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Abstract: Unraveling the kinetic behavior inside the battery is essential to break through the limitations
of mechanistic studies and to optimize the control of the integrated management system. Given this fact
that the battery system is multi-domain coupled and highly nonlinear, an improved lumped parameter
multi-physical domain coupling model is first developed to capture the electrical, thermal and aging
characteristics of the battery in this paper. On this basis, an adaptive multi-timescale decoupled
identification and estimation strategy is proposed based on the quantified timescale innovation, which
realizes the online monitoring of the battery state and the accurate identification of the model parameters.
The specific idea is that the decoupled identification of kinetic parameters inside the cell, the terminal
voltage prediction and the real-time monitoring of the internal temperature with the online estimation of
the available capacity are distinguished under different timescales. Meanwhile, the response time
characteristic of the different kinetics is extracted and analyzed as a distinction between the coupled
internal electrochemical processes. In this idea, four functionally different sub-observers are developed
independently. Significantly, adaptive time-scale driven methods designed based on the fundamental
timescale of the system, the amount of variation of the state of charge, and the amount of transfer charge
are used separately for the observer implementation at different timescales. In addition, the coupling of

the fast and slow kinetic parameter discriminators is achieved by diffusion voltage, and the internal
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temperature observer as well as the available capacity observer are coupled to each other based on the
estimation results. Experimental results for two long-time operating conditions at 5, 25 and 45 °C show
that the proposed strategy has fast convergence and reliable accuracy in monitoring the battery state
characteristics. Compared with the traditional fixed timescale algorithm, the proposed multi-physics
domain coupling modeling strategy based on independent timescale driven design is more competitive
in practical embedded applications.
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1 Introduction

1.1 Motivation and challenges

Rechargeable lithium-ion batteries, an important part of the clean energy network, are an alternative
to petroleum-based fuels for achieving global decarbonization plans [1-4]. Secondary energy products,
mainly lithium-ion batteries, have become an integral part of contemporary life. To improve the
application safety and endurance of battery energy systems, the development of advanced and reliable
battery management systems (BMS) is still a hot research topic nowadays [5,6]. Known as a black box,
the lithium-ion battery system has a complex behavior of multiple physical domains including electrical,
thermal, and mechanical inside [7]. The modeling approach based under a single physical domain seems

to be slightly inadequate in accurately characterizing the complex dynamical behavior inside the cell.
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The challenge of clarifying and extracting the behavior of complex kinetic characteristics information
in multiple physical domains inside the battery, which plays a crucial role in modeling the battery
throughout its life cycle.

Unraveling the kinetic characteristic behavior inside the battery can guide the development of an
advanced BMS and performance optimization during cycling. As studied in the Refs. [8,9], the kinetic
response exhibits specific timescale information that can be used to analyze the current performance
state of the battery. Taking the disassembly approach is one of the ways to obtain the timescale
information, which likewise has a devastating effect on the battery. Fortunately, the different response
time characteristics exhibited by the kinetic behavior processes of carriers inside the cell provide a non-
destructive way of capturing time-scale information [10]. In this form, high precision characterization
of the complex kinetic behavior inside the battery can be achieved by differentiating and quantifying the
timescale information [7]. Extracting and quantifying the timescale information of different kinetic
responses gives a completely new path to the multi-physics domain coupling modeling of batteries and

the development of advanced BMS.

1.2 Literature review

From the viewpoint of different physical domain functions and user usage, battery electrical
characteristic modeling is the core of the whole BMS, thermodynamic characteristic modeling is the key,
and aging characteristic modeling is the foundation. From the perspective of functional definition of
internal state, the accurate estimation of state of charge (SOC), which characterizes the current remaining
battery power, has a direct impact on the future behavior plan of the user [11,12]. Online temperature
monitoring, especially the internal temperature, determines the overall system safety [13]. The current

available capacity of the battery can optimize the performance of the entire BMS system and control the
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energy output scheme [14]. Therefore, coupled multi-physics domain modeling and state estimation that
balances computational complexity as well as consideration of complex kinetic behavior is an integral
part of advanced BMS systems. Accurate monitoring of the SOC, internal temperature, and available
capacity of the battery should be a priority throughout the life cycle of the installed battery application.

In the current existing work on battery modeling, many methods have been studied for problem
solving in the electrical, thermodynamic and aging properties. The typical methods for modeling the
electrical properties include electrochemical mechanism models [15,16], equivalent circuit models
[9,17], and electrochemical impedance models [18,19]. The electrochemical mechanism model can
characterize the macroscopic and microscopic features of the battery more comprehensively, and the
more parameters to be identified make algorithms in the embedded application of the rapidity and
stability cannot be effectively guaranteed [7,11]. Both electrochemical impedance curve-based and data-
driven electrical characteristic modeling have extremely high computational complexity, which makes
them still a huge technical challenge in current embedded applications [20,21]. In contrast, the equivalent
circuit model is the most widely used in battery embedded systems due to its relative simplicity and
reliable accuracy. However, the inability to capture the complex kinetic behavior inside the battery is a
non-negligible drawback of the traditional equivalent circuit model.

In addition, distributed parameter thermal models based on partial differential equations and
collective parameter thermal models based on thermodynamic energy balance equations are commonly
used modeling methods in thermodynamic characterization [11,22-24]. The aging characteristic of
batteries is commonly characterized by electrochemical mechanism models as well as data-based
empirical models. More typical works include the battery health prediction studies conducted by Che et

al. [25-28] based on neural networks and migration learning. Meanwhile, Hu et al. [29] also achieved
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battery health status monitoring based on a fused feature selection and machine learning approach. Also,
Severson et al. [30] and Tian et al. [31,32] trained a model with a partial pre-recession dataset and
achieved the prediction of battery cycle life under full life cycle based on a deep learning network. In
fact, the modeling of electrical and thermodynamic characteristics is also achievable through the data-
driven class of methods based on neural networks and their variants, without considering the computer
performance and the data storage cost conditions [33-37]. However, none of the modeling strategies
mentioned above in the literature is a lightweight solution. Although current computer technology has
been progressed, the computational complexity requirement is still a factor that cannot be ignored in
current battery embedded system applications.

In order to more fully reveal the coupling relationship between different physical domains inside
the battery, scholars have also been committed to developing electro-thermal coupling models to
accurately simulate the dynamic characteristics of the battery. The more typical modeling methods
include combining the partial differential equation-based electro-thermal coupling model and the
centralized parameter-based electro-thermal coupling model. Electro-thermal coupling models
dominated by partial differential equations are usually realized by a combination of electrical property
models based on electrochemical mechanistic modes and thermal models based on heat generation
equations [38,39]. In this regard, Xu et al. [40,41] realized the development of a thermoelectric coupling
model by using a simplified two-dimensional electrochemical mechanism model in combination with a
lumped parameter thermal model. Additionally, Wang et al. [42,43] constructed a fractional-order
thermoelectric coupling model of the battery based on electrochemical impedance spectroscopy, which
also realizes the characterization of the kinetic properties of the battery. It is worth affirming that all of

the above methods have remarkable reliability and accuracy in the characterization of electro-thermal
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coupling properties. However, the computational complexity associated with the large number of partial
differential equation systems largely constrains the application of the above modeling methods in
embedded systems.

Driven by the above issues, the lumped parameter-based electro-thermal coupling model shows
great potential for development due to its relative simplicity and reliable accuracy. The lumped
parameter electro-thermal coupling model usually consists of an equivalent circuit electrical sub-model
and a lumped parameter thermal sub-model, which is of great value for scientific and engineering
applications as it significantly reduces the computational complexity of modeling systems between
multi-physical domains [44,45]. However, the traditional equivalent circuit model is only effective in
supervising the realization of macro-voltage and current parameters, and is unable to capture the
complex kinetic behavior inside the battery. The lack of explanation of the internal kinetics of the battery
is also a non-negligible drawback of the lumped parameter electro-thermal coupling model.

Fortunately, the different Kinetic responses and the decay of the battery performance all exhibit
specific timescale information, which provides a promising opportunity to model the internal complex
kinetic behavior from different timescales. The complex kinetic processes of the battery are
characterized at the micro level by internal carrier movement, interfaces and various non-homogeneous
interfacial response features, which are elaborated in detail in the study of Zhang et al. [7]. These micro
kinetic processes can be described by ohmic polarization, concentration polarization, electrochemical
polarization and thermal energy conduction processes in equivalent circuit modeling. In this case, the
different kinetics processes can be decoupled into two parts: fast and slow kinetic [46]. In fact, the
capacity decay characterizing battery aging during cycling exhibits longer timescale information than

the changes in terminal voltage and temperature [47-49]. From the whole life cycle perspective, it is a
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reasonable solution to model the aging characteristic at large timescale and the electro-thermal
characteristics at small timescale, respectively, and to couple them in a multi-physical domain composite
model through a feedback mechanism.

