AMINAHO, E. 2023. Formation integrity evaluation for geosequestration of CO₂ in depleted petroleum reservoirs under cyclic stress conditions. Presented at the 2023 Sand Management Network (SMN) students annual competition, Aberdeen, UK, 29 November 2023.

Formation integrity evaluation for geosequestration of CO₂ in depleted petroleum reservoirs under cyclic stress conditions.

AMINAHO, E.

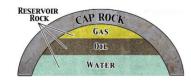
2023

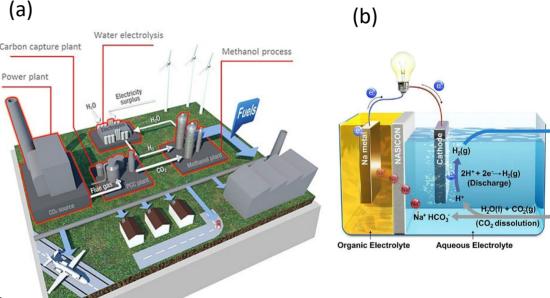
This document was downloaded from https://openair.rgu.ac.uk

Formation Integrity Evaluation for Geosequestration of CO₂ in Depleted Petroleum Reservoirs Under Cyclic Stress Conditions

Sand Management Network Student Competition 29th November 2023

Presented by: Efenwengbe Aminaho (PhD Candidate)


Introduction


Low BI: < 0.1 Medium BI: 0.1 to 0.5 High BI: > 0.5

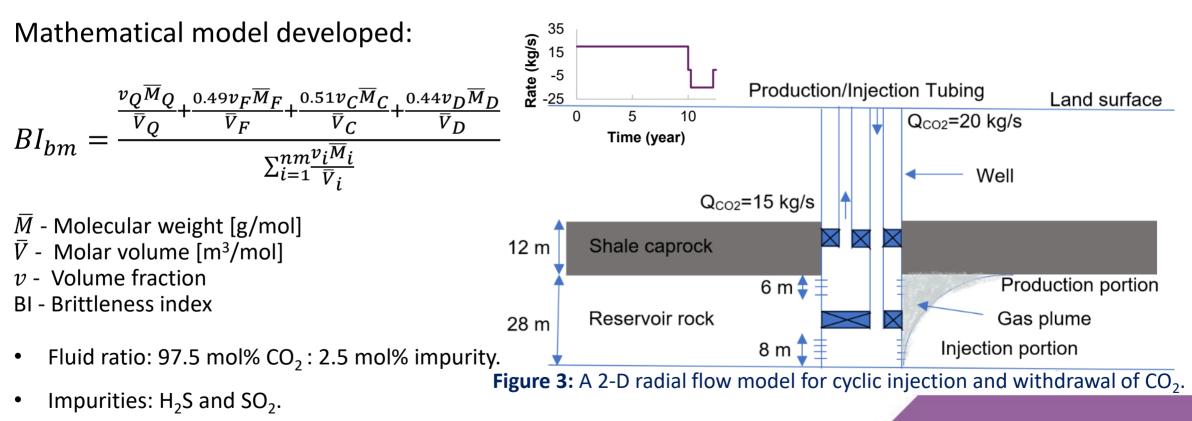
Carbon dioxide (CO_2) geosequestration.

- CO₂ stored in aquifers/depleted reservoirs.
- Geosequestration: cyclic and non-cyclic.
- CO₂ conversion to Methanol or Hydrogen.
- Cyclic process: sand management issues.

Formation integrity: Petrophysics & Brittleness.

Figure 1: CO₂ conversion to (a) Methanol (Sánchez-Díaz, 2017) (b) Hydrogen (Kim et al., 2018).

2 STATIO


Aim & Objectives

- \checkmark To evaluate formation integrity during cyclic injection and withdrawal of CO₂ gas stream.
- Evaluate the impact of impurities in the CO₂ gas stream on the petrophysics and brittleness of reservoir and caprock.
- Identify possible sand management and wellbore instability issues during cyclic withdrawal of CO₂.

