and the learning rate, and := is an operator used to represent an iterative 

process. This means that the value of a certain variable is numerically approximated by iterations 

of the algorithm on the previous value of the same variable. 

The temporal-difference algorithm is a bootstrapping method as it updates the values of 

the weights based on previous existing predictions. Equation    1 1k k k kd u V s V s      defines 

the temporal differences, which represent the difference between the new  1 1k ku V s      and 

the old predicted value of s,  kV s . 

The temporal-difference algorithm only updates the values of the states in the trajectory 

leading to a given outcome, given the values of its successors, and the reward associated with the 

transition departing from that state. This is a first-reward-based learning algorithm (and thus 

known as TD(0)), as it uses the value of the next state as a proxy for the value of all the other 

rewards, i.e., the forecast for the value of each state k is based on the one-step Bellman equation 

   1 1k t kV s E u V s 

 
     . 

The n-step Bellman equation      1

1

n
i n

k k i k n

i

V s E u V s  

 



 
    

 
  can approximate the 

expected value of a state 
ks . In this case, the expected value of n future rewards and of the value 

of the state reached after n steps is used to forecast the value of a certain state s at stage k (
ks ), 

under a policy   (Bertsekas and Tsitsiklis, 1996). 



10 

 

Moreover, this means that instead of having a one-step updating function it is possible to 

have a two-step, three-step, or generically an n-step updating function:  

       1

1 2: ... n n

k k k k k n k n kV s V s u u u V s V s

   
            . 

Consequently, the difference between a one-step and an n-step TD method is that an 

agent computes a new estimate of the true value of the state by looking n-steps into the future. If 

there is no preference on the number of steps, instead of looking several steps ahead, an agent 

can use instead the weighted average of possible multi-step Bellman equations. 

The Temporal Differences (), TD(), algorithm in equation (3) is a particular way of 

averaging the multi-step Bellman equations. This average includes all the n-step equations 

weighted proportionally to     
n-1

, where 0 1  . Equation (3) can be approximated by 

equation (4) representing the updating function of the TD() algorithm. 

     :
m k

k k m

m k

V s V s E d


 



 
   

 
 .    (3) 

     :
m k

k k m

m k

V s V s d


 



   .    (4) 

Equations (3) and (4) are appropriate for off-line problems (in which the value of every 

state is updated after the trajectory reaches a terminal state), however, they are not adequate for 

problems where a terminal state does not exist, or in which there are trajectories that may be 

infinite. In order to apply temporal-differences methods to these types of problems, an on-line 

TD() has to be defined instead. 

In the on-line TD() algorithm there is a memory variable associated with each state, 

known as eligible trace. This variable determines how the process of updating the state-value 

equation takes into account a certain dk difference. Eligibility traces are memory parameters, 
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associated with a certain state, that enable the solution of the temporal credit assignment 

problem by giving more credit, i.e., higher trace, to the states visited more recently. 

The eligible trace for a state s at time t is denoted as e(s)R
+
:  

( )
( ) :

1 ( )

e s
e s

e s






 


   if   

t

t

s s

s s




,          sS, 

where st is the state of the environment at time t. The eligibility trace decays for all states at a 

rate , except for the last state visited where the eligibility trace is incremented by one unit.  is 

the trace decay parameter, it determines how different states are assigned a certain prediction 

error, given the discount rate. Let    1 1k k k kd u V s V s 

      and let  ke s  represent the 

eligibility trace of state s at time k. Then, in the on-line TD() algorithm, for every s, equation 

     : . .k k k kV s V s e s d    approximates the state-value function. 

 

THE Q-LEARNING ALGORITHM 

In the control problem an agent chooses the action, in a given state, that gives him the optimal, or 

almost optimal, reward. The way an agent deals with exploitation classifies his learning behavior 

as on-policy or off-policy. Off-policy algorithms may update the value of a given state based on 

actions other than the one actually executed during the episode. During a given trajectory  an 

agent may choose a certain action 'a , at state s, (because he is exploring), but when updating the 

estimated value of s, the agent may assume that in future repetitions of the game (also known as 

episodes) he will choose the action with the higher expected value. On the other hand, on-policy 

algorithms update the value of a state strictly based on the experience gained from executing 

some policy. In this case, if in a state s the agent chooses an action 'a  (because he is exploring) 



12 

 

then, when updating the expected value of this state, the agent uses the expected value of action 

'a  (and the value of the state reached by executing it). 