Based on the above discussions, a framework for multi-physics domain coupling modeling can be
initially formulated based on timescale discrepancy information. At this point, the choice of algorithms
for the estimation of different states and the way of quantifying the time-scale are supposed to be
considered. Under the premise that many algorithms can achieve the above functions, light-weight
algorithms based on recursive least squares (RLS) [50-52] and extended Kalman filter (EKF) [53-55]
are still the most valuable options for embedded applications at present considering the computational
complexity factor of multi-physics domain coupling modeling. Given the facts described above, the
forgetful factor recursive least squares (FFRLS) algorithm and the EKF algorithm are selected to develop
state monitors in multi-physics domain coupling modeling in this paper. On different time-scales driven
by the observer, the sampling time of the system can be seen as the basic timescale property. Meanwhile,
the driver of the slow kinetic algorithm in small timescale can be designed based on the amount of SOC
variation. The execution of the battery capacity estimation algorithm in large timescale can be achieved

by quantifying the amount of charge transferred.

1.3 Idea and contributions

With the goal of achieving non-destructive characterization of complex kinetic and accurate
monitoring of different states, this paper constructs a multi-physics domain coupled model considering
electrical, thermal and aging properties. Meanwhile, an efficient adaptive multi-timescale decoupled
identification and estimation strategy is proposed based on the quantified timescale innovation. The four

main contributions make this research different from existing ones.
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(1) An improved multi-physics domain coupled model is constructed to model the electrical,
thermal and aging properties of the battery with the smallest possible error.

(2) An efficient adaptive multi-timescale decoupled identification and estimation strategy is
proposed to maximize the modeling of the complex kinetic behavior of the battery at different timescales.

(3) Quantitative time-scale features are analyzed and extracted, thus decoupling the complex
kinetic behavior within the battery in a non-destructive form and improving the accuracy of the kinetic
interpretation.

(4) The development of sub-observers on different timescales is coupled to each other, and the
drivers of the three sub-algorithms with different functionalities are designed to be independent and
highly adaptive.

1.4 Paper organization

The remainder of this paper is organized as follows: Section 2 introduces the coupled multi-physics
domain model considering electrical, thermal and aging properties and the model-based state-space
characterization method. Section 3 proposes an efficient adaptive multi-timescale decoupled
identification and estimation strategy and completes the design of each sub-observer in the strategy based
on the quantized timescale innovation. Section 4 presents experiments and results analysis on the
identification of kinetic parameters, the effect of terminal voltage tracking, the estimation accuracy of
internal temperature and the estimation effect of available capacity. And the conclusions are given in

Section 5.
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2 Electric-thermal-aging multi-physics domain coupling modeling

2.1 Lumped parameter multi-physics domain coupled model

The multi-physics coupled domain model (MPDCM) based on timescale information of complex
Kinetic processes is used to characterize the electrical-thermal-aging of lithium-ion batteries in this paper.
The MPDCM is represented as an electrothermal characteristic at small timescale as well as an aging
characteristic at large timescale, as shown in Fig. 1. Meanwhile, based on the timescale differences in
the electrochemical reactions inside the cell during charging and discharging, the electrical behavior at
small timescale is characterized as fast kinetic as well as slow kinetic processes.

Based on the modeling idea of timescale quantization, a second-order resistance-capacitance (RC)
equivalent circuit network with significantly different time constants, as shown in sub-Fig. 1(a), is used
to describe the electrical behavior of the battery. Meanwhile, the accuracy as well as the relative
simplicity of the model has been demonstrated in many works. Moreover, considering the computational
complexity required for multi-physics domain modeling of the lumped parameter, a simplified thermal
path model, as in sub-Fig. 1(b), is used in this paper for real-time online estimation of the battery internal
temperature. Meanwhile, the results of entropy heat coefficient acquisition under the experiment are
combined to achieve effective modeling of the battery heating power. In addition, the slowly capacity
decay phenomenon is one of the most obvious characteristics of battery aging. The estimation of the
available battery capacity using different time-scale control strategies at large timescale is also

considered in this paper, as shown in sub-Fig. 1(c).
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Fig. 1. Structure view of lumped parameter electric-thermal-aging multi-physics domain coupled model:

(a) Electrical characteristic sub-model; (b) Thermal characteristic sub-model; (c) Aging characteristic sub-model.

In sub-Fig. 1(a), R,n, denotes the ohmic internal resistance, U,y is the open-circuit voltage
(OCV) of the cell, R.; inthe dual RC link is the charge transfer resistance, C,; denotes the bilayer
capacitance, R, denotes the diffusion resistance, C,¢ is the diffusion capacitance, and U, is the
diffusion voltage of R;r and C,; the link. The parallel connection of R..C4 and R;rCqf are used
to simulate the electrochemical polarization and the concentration polarization processes of the cell,
respectively. In addition, ,pm, Tcq @nd 74r denote the reaction time of ohmic effect, double layer
effect and diffusion effect, respectively. Based on the Nyquist curve of the cell it can be observed that
the three behave numerically as 7op, < Tcq < T4r. Naturally, this provides a clear direction for the
capture of the kinetic properties at different timescales.

In sub-Fig. 1(b), the three-dimensional cell thermal pathology is first modeled with subscripts x,
y,and z in each component indicating three mutually perpendicular directions. Where, H; is the heat
producing power of the battery,

T; indicates the highest internal temperature point of the battery, C

10
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characterizes the internal equivalent heat capacity, R; characterizes the internal equivalent heat
resistance, T, characterizes the surface temperature of the battery, R, characterizes the external
equivalent heat resistance, and C, characterizes the equivalent heat capacity of the battery case. It is
worth indicating that aluminum-cased cylindrical NCM battery is chosen to be used for experimental
analysis in this paper. The internal and external thermodynamic parameters of this battery type remain
essentially the same in different directions. Considering the computational complexity and modeling
accuracy, the optimized single-dimensional thermal pathology model is adopted in this paper. In sub-
Fig. 1(c), Q isthe actual capacity of the cell. wy, is characterized as state noise. which is used to model
the slow change process of the battery available capacity. w,, is characterized as the observation noise.
The MPDCM can be designed by quantized time-scale driven design to achieve the cooperative

estimation of terminal voltage, internal temperature and capacity of the battery at different timescales.

2.2 MPDCM-based modular state-space equation representation

2.2.1 Electrical characteristic sub-model at small timescale

For the electrical characteristic sub-model at small time scales, the electrochemical reactions inside
the cell are separated and modeled as fast as well as slow kinetic processes based on response time
differences. Based on this idea, we define the current of the battery to be positive when charging and
negative when discharging. At this point, the electrical characteristic sub-model can be described by the
linear discrete equation shown in Equation (1).

Ui = eiﬁucd,m + (1_87%)Rct,k s (1a)
Ugr k= e_%U o k1T (1_6_%)Rdf L (1b)

In Equation (1), At is the time interval between two consecutive sampling points. I,_, denotes

11
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the current at the k-1th sampling point. Ugq, and U.r, denote U, and U, at the kth sampling
point, respectively. As mentioned above, 7., is numerically much smaller than 7,;, and they are
calculated as 7.4 = R;:Cq; and t4r = RyrCqyp, respectively. Among them, 7., is used to capture the
charge transfer and the double layer effect under fast kinetic, and 7, is used to capture the diffusion
effect of active lithium at the solid-phase particle interface under slow kinetic. Further, the terminal
voltage of the electrical characteristic sub-model based on the second-order RC network in combination
with the ohmic effect can be calculated by Equation (2).
UL,k = focv (SOCk’Ti,k) + IkRohm,k +Ucd,k +Udf,k (2)
In Equation (2), Upx, SOC, and T;, denote the battery terminal voltage value, SOC value and
internal temperature value at the kth sampling point, respectively. fycy denotes the expression of OCV
as a function of SOC as well as T; at the kth sampling point. Without loss of generality, the subscripts
k aswell as k-1 denote the kth and k-1th sampling point in the next part of this paper, respectively.
It is worth mentioning that many methods are available to achieve high accuracy estimation of the
battery SOC. The precision of SOC calculation based on the ampere-hour counting (AHC) is equally
acceptable, when the initial value can be obtained precisely in the laboratory. In addition, the accurate
estimation of the actual battery capacity at large timescale is implemented in this paper using an

independently developed estimator. At this point, the real-time SOC of the battery combining the actual

capacity as well as the AHC method is calculated as shown in Equation (3).

SOC, = SOC, , +At.Dles 3)

aged k-1
In Equation (3), Qqgeqa Is the actual capacity of the battery after aging. n, is the Coulomb
efficiency factor. n isthe temperature efficiency factor. Both of them can be obtained by experimental

calibration. In the laboratory case, the relationship between SOC, T; and OCV can be solved easily by

12
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means of building three-dimensional data tables. The real-time estimation of the battery capacity and the
internal temperature is achieved using the developed estimator. Further, the accurate calculation of OCV
can be achieved by a three-dimensional interpolation function.