Methodology

Mathematical model and numerical simulations

ROBERT GORDON

Results & Discussion

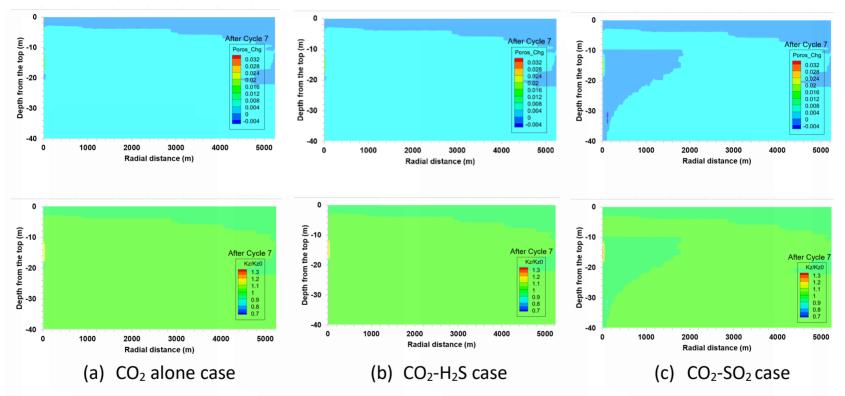


Figure 4: Porosity change and permeability ratio in the sandstone reservoir and shale caprock.

Notable increase in porosity and permeability at the production interval close to the wellbore.

Results & Discussion

Table 1: Percentage change in porosity and permeability of the reservoir and caprock.

Formation type	Petrophysics	After cycle 7		
		CO ₂	CO ₂ -H ₂ S	CO ₂ -SO ₂
Shale caprock	Change in porosity (%)	-0.03 to 0.19	-0.03 to 0.21	-0.30 to 0.13
	Change in permeability (%)	-0.10 to 0.59	-0.10 to 0.66	-0.92 to 0.40
Sandstone reservoir	Change in porosity (%)	-1.56 to 5.98	-1.54 to 5.97	-4.42 to 7.86
	Change in permeability (%)	-6.12 to 26.70	-6.06 to 26.68	-16.54 to 36.29

- Slight decrease in porosity and permeability below the production perforation interval deposition of fines.
- Decrease in porosity and permeability for the CO₂-SO₂ case mainly due to the precipitation of anhydrite.

Results & Discussion

Table 2: Brittleness index of the formation before and after CO₂ geosequestration.

Formation type	Brittleness index	Before sequestration, t=0		After cycle 7			
		CO ₂	CO ₂ -H ₂ S	CO ₂ -SO ₂	CO ₂	CO ₂ -H ₂ S	CO ₂ -SO ₂
Shale caprock	BI _{bm}	0.0377		0.0375 to 0.0377		0.0373 to 0.0377	
Sandstone reservoir	BI _{bm}	0.4593		0.4582 to 0.4594		0.4433 to 0.4593	

- Change in brittleness index (BI) in the reservoir is negligible, except for the CO_2 -SO₂ case.
- In the reservoir, close to the production perforation interval, BI decreases slightly.
- Slight increase in BI (to 0.4594) below the production perforation interval confirms the deposition of brittle minerals.

Conclusions & Recommendations

- More dissolution of minerals at the interval open to production in the reservoir.
- The BI of sandstone reservoir and shale caprock decreases during CO₂ geosequestration.
- Sand management practices (e.g., sand screens) are required to minimise fines migration.
- Optimum CO₂ withdrawal rate/bottom hole pressure to minimise wellbore instability issues.

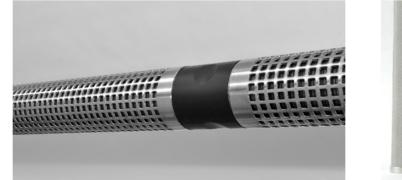


Figure 5: Sand screens

References

- Aminaho, E.N. and Hossain, M. (2023). Caprock integrity evaluation for geosequestration of CO₂ in lowtemperature reservoirs. Aberdeen: Robert Gordon University. <u>https://rgurepository.worktribe.com/output/2072081</u>
- Kim, C., Kim, J., Joo, S., Bu, Y., Liu, M., Cho, J. and Kim, G. (2018). Efficient CO₂ utilization via a hybrid Na-CO₂ system based on CO₂ dissolution. *iScience*, *9*, *pp. 278 285*.
- Ma, X., Yang, G., Li, X., Yu, Y. and Dong, J. (2019). Geochemical modeling of changes in caprock permeability caused by CO₂-brine-rock interactions under the diffusion mechanism. *Oil & Gas Science and Technology Rev. IFP Energies Nouvelles*, 74 (83), pp. 1-13.
- Mahmud, H.B., Leong, V.H. and Lestariono, Y. (2020). Sand production: A smart control framework for risk mitigation. *Petroleum*, 6, pp. 1-13.
- Sánchez-Díaz, Á (2017). MefCO₂ Synthesis of methanol from captured carbon dioxide using surplus electricity (EU-H2020). *Impact*, 2017 (5), pp. 6-8.
- Zhang, W., Xu, T. and Li, Y. (2010). Modeling of fate and transport of co-injection of H₂S with CO₂ in deep saline formations. United States. <u>https://www.osti.gov/servlets/purl/1007193</u>

THANK YOU!

Any Questions?