The distinction between these two types of policy evaluation has important implications 

both on the policies derived and on the convergence properties of the algorithms applied (Singh 

et al., 2000). The policies derived using on-policy algorithms are safer than policies derived 

using off-policy algorithms. While on-policy algorithms take into account the effects of 

exploration on the overall reward of the policy, off-policy algorithms take into account only the 

reward of the potentially optimal policy. Hence, in simulated environments, the off-policy 

algorithms can find the optimal policy, but their use in real-world problems may have disastrous 

consequences.  

However, if the parameters of a given off-policy algorithm are such that it always follows 

a greedy policy, and never explores, it may have good performances in real world environments. 

Nonetheless, in this case, there is no distinction between on-policy and off-policy algorithms, as 

this distinction relies on the manner the algorithms use exploration. 

The convergence properties of off-policy and on-policy algorithms are also different. In 

an off-policy algorithm, the updating function does not take into account the policy used. 

Therefore, convergence (e.g., the Q-learning presented below) requires the algorithm to try each 

action (in every state) infinitely often. On the contrary, the on-policy algorithm learns the value 

of the actions actually taken, and converges to the optimum only if, in the limit, it chooses the 

optimal actions. Hence, in this case, convergence occurs only if the algorithm tries each action 

(in every state) infinitely often and if, in the limit, the learning algorithm is greedy with 

probability one. 
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Q-learning and Sarsa are two different algorithms for on-line control problems. While the 

former uses off-policy learning, the latter applies on-policy learning. The rest of this section 

presents these two algorithms in order to illustrate and discuss the application of reinforcement 

learning to the control problem. 

Q-learning is a temporal-differences off-policy algorithm used in the control problem. 

Again, let '

a

ssP  stand for the state transition probabilities, representing the probability of the 

system moving from state s  to state 's , conditional on the agent choosing action a. 

Furthermore, let  * ,Q s a  be an optimal Q-value, i.e., the maximum expected value 

associated with action a, in state s, then  * *

' '

'

, ( ')a a

ss ss

s S

Q s a P u V s


    , s S  .  * ,Q s a  

represents the expected value of an action a, in a state s, assuming that the optimal policy is 

followed within trajectory  . Equation (5) represents the Bellman’s equation (actually a set of 

equations) used to compute the optimal value of each state, given the expected value of every 

action. By combining  * ,Q s a  and  *V s  the expected value of an action a can be defined, for a 

state s, as a function of the actions in the following states within  , equation (6). 

   * *max ,
a

V s Q s a , s S  .       (5) 

 *

' '

'

, max ( ', )a a

ss ss
b

s S

Q s a P u Q s b


  
  , s S  .     (6) 

In equation (6) it is clear that the expected value of an action a, in a state s, assumes that 

the optimal policy is followed in the future. Watkins and Dayan (1992) show that the one-step Q-

learning converges to the optimal action-values with probability one if every action-value is tried 

infinitely often (in the discrete case). 
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The value iteration algorithm in equations (7) and (8) approximates the optimal Q-factors. 

This updating process follows the assumption that the algorithm, in the future iterations, follows 

the optimal policy. 

'( , ) : ( , ) . ( , ). max ( ', ) ( , )a

ss
b

Q s a Q s a e s a u Q s b Q s a     
 

, s S  , )(SAa   (7) 

( , )
( , ) :

1 ( , )

e s a
e s a

e s a






 


   if   

( , ) ( , )

( , ) ( , )

t t

t t

s a s a

s a s a




.       (8) 

An on-policy control algorithm, such as Sarsa, computes the expected value of a policy 

taking into account the possibility of explorative behavior (an explorative action may be non-

optimal at a certain stage). In the Sarsa (  ) algorithm, the action value function Q(s,a) is 

approximated by the updating equation 
'( , ) : ( , ) . ( , ). ( ', ) ( , )a

ssQ s a Q s a e s a u Q s b Q s a       , 

s S  , )(SAa , where the eligible trace is computed using equation (8).  