2.2.2 Thermal characteristic sub-model at small timescale

The safe and stable operation of the battery embedded system cannot be separated from the real-
time monitoring of the temperature, especially the internal temperature of the battery. In addition, the
parameter updates in the Lumped parameter MPDCM are closely related to temperature. Therefore, it is
significant to develop a temperature estimator and achieve real-time accurate estimation of the internal
temperature of the battery at small time scales. Considering the effect of computational complexity, the
principle of the modeling similarity of same-order systems is cleverly applied in this paper. As suggested
in the Refs. [7,56], the accurate calculation of battery heat production can be achieved based on the
Bernardi formula derived from the first law of thermodynamics. Because the classical Bernardi formula
with many inputs has a large impact on the application of embedded systems, this paper focuses on the
effect of current and internal resistance on the heat generation power. Based on this modeling idea, the
heat source equation of the cell considering the polarization heat, the Joule heat and the reaction heat is
proposed as shown in Equation (4).

Hi,k = fOCV (SOCk’Ti,k)Ik _UL,k Ik + IkTi,k dUOCV /dT (4)

In Equation (4), H;, is the heat production power of the cell and represents the heat generation of
the cell at moment k. fOCV(SOCk,TL-,k)Ik — Uy I, is used to characterize the polarization heat and
Joule heat of the cell. The differential term dU,.,/dT represents the entropy heat coefficientand T is
the Calvin temperature of the cell. It is worth mentioning that the entropy heat coefficient of the cell is

used to calculate the chemical reaction heat production of the cell. Its value is available in advance under

13



©CO~NOOOTA~AWNPE

laboratory conditions. Further, based on the similarity principle for modeling systems of the same order,
the optimized battery thermal circuit model shown in sub-Fig. 1(b) can be described by the state-space

equation in the time-domain state as shown in Equation (5).

dTia _ Tia Tsa i
dt RC. RC C (53)
dar, ~ T, T, T, (5b)

&t RC. RC. RC.

In Equation (5), T;, is the relative difference between the internal temperature of the cell and the
ambient temperature, which is calculated as T;, = T; — Tamp- Similarly, Ty, is the relative difference
between the surface temperature and the ambient temperature, which is calculated as Ty, = Ts — Tamp-
It is worth noting that the spatial equation expression in the time domain state is not suitable for
embedded applications in battery systems. At this point, the nodes T; and T, in the thermal
characteristic sub-model are discrete using the first-order forward difference method, and the linear

discrete form of Equation (5) is obtained as shown in Equation (6).

At At
Tl | TRG RG [T [
|: ia,k+ :|: |: a, :|+ Ci I:Hi,k] (6a)
Tsa,k+1 i 1_(£+ At j Tsa,k 0
RC. RC., RC,
T,
a0 47 ool -
sa,k

In Equation (6), Tipx and Ty, denote the T;, and Ty, values of the battery at moment k,
respectively, and Tj, 41 and Tgq 41 have the same meaning. At denotes the time interval of two
consecutive sampling points of the system.

2.2.3 Aging characteristic sub-model at large timescale

Given the fact that battery capacity decay is one of the most direct features of battery aging, accurate

14
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and reliable estimates of the current battery capacity available are essential for the management and
optimization of the entire battery system. For modeling the battery aging characteristic, the available
capacity remains essentially constant over a shorter number of charges and discharges compared to the
more pronounced changes in terminal voltage, SOC and internal temperature over small timescale.
Distinguishing the timescale difference between battery available capacity estimation and other state
prediction can improve the computational efficiency of coupled multi-physics domain modeling while
ensuring accuracy. For the above reasons considered, the state-space equation of the battery aging state
sub-model is obtained as shown in Equation (7) by combining the capacity slow change pattern and the
AHC method.

Qaged k = Qaged k1 + Wy (7a)

SOC, =SOC,_, +At-17,77; L,y /Qugea s + Vo (7b)
Equations (7a) and (7b) are the state equation and observation equation of the capacity estimation
sub-model in the discrete state, respectively. The slowly varying process of Q,4.q at large time scales
is elucidated in Equation (7a), and this process is modeled by Gaussian white noise w, with zero mean.
The AHC-based SOC values are considered to be of high accuracy due to the initial values of the battery
SOC in the laboratory case can be known. It can be chosen as an observation for the capacity estimation

state-space equation whose observation noise is modeled by a Gaussian white noise v, with zero mean.

3 MPDCM-based kinetic parameter identification and state estimation

3.1 Timescale separation and decoupling identification architecture

As mentioned above, the battery capacity in the MPDCM with the kinetic parameters, the terminal

voltage and the internal temperature are estimated on different timescales. In addition, the identification

15
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of the model parameters is also decoupled into fast and slow kinetic components. Based on the above
idea, an adaptive multi-timescale decoupled identification and estimation (AMTDIE) strategy is
proposed in this paper to achieve lossless characterization of kinetic parameters and online monitoring
of battery status. The difference with the fixed time scale modeling approach is that the proposed
AMTDIE strategy extracts and quantifies the different timescale innovations used to decouple the
complex kinetic behavior inside the battery. A distinct advantage is that the strategy can achieve high-
fidelity modeling of the internal battery kinetic processes in a nondestructive form, further enabling
efficient synergistic prediction of model parameters and battery states. The modeling principle based on

separation of timescales and decoupling of complex Kinetic identification is shown in Fig. 2.
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Fig. 2. Modeling principles for timescale separation and decoupling identification of complex kinetic.

As shown in Fig. 2, the idea of timescale separation and complex kinetic decoupling identification
naturally distinguishes the kinetic parameter identification, SOC calculation, and internal temperature

estimation at small timescale from the battery available capacity estimation at large timescale. In addition,

16
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the electrochemical polarization parameters and thermal pathology parameters in the fast kinetic and the
concentration difference polarization parameters in the slow kinetic are similarly separately identified at
small timescale. In the small timescale of the whole modeling strategy, the identification of ohmic
polarization parameters, electrochemical polarization parameters and full parameters of thermal
pathology under fast Kinetic is realized by a high-pass filter based on the FFRLS algorithm. The
estimation of battery internal temperature is realized by a high-pass state estimator based on the EKF
algorithm. The identification of slow kinetic parameters is realized by a low-pass filter based on the EKF
algorithm. Meanwhile, the estimation of the battery available capacity is implemented in a larger
timescale by the EKF-based algorithm.

Three points are worth stating here throughout the decoupled modeling process. First, the fast
Kinetic parameters in the electrical characteristic sub-model are coupled with those of the slow kinetic
parameters via diffusion voltage, both of which work together for accurate estimation of the battery
terminal voltage. Second, the internal temperature estimation results of the thermal characteristic sub-
model optimize the calculation of the OCV and entropy thermal coefficient in real-time, which further
improves the estimation accuracy of the battery terminal voltage and the available capacity. Third, the
battery capacity prediction results are also fed back to the electrical characteristic sub-model in real-time,

which is used to optimize the accuracy of the AHC-based SOC iteration.

3.2 Identification decoupling of complex dynamic in small timescale

3.2.1 Design of FFRLS-based fast kinetic parameter discriminator

The parameters to be identified under fast kinetic in small timescale include R,n, Reer Cain R,

Ci, Ry and C;. First, we define the sum of the voltages of the R, Re:Cai and RgpCqp linksas U,
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In this case, the U, can be obtained from the difference between the battery terminal voltage U, and
the open-circuit voltage. Then, the difference equations of the electrical and thermal sub-models under
fast kinetic are derivable according to Equations (1) and (6), as shown in Equation (8).
Ujv=aU i +tal +a3l,  +a, (8a)
Tia,k = ﬂlTia,k—l + ﬂzTia,k—Z + ﬂaHi,k—l + ﬂ4Hi,k—2 (8b)
In Equation (8), ay, a3, as, ay, f1, B2, B3 and S, are the coefficients to be identified for the
difference equation under fast kinetic, and their specific expansion form is shown in Equation (9).

o, =R.C,/(At+R.Cy), 2, = ((Ryn + Ry)AL+R, R,Cy )/ (At +R,Cy) (9a)

ohm ohm " “ct

~RymRuCa /(At+R,Cy) = (At +R,Cy Wy —R,CyU 1) /(At+R,Cy) (9d)
B, =—At/RC, —At/RC, —At/RC, +2, 8, = 1—At/RC,)(At/R.C, +At/RC, —1) (%)
B, =At/C., B, = (At/C,)(At/R.C, + At/RC, -1) (99)
Further, we write the difference equation shown in Equation (8) in the form of an exogenous

autoregressive equation, as shown in Equation (10).

.
Up,k |Gk Qg Qg Ay Uss I Iy 1
Tk B B P B || Taxa Taxe Hia Hixo (10)
Ef—/ \
Y fast k Otast k Pifast k

In Equation (10), B¢, is the generation identification coefficient matrix, hggq ) is the data
input matrix, yrqsx IS the data output matrix. To avoid the problem of iterative failure due to data
saturation, the FFRLS algorithm is chosen for parameter identification under fast kinetic in small
timescale. At this point, the core iterative process of the FFRLS algorithm is shown in Equation (11) in

combination with Equation (10).

afast,k = 0fast,k—1 + Lfast,k (yfast,k - 0fast,k—1h-frast,k (113.)
Lrastk = (Prastx1Nast )/(l + h-frast,k Prast k1Nfast ) (11b)
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Prastk = (Prastioes = Lfast,khIast,k Pfast,k—l)/ﬂ“ (11c)

In Equation (11), Lgqs i is the FFRLS gain at moment k, A is the forgetting factor. ?)fast,k is
the estimate of the parameter matrix Oy, , 1o be identified, Prqq x is the covariance matrix, and they
are initialized as afast,o = E[0fqast0] and Praseo = E[(Ofasto — afast,o)(efast,o - afast,o)T]- With
the help of the FFRLS algorithm and the experimental data set, the coefficients to be identified for the
difference equation under fast kinetic are obtained under each moment. Further, the values of the fast
kinetic parameters and the diffusion voltage U,y are iteratively identified by Equation (9). Also, the
terminal voltage U, in the MPDCM is also can be calculated in real-time by Equation (2). In addition,
based on the debugging results of the data set at different temperatures, we set the value of A t00.99in
this paper.

3.2.2 Design of EKF-based slow kinetic parameter discriminator

The parameter identification of complex kinetic processes inside the cell, such as ohmic
polarization, electrochemical polarization, concentration difference polarization, and thermodynamic
conduction, are set in small timescale in this paper. As mentioned in our previous study [46], the response
times of complex kinetic processes inside the cell are not distributed in the same frequency range.
Therefore, the parameter under slow kinetic at small timescale is proposed to be separately identified at
separate time scales. A natural solution is to implement the control of the slow kinetic algorithm drive
in the fixed-step form, and the rationality of this solution is also verified by previous studies [8]. However,
an obvious disadvantage is that the design of the fixed-step scheme is rather harsh in the selection of
operating conditions. When the battery pack embedded system is under frequent charging and
discharging conditions, the time constants of the concentration difference process based on the fixed-

step drive control will be significantly smaller. This makes the discrimination results of slow kinetic
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parameters exhibit large dispersion and entropy values [17]. In addition, too large fixed-step design can
lead to distortion of the algorithm when identifying fast kinetic parameters, while too small a fixed-step
design can easily lead to data saturation in the identification of slow Kkinetic parameters.

To effectively avoid the above problems, an adaptive drive timescale design is employed for
performing the identification of slow kinetic parameters in this paper. It is not difficult to observe from
the electrical characteristic sub-model that the loading current of the concentration difference
polarization link also acts on the OCV-SOC link. Therefore, the drive design used for the slow kinetic
sub-algorithm can be implemented by the amount of SOC variation as shown in Equation (12).

ASOC =At->" 7,77 1/ Qugea i (12)

In Equation (12), ASOC represents the battery SOC variation during time k = 1: m, and m is the
number of steps to run this slow kinetic parameter identification algorithm, and its value will change
adaptively according to the current excitation conditions. In this paper, we set the driving threshold of
the slow kinetic sub-algorithm to ASOC > 0.5% by combining the degree of nonlinearity of the OCV-
SOC relationship curve. That is, the sub-filter used to identify the slow kinetic parameter identification
will be executed automatically when the amount of battery SOC variation under current excitation
exceeds 0.5%. It can also be seen from Equation (12) that the current integration in discrete form takes
into account the system charging and discharging directions. One of the most obvious advantages is that
the designed scheme can be adaptive to arbitrary operating conditions, thus solving the problem of
improving the generality of multi-physics domain coupling modeling.

One point of clarification is that from Equation (12), it can be found that the time scale of the slow
Kinetic sub-algorithm changes adaptively with the C-rate. However, under the SOC-based adaptive

driver design, the effect of the C-rate is actually included in the calculation of ASOC. The whole battery
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system at this point does not care how many iterations have actually been performed. As long as the
amount of change in SOC reaches the constraints of the system, then the change in terminal voltage also
contains enough valid information, which in turn makes the slow kinetic sub-algorithm execute stably
and go on effectively. The fast kinetic sub-algorithm driver, on the other hand, uses the sampling time
of the actual embedded system. With current computer technology, the sampling time of the embedded
system can often reach a very high frequency. In this way, the fast kinetic sub-algorithm and slow kinetic
sub-algorithm are reasonably and efficiently distinguished at small timescale.

Further, to achieve high accuracy identification of slow kinetic parameters, a low-pass sub-filter
based on the EKF algorithm is developed in this paper. First, we define the state variable of the low-pass
sub-filter at small timescale as 6, = [Rqf C4r]. At this point, the state-space equation of the
concentration difference polarization link can be described in the form shown in Equation (13).

0slow,k+l = 0slow,k + Wslow (138')

—At —A

——At t
__ aRdf kCdf k Raf kCdf k
€ Ugowk +(1—€ DR il +V.

slow,k+1 — slow

U (13b)

Equations (13a) and (13b) are the state and observation equations of the slow kinetic process in
discrete form, respectively. The slowly varying process of the concentration difference polarization
parameter is elucidated in Equation (13a), and this process is modeled by the noise wg,,. The port
voltage of the concentration difference polarization link is chosen as the observed variable of the low-
pass sub-filter at small timescale, denoted by the symbol Uy,,,,, and its observation error is characterized
by vgow. In addition, both wg,,, and vy, are considered as Gaussian white noise with zero mean
and covariance Qgowx and Rg,, k. respectively. Further, we define the full-response equation of the
concentration difference polarization link in the following form:

At —At

g (U slow,k ! Ik ! 0slow,k ) = eRdf o YkUsIow,k + (1_ eRdf e ) Rdf Kk Ik (14)
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Assuming that Equation (14) is derivable at all sample points, the first-order Taylor expansion can
be used to calculate the system observation matrix Cg,,, for the low-pass parameter discriminator,
which is shown in Equation (15).

C _ 6g(uslow,k*|klaslow,k)
slowk — 000

05I0w :0§0w,k

( ag(uslow,k ' Ik veslow,k,) + ag (Uslow‘k vlk Y'gslow,k) . dUsIow,k

aeslaw auslow.k dHslow A
sIowZaslow,k
{1 99(Ysiowic 1k Osiowk.)  89(Usiowk Mk Ostowi.) i 09(Usiowk -1 -Ostow k) . QYsiowk ( 5)
Ry OCy U giom b1 .
0slow =0slow,k
—At —At —At —At
| | YstowkAt=Ryt i At eI KCITK | (1_ @ R KCr & ) I Usiow k At=Ret i Ik At R kG | 4 gRarkCak Y siow
(Ret )° Cat k Ry k (Cdf X )2 dbi0m N
aslow:05low,k

For the derivative term dUg,, x/d0s0,, in Equation (15), the further expansion is shown in

Equation (16).

dUsIow,k — 6g(uslow,k—l!kalraslow‘kfl) ag(uslow,k—l!lkflraslow‘kfl) . dUsIow,kfl (16)

d0slow Baslow ou slow k-1 deslow

Combining Equations (15) and (16), itis easy to find that with the initialization of dUgoy x/d6si10w
Rask, Capx and Uy, the system can easily compute the observation matrix Cg,, by iterative
means. Then, with the state-space equation shown in Equation (13) available and the observation matrix
Csiow known, the EKF algorithm is chosen to develop a low-pass parameter discriminator at small
timescale due to its relative simplicity and reliable accuracy. The core iterative process of the EKF

algorithm is shown in Equation (17).

és_low,k = é;ow,k—l (17a)
Paowk = Ps|+ow,k—1 T Sstow k (17b)
Konik = PatonCatonic (Ctoni Potows Catomc + Retons) ™ (17¢)
é;ow,k = As_low,k + Kslow,k (Udf,k - h(UsIow,k’ Ik’és_low,k ) (17d)

dowk = ( I — Kiowk Coton ) Pajow.k (17e)

In the above iterations, Equations (17a) and (17b) represent the temporal update of the low-pass
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parameter discriminator at small time scales, and Equations (17c), (17d) and (17e) represent the

measurement update. In Equation (17), Ky, isthe Kalman gain; @, and 8

slow

are the prior and

Stow
posterior estimates of the state matrix, respectively, which is initialized by 8%, o = E[0siow,0); Piiow
and P, arethe prior and posterior estimates of the error covariance, respectively, which is initialized
by Psiowo = E[(Bsiow,0 — a:low,o)(eslow,o - a:low,o 1. In addition, dUsiow,0/d0si0n and Usiow,o
are initialized with zero matrix, Rgs o is initialized with 0 Q, and Cgyf o is initialized with 150 kF in
this paper.

A point worth stating is that the parameter identification under fast kinetic in small timescale can
be iterated very quickly. Therefore, the converged Uy identification result based on the FFRLS
algorithm is chosen as the true value of the end voltage of the electrochemical polarization link, and its
reasonableness is proved in our previous study [17,45]. Further, when the driving threshold condition
ASOC = 0.5% of the slow kinetic sub-algorithm is satisfied, the EKF sub-algorithm will implement the
iterative correction of Ryry and Cyrx by the error between Uy and Ug,,,. At the same time,
instructions to execute the low-pass parameter discriminator will be sent, which in turn will achieve

accurate identification of the slow kinetic parameters on a specific timescale.