 

CONCLUSIONS AND FUTURE TRENDS  

Reinforcement learning is useful in modelling problems where an agent lacks information about 

the uncertain parameters as it is able to work in settings where a model of the environment is not 

available.  

A first shortcoming of reinforcement learning models is the assumption that an agent only 

learns by interacting with the environment. A second issue with reinforcement learning is the 

way it deals with the exploration versus exploitation problem. In all the approaches that have 

been analysed (n-armed bandit, Q-learning and Sarsa), this is a central issue as it influences the 

value of the different policies. In addition, if, as discussed, the Q-learning and the Sarsa 

algorithms present alternative ways of dealing with this problem, all of them still assume that a 

player is willing to try any action he wishes to evaluate, which is clearly a very strong 
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assumption when working in environments in which the cost of experimenting with possible 

actions is potentially very costly. 

In reality, an agent learns by being told, by observing how others behave, by deduction, 

and by induction. I, therefore, envision that a way to improve the learning ability of these 

computer algorithms is to integrate these different types of learning methods into a coherent 

framework which allows computational learning to be more efficient and more human-like. 
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KEY TERMS & DEFINITIONS 

Action-Value Function: it represents the expected return of an action in a given state by 

following a certain policy. It stands for the expected present value of all the rewards received 

during the planning horizon, by following this previously defined policy, starting from a given 

state.  

 

Credit Assignment: it is the process of identifying among the set of actions chosen in an 

episode the ones which are responsible for the final outcome. And moreover, it is an attempt to 

identify the best and worse decisions chosen during an episode, so that the best decisions are 

reinforced and the worst decisions penalized.   

 

Dynamic Programming: dynamic programming is the mathematical theory of multi-stage 

decision processes, aiming to compute the optimal policy, given that the environment follows a 

Markovian process.  

 

Eligibility Trace: this is a parameter used to control the “memory” of the algorithm associated 

to a given state that enables the assignment of more credit, i.e., higher trace, to the states and 

actions performed more recently. 
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N-armed bandit: in this reinforcement learning algorithm the learner decides which action to 

choose in the search of the highest expected reward. This is a stochastic problem in which each 

action has a certain expected value unknown to the player. In order to learn the expected reward 

associated with each action an agent is required to try non-optimal actions during a few iterations 

(exploration) instead of repeatedly choosing the action with the highest expected value at a 

certain time (exploitation). 

 

Q-Learning: In this reinforcement learning algorithm the agent evaluates each action (in the 

possible states of the world) taking into account its possible repercussions in the future behavior 

of the system. Q-learning is a temporal-differences off-policy algorithm used in the control problem. It 

is an algorithm for on-line control problems in which values of the states are updated after 

having observed the outcomes of the actions chosen in a given sequence. Q-learning uses off-

policy learning. 

 

Reinforcement learning: in the context of computational learning, it stands for a family of 

algorithms aimed at approximating the best policy to play in a certain environment (without 

building an explicit model of it) by increasing the probability of playing actions that improve the 

rewards received by the agent.  

 

SARSA algorithm: it is a reinforcement-learning algorithm for the on-line control problem that 

uses on-policy learning. Sarsa, computes the expected value of a policy taking into account the 

possibility of explorative behavior (an explorative action may be non-optimal at a certain stage).  
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Temporal-differences algorithm: it is a forecasting method. Whereas the conventional 

forecasting methods use the difference between predicted and actual outcomes as their learning 

signal, the temporal-differences algorithm looks at the difference between successive predictions. 

Using temporal-difference methods learning occurs whenever there is a change in predictions.  

 


	coversheet_template
	OLIVEIRA 2014 Reinforcement learning (AAM)