3.2.3 EKF-based design of high-pass internal temperature estimator

The accurate estimation of the battery temperature, especially the internal temperature, plays an
important role in the safety monitoring of the whole embedded system. Considering the computational
complexity impact of embedded applications, an optimized thermal pathology equivalent sub-model is
constructed in this paper based on same-order system modeling similarity. Based on the state-space
equation in discrete form under the thermal characteristic sub-model above, the EKF-based internal

temperature state estimator is developed due to its relative simplicity and reliable accuracy. First, we
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rewrite Equation (6) in a form that is convenient for EKF iterations, as shown in Equation (18).

Xt = Ar Xy + Bl + W, (18)

Yri =CiXp )+ Drup +vp (18)
In Equation (18), H;, is chosen as the system input variable ur; atmoment k, [Tiqy Tsqr]” is
the system state matrix xr,, and Tgq, IS the observed variable yr . Inaddition, wy and vy are the
system process noise and observation noise of the thermal characteristic sub-model in the multi-physics
domain coupling modeling, respectively, which are considered as Gaussian white noise with zero mean
and covariance of Qr and Ry, respectively. Ar, By, Cr, and D, are matrix abbreviations for the

state-space equations of the thermal circuit system, which are expanded in the form shown in Equation

(19).
LAt At
e "G % C, =[0 11,D, =[0
A=l (At Atj,BT— i ,Cr =[0 1], Dy =[0] (19)
— 1| = 0
RC. RC. RC,

One obvious advantage of choosing T, as the observed variable for the thermal characteristic sub-
model is that the cell surface temperature as well as the ambient temperature is much easier to measure
than the internal temperature in the practical application of the battery. In addition, the accuracy of the
heat source H;j isequally crucial as the only input to the system. It is worth stating that the calculation
of OCV is optimized by real-time feedback corrections of the battery available capacity and internal
temperature in this paper. At this point, the core iterative process of the EKF sub-algorithm for the battery

internal temperature estimation at small time scale is shown in Equation (20).

R = AR B U (20a)

Pric = AncaPliaA o+ Qi (20b)

Kry =PrCr o (Cr P CL +R )™ (20c)
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)Aq',k = )A(;,k + KT,k(yT,k -C; )A(;,k - DTUT,k) (20d)
P =(1-K;, Cry ) Py (20e)

In the above iterations of the EKF algorithm, Equations (20a) and (20b) represent the time update
of the internal temperature estimator, and Equations (20c), (20d) and (20e) represent the measurement
update. In Equation (20), Krj is the Kalman gain at the kth sampling point; X7, and X7, are the
priori and posteriori estimates of the state matrix, which is initialized by x7F, = E[x7,]; P7, and Pj
are the priori and posteriori estimates of the error covariance, which is initialized by P7, = E[(x7, —
XT0)(xr0 — XF,)7]. With the help of the EKF algorithm and the results of the identification of
thermodynamic parameters at small timescale, the battery T;, at small timescale will be estimated with
high accuracy. Further, in combination with the measurable ambient temperature T,,,, Value, the
internal temperature T; of the battery will be calculated under each moment.

It is worth stating that the parameters C; and Cs, which characterize the thermal storage capacity,
and R;, which characterizes the thermal conductivity, depend on the properties of the material and
remain essentially constant over the life of the cell. The value of R, which characterizes the heat transfer
from the battery itself to the environment, is affected by certain external heat dissipation conditions,
which have been studied in our previous work [13]. Considering that the test experiments used for data
set acquisition in this paper are conducted in a constant temperature chamber with the same and stable
thermal conditions, which makes the external thermal resistance R value almost constant. Therefore,
the external thermal resistance R value is not considered separately to minimize the computational

complexity of the multi-physics domain coupling modeling.

3.3 EKF-based capacity estimator development at large timescale

Given this fact that the decay of the available capacity over the entire life cycle is much smaller
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than the variation in terminal voltage and internal temperature, it is reasonable and meaningful that a
sub-observer for the estimation of the battery's current available capacity be developed on a larger
timescale. As in the analysis of the time-scale design for slow kinetic parameters identification at small
timescale above, the use of fixed-step for the design of time-scale under different timescale algorithms
is also a natural solution. Similarly, the inability to adapt to all operating conditions is still a design
drawback of this solution. In this paper, we also design an adaptive drive time-scale for performing the
estimation of the available battery capacity at large timescale. First, according to the calculation law of
the transferred charge, we can obtain the amount of charge change under current excitation as shown in
Equation (21).
Qun = 2ol At (21)

In Equation (21), Q. represents the sum of the absolute values of the battery transfer charge
during time k = 1:1, and [ represents the step size experienced by the capacity estimator during one
execution, the value of which adaptively changes with the setting of the current excitation drive threshold.
As suggested in the Ref. [42], we use Qg,,, > 0.12 Ah to implement a driving threshold design for the
available capacity estimator at large timescale. Specifically, during the operation of the battery embedded
system, if the accumulated variation of the transferred charge is greater than 0.12 Ah, the instruction to
execute the capacity estimation sub-algorithm will be sent. At the same time, the system will restart
calculating the value of Q,,,, until the next trigger threshold is met.

Under the premise that state-space equation for the aging characteristic sub-model is available, the
EKF algorithm is chosen for battery capacity estimator development at large timescale. The simplicity
of the EKF algorithm and the reliability of its use for capacity estimation have also been demonstrated

in many Refs. [9,17,48]. First, we choose Qug.q as the state variable x, of the battery aging
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characteristic sub-model. Meanwhile, the real-time SOC value of the AHC iteration considering the
effect of the battery internal temperature is chosen as the output variable y,. Then, if we define:
h(SOC,, I, X, ,) = SOC, +At-n,7; Ik/xQ’k (22)
Assuming that Equation (22) is derivable at all sample points, the first-order Taylor expansion is
the observation matrix C, that can be used to calculate the aging characteristic sub-model, and the

result is shown in Equation (23).

(SOC, Iy Xaged &)
CQ,k =T m =—At- Ui Ik/(Qaged,k)2 (23)

“aged —_%"
9 >(aged _xaged k

Further, the main iterative equation of the EKF-based capacity estimation sub-algorithm is shown

in Equation (24).

ok =gk (24a)
Fox = Fosa + Qo (24b)
Kox = PoxCox (CoxPorCox +Roi)™ (24c)
Kok = %ok + Koy Vo —h(SOC,, 1, %)) (24d)
P = (1 -KouCox ) Pou (24e)

In the above iterations, Equations (24a) and (24b) represent the time update of the capacity
estimator in the large time scale, and Equations (24c), (24d) and (24e) represent the measurement update.
In Equation (24), Q¢x and Ry are the covariances of w, and v, at k moments, respectively;
Ko, is the Kalman gain of the sub-algorithm in the capacity estimator; %5, and £, are the prior and
posterior estimates of the state matrix, respectively, which is initialized by 5, = E[xg,]; Py and
P are the prior and posterior estimates of the error covariance, respectively, which is initialized by
Pgo = E[(xq0 — %50) (Xg0 — £5,0)"]. The EKF-based capacity estimation sub-algorithm is executed

when Q,,, reaches the set threshold of the system. Further, in combination with the AHC method in
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the laboratory case where the initial value of SOC is known, the available capacity of the battery will be

estimated with high accuracy at specific timescale.

3.4 Overall framework of the proposed AMTDIE strategy

In this section, decoupled identification of complex kinetic parameters based on quantification of
time-scale differences and online state estimation of terminal voltage, internal temperature and available
capacity at multiple timescales are implemented. Specifically, kinetic parameters decoupling
identification, terminal voltage prediction, and online internal temperature estimation are performed on
small timescale, while battery available capacity estimation is performed on large timescale. Also, the
response times of the complex Kinetic processes inside the cell are extracted and quantified for
application to the decoupled identification of the model parameters. With the detailed development of
the above four sub-observers with different functions, the whole framework of the proposed AMTDIE

strategy is presented in Fig. 3.
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Fig. 3. Overall framework of adaptive multi-timescale decoupled identification and estimation strategy.

In Fig. 3, the time-scale design principles of the state estimator in different timescales and the

iterative correction process of each sub-algorithm are shown. In small timescale, the FFRLS-based high-

pass parameter discriminator under fast kinetic is executed under each sampling period, and the EKF-

based low-pass parameter discriminator under slow Kkinetic is executed under a specific sampling period.

Meanwhile, the online monitoring for the internal temperature is implemented by high-pass estimators

based on the EKF algorithm under fast kinetic. In large timescale, the implementation of the battery

available capacity estimator is realized by the EKF algorithm based on a specific time-scale driven

design.

In addition, the execution of the high-pass parameter discriminator and the internal temperature

estimator follows the basic timescale property under the system, and the execution of the low-pass

parameter discriminator under the slow kinetic is controlled by the ASOC. Meanwhile, the execution of
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the battery capacity estimator in the large timescale is controlled by Q.,,,,. By separating and designing
the time-scales for driving different estimators, online parameter identification and state monitoring of
battery MPDCM in different timescales are realized. It is not difficult to find that the above modeling
strategy does not introduce additional variables. Meanwhile, the drivers under different timescales will
reduce the computational complexity of the whole modeling to a certain extent, which in turn improves

the efficiency of the whole system for online embedded applications.

4 Experiments and results analysis

4.1 Experimental platform and procedure

To verify the modeling accuracy of the lumped parameter MPDCM and the performance of the
proposed AMTDIE strategy, an experimental platform consisting of equipment such as a mainframe, a
temperature chamber and a battery test system, as shown in sub-Fig. 4(a), is constructed. Then, a new
commercial NCM battery with model number HTCNR 18650 and the specific parameters shown in sub-
Fig. 4(b) is chosen as the experimental sample. It should be noted that the electric-thermal-aging multi-
physics domain coupling modeling method proposed in this paper is also applicable to other chemical
types of batteries since they have similar external properties. Moreover, the battery pack level multi-
physics domain coupling modeling work has not been made more detailed study in this paper. Given
that the characteristics of the OCV-SOC relationship and the multi-timescale effects at the battery pack
level are similar to those of the battery singletons, the modeling approach proposed in this paper is
therefore also applicable to the battery pack level.

Further, the Compound ratio hybrid pulse power characteristic (CRHPPC) test at different

temperatures (5, 25 and 45 °C) is designed to ensure the reliability of the parameter identification. Also,
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the Compound ratio constant current and constant voltage (CRCCCV) experiment at different
temperatures and discharge ratio (0.3, 1.0 and 2.0 C) is designed to estimate the accuracy of the battery
state. The work step flow of CRHPPC and CRCCCYV testing is shown in sub-Fig. 4(c). In addition, three-
dimensional data sets of OCV, SOC and internal temperature are available from the CRHPPC
experimental results. Three-dimensional data sets of discharge ratio, available capacity, and internal
temperature are available from CRCCCV condition. Moreover, the entropy heat coefficient is an
important parameter in the multi-physics domain coupling modeling. In this work, the calculation of this
value at different temperatures is achieved by using the OCV derivative with respect to temperature
based on the selection of different SOC values at 11 equally spaced locations. The results of the above

three-dimensional data set extraction are shown in sub-Fig. 4(d).
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Fig. 4. Experimental platform and procedure: (a) Experimental platform; (b) Battery characteristic parameters; (c)

Experimental procedure of CRHPPC and CRCCCV; (d) Three-dimensional data sets between different battery states.

With the support of the experimental platform, the acquisition of the battery temperature data in
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this paper is achieved by high-precision temperature sensing. Among them, the temperature sensor
attached to the battery surface is used to measure the surface temperature, and the sensor fixed on the
pole lug is used to obtain the temperature of the battery pole column. It is worth stating that a special
electrical tape with adiabatic insulation is used for the sealing between the temperature sensor and the

battery in all experiments of this paper. Benefiting from this treatment, battery pole temperature is



considered as the internal temperature and can be used to reflect the internal heat change of the battery
under current excitation. With the aim of covering the operating temperature range (0 to 55 °C) of the
battery samples as wide as possible, sufficient data sets are collected in this paper at 5 °C, 25 °C and

45°C, respectively. The experimental results and important information such as the time spent in each
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set of operating conditions are shown in Fig. 5.
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Fig. 5. Experimental results under different working conditions: (a-d) CRHPPC at 5 °C; (e-h) CRHPPC at 25 °C; (i-1)

CRHPPC at 45 °C, (m-p) CRCCCV at 5 °C, (g-t) CRCCCV at 25 °C, (u-x) CRCCCV at 45 °C.

It is worth stating that the maximum charging current and the maximum continuous discharging
current of the selected battery samples can reach 6.6 A. Therefore, in this paper, a pulse current of 3 C
is included in the design of CRHPPC working condition. Meanwhile, under the premise of ensuring the
safety of the battery, the upper safe voltage limit of the CRHPPC experiment is set to 4.5 V, and the
lower safe voltage limit is set to 2.2 V. Under this fact, the terminal voltages greater than 4.2 V and less
than 2.5 V appearing in Figs. 5(b), (f) and (g) are reasonable. The CRHPPC condition can greatly
improve the simulation degree of the battery to the potential use environment. In addition, the CRHPPC
condition can accelerate the aging of the battery under the premise of experimental safety, which greatly
improves the efficiency of aging data collection. Another phenomenon that can be found from Figs. 5(b),
(f) and (j) is that the CRHPPC working hours at 25 °C are about 40 hours longer than those at 5 °C and
45 °C. The main reason for this phenomenon is that in the CRHPPC experiments at 5 °C and 45 °C the
resting time of the battery after each 5% reduction in SOC is 2 hours. In contrast, in the CRHPPC
experiments at 25 °C the resting time of the battery is 4 hours, also as shown in Fig. 4(c-1). This design

can support the validation of the effectiveness of the proposed algorithm.

4.2 Results of MPDCM-based identification of kinetic parameters

Based on the experimental results of CRHPPC and CRCCCYV at different temperatures, the high-
pass parameter discriminator based on the FFRLS algorithm under fast kinetic and the low-pass
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parameter discriminator based on the EKF algorithm under slow kinetic are performed synergistically
but separately within the small timescale of the proposed AMTDIE strategy. By combining the results
of the three-dimensional data set shown in Fig. 4(d), the fast kinetic parameters R,nm, Rcer Cain Ray

and Cq4y are identified under different time-scale driving. The identification results of all electrical
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characteristic parameters are shown in Fig. 6.
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Fig. 6. Identification results of electrical characteristic parameters under different working conditions at different

temperatures: (a-€) CRHPPC; (f-j) CRCCCV.

The Fig. 6 shows the result curves of the identification of the electrical characteristic parameters at
different temperatures for the CRHPPC and CRCCCYV operating conditions. It is clearly observed that
the horizontal axis of the curve for the identification of the concentration difference polarization
parameters in both operating conditions is not time in the traditional sense, but the number of
identification steps. This is mainly due to the fact that the adaptive multi-timescale decoupling
identification and estimation strategy actively distinguishes the fast and slow kinetic features inside the
battery in small timescale. It can be observed in the sub-Figs. 6(a-e) that the iteration steps of R,nm,
R, and C4 under fast kinetic at different temperatures are consistent with the total duration of the
CRHPPC condition. Unlike the above case, the iteration steps of R;r and Cyf are only related to the
amount of SOC variation and are not affected by the sampling frequency and the length of the working
condition. Also, the identification results of Ry and Cq4r under the CRCCCV condition in sub-Figs.
6(i-j) show the fact that the number of identification steps is different for different current excitations.
These experimental results fully demonstrate the strong adaptiveness and generalization of the low-pass
filter drive timescale to the system conditions.

In addition, the strong correlation of the model parameters with temperature in different physical
domains is confirmed from the resulting curves in Fig. 6. Among them, the correlation of resistive
parameters shows that Rgp.,, R. and Rgr decrease with the increase of temperature, and the
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correlation of capacitive parameters shows that Cy; and Cuf increase with the increase of temperature.
This correlation is consistent with the experimental results in the Ref. [12,44], and also proves that the
proposed strategy in this paper is well compatible with temperature. In addition, the increased values of
R,nm, R and Cg4 atthe end of discharge for both operating conditions can also be observed from Fig.
6. A major reason is due to the less internal active matter at low charge, which also indicates that the
MPDCM has a higher fidelity in modeling the complex kinetic processes inside the battery.

In addition to the above effective identification of the electrical characteristic parameters, the
MPDCM also needs to identify the thermodynamic parameters at small timescale. As mentioned in
Section 2, the parameters C; and C, which characterize the thermal storage capacity, and R;, which
characterizes the thermal conductivity, are dependent on the material properties of the cell and remain
essentially constant in use. Additionally, the test experiments used for data set acquisition in this paper
are conducted in a constant temperature chamber with the same and stable thermal conditions, which
also makes the external thermal resistance R, value almost constant. With the above conclusion, the
average results of R;, C;, Ry and Cs obtained from the experimental data of CRHPPC and CRCCCV

at different temperatures are 1.78 °C/W, 138.62 J/°C, 7.85 °C/W and 0.59 J/°C, respectively.

4.3 Modeling accuracy validation from the small timescale perspective

4.3.1 Verification of internal battery temperature estimation

In the problem of internal battery temperature monitoring, the open-loop transfer function
estimation (OLTFE) method under the lumped parameter thermal path model is often used in battery
embedded systems due to its simplicity. In order to verify the ability of the high-pass temperature

estimator developed based on the EKF algorithm in the proposed AMTDIE strategy to track the battery
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internal temperature, the OLTFE method is chosen to be used as a control group. Based on the data sets
under CRHPPC and CRCCCV experiments and the results of the identification of thermodynamic
parameters, the internal temperature of the battery is estimated under the OLTFE algorithm and the
proposed AMTDIE strategy, respectively.

It should be noted that under laboratory conditions, the battery is started for the experiment after
sufficient shelving and the heat transfer conditions in the temperature-controlled chamber are essentially
constant. The initial temperature state of the battery in this case can be considered to be the same as the
ambient temperature. Moreover, and the OLTFE method and the proposed AMTDIE strategy are
iteratively estimated for the internal temperature of the battery with the same initial value as well as the
heat exchange conditions, which excludes the influence of the OLTFE method by the initial value of the
temperature and the external heat exchange conditions. With the help of the thermal parameter
identification results, the estimated internal temperature of the cell at different temperatures in small

timescale is shown in Fig. 7.
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Fig. 7. Estimation results of internal temperature under different methods: (a) CRHPPC at 5 °C, (b) CRHPPC at 25 °C,

(c) CRHPPC at 45 °C; (d) CRCCCV at 5 °C; (e) CRCCCV at 25 °C; (f) CRCCCV at 45 °C

Sub-Figs. 7(a/b/c/d/e/f-1) shows the general overview of the tracking effect of the OLTFE method
and the AMTDIE strategy on the battery internal temperature under CRHPPC and CRCCCYV operating
conditions at different temperatures. Sub-Figs. 7(a/b/c/d/e/f-2) and sub-Figs. 7(a/b/c/d/e/f-3) show the
local enlargement of the internal temperature estimation curves. It can be observed from sub-Figs.
7(a/blc/d/e/f-1) that both the OLTFE method as well as the proposed AMTDIE strategy can achieve
effective tracking of the battery internal temperature. However, it can be clearly observed from sub-Figs.
7(a/blcl/d/e/f-2) and sub-Figs. 7(a/b/c/d/e/f-3) that the OLTFE method exhibits a large estimation error
in the CRHPPC operating condition where the current direction transition frequency is fast. Compared
to the OLTFE method, the EKF-based high-pass temperature estimator developed in the proposed
AMTDIE strategy eliminates most of the estimation error with offset error from the results shown in Fig.

7. To show the estimation effect of the two methods more visually, the absolute error between the
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estimated and measured values of the battery internal temperature is calculated as shown in Fig. 8.
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Fig. 8. Estimation errors of internal temperature under different methods: (a) CRHPPC at 5 °C, (b) CRHPPC at 25 °C,
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From the absolute error curves of the two methods shown in Fig. 8, it can be observed that the
internal temperature estimation error based on the proposed AMTDIE strategy is significantly lower
than that of the OLTFE method. Comparing the error curves of the two methods under different working
conditions, it is found that the AMTDIE strategy has better performance in the CRHPPC working
condition with faster current direction switching frequency and the CRCCCV working condition with
constant current long-time charging and discharging, especially in the CRCCCV working condition. A
major reason is that the EKF-based high-pass temperature estimator in the proposed AMTDIE strategy

is the logic of the closed-loop mechanism. During the iteration of the algorithm, the Kalman gain Kr
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in the high-pass temperature estimator can quickly adapt to the temperature fluctuation error caused by
the current commutation. This allows the algorithm to exhibit a stronger feedback correction capability,
thus ensuring the accuracy of the internal temperature estimation, which is a fundamental difference
from the OLTFE method. In addition, the OCV and terminal voltage values optimized based on the
actual capacity are coupled in the internal battery heating power equation, which is also contributing to
the excellent internal temperature estimation under the AMTDIE strategy. Further, four quantitative
indexes of root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE) and maximum error (ME) under different operating conditions are calculated in this paper for
analyzing the performance of the proposed AMTDIE strategy on the internal temperature estimation of
the battery. The detailed formula for each index can be found in Ref. [17,33], and the calculation results

are shown in Fig. 9.
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Fig. 9. Results of each quantitative index for internal temperature estimation under different methods: (a) RMSE
under CRHPPC; (b) MAE under CRHPPC; (c) MAPE under CRHPPC; (d) ME under CRHPPC; (e) RMSE under

CRCCCV; (f) MAE under CRCCCV; (g) MAPE under CRCCCV; (h) ME under CRCCCV.

Observing the calculation results of each quantitative index shown in Fig. 9, it can be found that
the RMSE, MAE, MAPE and ME based on the proposed AMTDIE strategy are reduced by 0.449 °C,
1.319 °C, 2.996% and 0.487 °C under CRHPPC conditions at 5, 25 and 45 °C, respectively, compared
with the OLTFE method. Under CRCCCV conditions, the RMSE, MAE, MAPE and ME indexes based
on the proposed strategy were reduced by a minimum of 0.507 °C, 0.397 °C, 0.880% and 1.656 °C,
respectively. In addition, the maximum error of the internal temperature based on the OLTFE method
under CRHPPC and CRCCCV is 1.786 °C and 3.749 °C, respectively, due to the lack of closed-loop
correction mechanism. By comparison, the ME of the internal temperature estimation based on the
proposed strategy is reduced from 0.478 °C to 1.027 °C and from 1.656 °C to 2.792 °C ranging from the
OLTFE method, respectively.

In addition, compared with the fractional order electro-thermal coupling model based on

electrochemical impedance poo in the literature [42] (the MAE of internal cell temperature prediction at
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5, 25 and 45 °C are 0.602, 0.334 and 0.221°C, respectively), the algorithms proposed in this study
improve the accuracy of the internal temperature estimation by a minimum of 0.510, 0.258, and 0.164°C,
respectively, at the corresponding experimental temperatures. From these values, we can confirm that
the proposed AMTDIE strategy has strong effectiveness and high accuracy in internal temperature
estimation. In addition, observation from Fig. 9 also reveals that each quantitative index based on the
OLTFE method at 5 °C is greater than that at 25 °C and 45 °C. The proposed AMTDIE strategy does not
show this situation while improving the performance of the internal temperature estimation. This also
proves that the proposed strategy can eliminate the effect of ambient temperature on the internal
temperature estimation of the battery.

4.3.2 Verification of terminal voltage tracking effect

In order to verify the tracking effect of the proposed AMTDIE strategy on the battery terminal
voltage, the FFRLS algorithm with fixed timescale is selected as the control group in this paper. Similarly,
based on the data sets under CRHPPC and CRCCCYV operating conditions, the prediction of the battery
terminal voltage is performed under the FFRLS algorithm with fixed timescale and the AMTDIE
strategy with quantization of timescale information, respectively. In order to increase the comparability
of experimental results, the initialization conditions at iteration are the same for both algorithms. The
different condition is that the proposed AMTDIE strategy has a real-time correction of the internal
temperature as well as the available capacity to the terminal voltage in the battery electrical characteristic
modeling due to the coupling of three important characteristics. With the electrical characteristic
parameters effectively identified, the battery terminal voltage prediction results based on the AMTDIE

strategy are shown in Fig. 10.
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Fig. 10. Prediction results of terminal voltage under different methods: (a) CRHPPC at 5 °C; (b) CRHPPC at 25 °C; (c)

Fig. 10 shows the tracking effect of the FFRLS algorithm at fixed timescale and the AMTDIE
strategy considering complex Kinetic response time factors on the battery terminal voltage. Among them,
sub-Figs. 10(a-c) show the predicted results for CRHPPC condition at 5, 25 and 45 °C, respectively, and
sub-Figs. 10(d-f) show the predicted results for CRCCCV condition, respectively. It can be observed

that the estimated values of the battery terminal voltage based on the proposed AMTDIE strategy are
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closer to the true values than the FFRLS method based on the fixed timescale.
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In comparison, the advantages of the proposed AMTDIE strategy are mainly reflected in two points.
First, the estimation error of the terminal voltage due to the frequent current transition direction can be
effectively corrected in time in the CRHPPC condition. In addition, the slow voltage change process due

to the concentration difference polarization is effectively simulated in the CRCCCV condition, thus
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improving the prediction accuracy of the terminal voltage. In order to show the estimation effect of the

battery terminal voltage more intuitively, the absolute errors of the two algorithms at small timescale are

calculated and the results are shown in Fig. 11.
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Fig. 11. Prediction errors of terminal voltage under different methods: () CRHPPC at 5 °C; (b) CRHPPC at 25 °C; (c)
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It can be visualized from Fig. 11 that the estimation error of the battery terminal voltage under the

proposed AMTDIE strategy is smaller than that of the FFRLS algorithm at fixed timescale for almost

45



©CO~NOOOTA~AWNPE

the whole iterative phase. Among them, the main reason for the reduction of the estimation error during
constant-current charging and discharging is due to the fact that the parameters of the complex kinetic
processes inside the battery are decoupled by the independent filter design, which is particularly evident
in the CRCCCV condition shown in sub-Figs. 11(d-f). In addition, the terminal voltage estimation error
at current direction transition is greatly improved with the proposed AMTDIE strategy compared to the
FFRLS algorithm at fixed timescale. This effectively illustrates that the high-pass sub-filter in the
proposed AMTDIE strategy can well capture the ohmic polarization and the concentration difference
polarization processes under the fast kinetics inside the battery, which in turn reduces the battery terminal
voltage prediction error during the current direction transition to some extent.

It is worth noting that there is a large error in the battery terminal voltage under both the proposed
AMTDIE strategy and the traditional fixed timescale method when the battery SOC is low, which is
more prominent under low temperature condition. This is mainly due to the fact that the battery exhibits
high nonlinear characteristic when it is at low SOC, which brings errors to the acquisition of the battery
OCV. In fact, due to the addition of the consideration of internal temperature as well as aging factors in
the multi-physics domain coupled model in this paper, the above-mentioned terminal voltage estimation
error at low SOC is also greatly eliminated. Further, the four quantitative indicators of RMSE, MAE,
MAPE and ME for the terminal voltage estimation under different operating conditions are calculated

in this paper and the results are shown in Fig. 12.
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It can be found from Fig. 12 that the RMSE, MAE, MAPE and ME based on the proposed AMTDIE
strategy have a maximum reduction of 89.86 mV, 81.23 mV, 1.60% and 0.93 V, respectively, compared
to the traditional FFRLS method at fixed timescale under CRHPPC and CRCCCV operating conditions
at different temperatures. In the low-temperature environment, the FFRLS based on a fixed timescale
has a maximum RMSE of 100.83 mV and a maximum ME of 1.29 V after convergence of the algorithm.
This error is not negligible for the battery with a nominal voltage of 3.60 V. Under the same low-
temperature conditions, the RMSE and ME of the terminal voltage estimation based on the proposed

AMTDIE strategy are 12.42 mV and 0.72 V, respectively. In addition, the proposed method in this study
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improves the terminal voltage prediction accuracy by 11.38 mV compared to the three-dimensional state
electrochemical-thermal coupling model based on electrochemical mechanism (the RMSE of terminal
voltage prediction at room temperature is 23.8 mV) in literature [41]. Meanwhile, the proposed method
in this study improves the terminal voltage prediction accuracy by 115.78 mV compared to the set-
parameter based electro-thermal coupling model (the RMSE of terminal voltage prediction at room
temperature is 128.2 mV) in the literature [45]. This figure proves that the proposed AMTDIE strategy
has stronger temperature generalization than the FFRLS method at fixed timescale.

It is worth stating that the ME value of the terminal voltage error based on the FFRLS method is
slightly smaller than the proposed AMTDIE strategy under the CRCCCV condition at 5 °C. Combining
with sub-Fig. 12(d), it can be found that the errors before and after this voltage estimation point are less
than 0.20 V. Therefore, we conjecture that the occurrence of this chance case is caused by the system
error. At the same time, the significantly reduced RMSE, MAE, and MAPE calculations based on

different methods for the CRCCCV condition at 5 °C also provide sufficient evidence for this conjecture.

4.4 Validation of available capacity estimates at large timescale

As part of the electrical-thermal-aging multi-physics coupled domain modeling, accurate estimation
of the available capacity is important for predicting the battery terminal voltage and internal temperature.
For the electrical characteristic sub-model in the multi-physics domain coupling modeling, the accurate
battery available capacity can be used to correct the SOC values based on the AHC method and thus
improve the accuracy of the OCV as well as the terminal voltage prediction. Meanwhile, the OCV and
the terminal voltage, which are the inputs of the thermal characteristic sub-model, their highly accurate
iterative results will improve the accuracy of the calculation of the battery heating power and thus
guarantee the accuracy of the estimation of the battery internal temperature. With the feedback correction
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of this coupling mechanism, the real-time available capacity estimation becomes more essential.
Naturally, there are large timescale differences in the decay of battery capacity with respect to changes
in terminal voltage and internal temperature. Based on this, the EKF-based battery available capacity

estimator coupled in the AMTDIE strategy is developed at large timescale, which is driven by
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independent time-scale. To verify the effectiveness and accuracy of the proposed strategy, the

experimental data sets of CRHPPC and CRCCCYV at different temperatures are applied on in the battery

available capacity estimation, and the results are shown in Fig. 13.
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Fig. 13 shows the results of the battery available capacity estimation and each quantitative index.
First, the capacity of the selected new battery sample is measured and the results show the actual
available capacity at 5, 25 and 45 °C as 2.082, 2.203 and 2.342 Ah, respectively. Throughout the iterative
process, the initialization of the capacity estimator at large timescale is chosen as 3 Ah with a large
deviation from the actual battery capacity. From the estimation results of the battery available capacity,
the convergence of the algorithm is achieved in the second iteration of the large timescale steps, except
for the CRCCCYV condition at 25 °C where the algorithm converges in the third iteration of the large
timescale steps. This demonstrates the high convergence of the capacity estimator developed based on
the EKF algorithm. In addition, from the calculated results of each quantitative index shown in Sub-Figs.
13(a/b/c/d/e/f-4), the maximum RMSE, MAE, MAPE and ME of the capacity estimation errors for
CRHPPC condition at different temperatures are 22 mAh, 18 mAh, 0.89% and 55 mAh, respectively,
and the maximum RMSE, MAE, MAPE and ME for CRCCCV condition at different temperatures are
29 mAh, 22 mAh, 1.02% and 62 mANh, respectively. These values strongly demonstrate the high accuracy

of the capacity estimator in the AMTDIE strategy for large timescale.
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More importantly, a particularly important phenomenon can be observed in sub-Figs. 13
(a/b/c/d/e/f-4), where the number of iteration steps of the proposed AMTDIE strategy on the available
capacity estimation is only between 46 and 117, despite the fact that the total experimental time for both
CRHPPC and CRCCCYV conditions at different temperatures is between 18 and 120 hours. This is mainly
due to the fact that the time-scale design at large timescale allows the capacity estimator to be executed
only when usable Q.,,, innovation is acquired. In the same way as the idea of slow kinetic parameters
identification at small timescale, a separate adaptive time-scale driver can greatly reduce the
computational complexity of AMTDIE strategy and improve the computational efficiency of the multi-
physics domain coupling modeling. In addition, the intervals of any two consecutive capacity estimation
steps are different, which reflects the basic principle of adaptive time-scale design at large timescale.

As a performance comparison of the proposed strategy, the large timescale capacity estimator based
on recursive total least squares (RTLS) developed in the Ref. [49], which takes into account the effect
of current offset error, is chosen as the control group. In order to reduce the influence of temperature on
the battery capacity estimation and to ensure the validity and fairness of the control group as much as
possible, we choose the above-mentioned literature NEDC operating conditions at 25 °C for comparison
with the CRHPPC and CRCCCYV operating conditions at 25 °C in this paper. The results show that the
maximum relative error of capacity after convergence is 3.67% for the NEDC condition at 25 °Cin the
above-literature, and the maximum relative errors of capacity after convergence are 2.18% and 2.81%
for the CRHPPC and CRCCCV conditions at 25 °C in this paper, respectively. In comparison, the
proposed AMTDIE strategy in this paper has a slight improvement in accuracy. This also provides
support for the effectiveness and accuracy of the large timescale capacity estimator developed based on

the EKF algorithm in the proposed AMTDIE strategy.
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5 Conclusions

Timescale based analysis provides sufficient and effective information to separate the kinetic
behavior of the coupling inside the cell. In this paper, the complex kinetic processes inside the battery
are decoupled by quantized time-scale features, and the modeling of the coupled electrical, thermal and
aging multi-physical domains is realized in the form of lumped parameters. Meanwhile, an efficient
adaptive multi-timescale decoupled identification and estimation strategy is proposed to realize the
nondestructive characterization of the battery impedance and the online monitoring of the state
characteristics.

Experimental results at 5, 25 and 45 °C for CRHPPC and CRCCCV conditions show that the
proposed strategy has fast convergence and reliable accuracy for the characterization of complex kinetic
parameters and the detection of different state properties. Among them, the RMSE, MAE, MAPE and
ME indexes of internal temperature estimation at small timescale are controlled in the ranges of
0.061~1.102 °C, 0.043~1.092 °C, 0.096~1.650% and 0.759~1.183 °C, respectively, and the indexes of
terminal voltage are controlled in the ranges of 2.79~12.42 mV, 0.06~0.39 mV and 0.08~0.72 mV,
respectively. The estimates of battery usable capacity errors on large timescales are controlled within
the ranges of 17-29 mAh, 12-22 mAh, 0.53-1.02%, and 45-62 mAh, respectively. Quantitative timescale
characterization can provide new insights into the kinetic behavior inside decoupled batteries, especially
for next-generation battery systems.

However, interface evolution and other unknown kinetic processes are not explored in detail in this
study. In future work, we will focus our research on the acquisition of more valuable timescale
information, which will in turn improve the time-scale identification decoupling and multi-physics

domain coupling modeling of complex kinetic processes in batteries. Meanwhile, conducting full life
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cycle aging experiments and simulation analysis for battery life modeling based on the data set is also

one of the main future works.
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