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Abstract 
In the battery management system (BMS), the state of charge (SOC) of lithium-ion batteries is an indispensable part, 
and the accuracy of SOC estimation has attracted wide attention. Accurate SOC estimation can improve the efficiency of 
battery use while ensuring battery safety and improving battery life. Taking ternary lithium battery as the research object, 
this paper proposes a parameter identification method using adaptive forgetting factor recursive least squares and an 
improved joint unscented particle filter algorithm to estimate SOC. Firstly, an adaptive method is used to select the 
appropriate forgetting factor value to improve the accuracy of the forgetting factor recursive least squares (FFRLS) 
method. Meanwhile, the improved particle swarm (IPSO) optimization algorithm that incorporates variable weights and 
shrinkage factors is utilized to make the best choice of the noise for the unscented Kalman filter (UKF) algorithm in 
order to improve the estimation accuracy of the UKF algorithm. At the same time, the UKF algorithm is used as the 
suggestion density function of the particle filter (PF) algorithm to form the unscented particle filter (UPF) algorithm. In 
this paper, the AFFRLS algorithm and IPSO-SDUPF algorithm are combined to estimate the SOC of Li-ion batteries in 
real time. Experimental results under different working conditions show that the proposed algorithm has good 
convergence and high stability for SOC estimation of lithium-ion batteries. The maximum estimation errors of this 
algorithm are 1.137% and 0.797% for BBDST and DST conditions at 25 °C, and 1.015% and 1.029% for BBDST and 
DST conditions at 35 °C, which are lower than those of the commonly used algorithms of EKF, SDUKF, IPSO-SDUKF, 
and SDUPF, and provide a reference for future. The maximum estimation errors are lower than those of the commonly used 
EKF, SDUKF, IPSO-SDUKF, and SDUPF algorithms, which provide a reference for the future high-precision SOC 
estimation of Li-ion batteries. 

Keywords Lithium-ion battery · Charge state · Adaptive unscented Kalman filter algorithm · Adaptive forgetting factor 
recursive least squares method · Particle filter algorithm 

Introduction 

Today, because lithium-ion batteries have a high energy density, high electromotive force, no memory effect, large 
output power, long life, and other characteristics, they are  widely used in electric vehicles, laptops, aerospace electronics, 
and other consumer electronic products [1, 2]. such as cell phones. With the wide application of lithium-ion batteries, the 
accuracy of the state of charge (SOC) of lithium-ion batteries [3] has attracted greater attention. 

In the battery management system (BMS), one of the core parameters is the battery state of charge [4]. Yu et al., in their 
article, showed that safety standards are presented in terms of battery materials, battery cells, battery modules, battery 
systems, battery management systems, and vehicles [5]. The accurate prediction of the battery’s SOC not only means the safe 
use of the battery, avoiding overcharging and over-discharge but also effectively protects the battery and extends the battery 
life [6, 7]. At the same time, the accuracy of SOC estimation will affect the operation effect of BMS.  

Under certain discharge conditions, the remaining capacity of the rated capacity is defined as the SOC [8] value of the 
battery, which is a relative value, expressed as a percentage, and its value ranges from 0 to 100%. 

 



At present, there are many SOC estimation methods for lithium-ion batteries, such as the Kalman filter algorithm [9], 
discharge experiment method, particle filter algorithm, ampere-hour integration method, and neural network method. The 
most commonly used is the ampere-hour integral method, but the ampere-hour integral method will gradually accumulate 
errors. The discharge experiment method is the simplest and most accurate method in traditional SOC prediction [10–12], 
but its efficiency is not high. However, the neural network method makes it difficult to establish a relatively accurate 
mathematical model for the whole process. Although the neural network method does not need an accurate mathematical 
model and can learn the internal law of a nonlinear system by learning sample data, it is easy to forget the old sample in the 
training process and fall into the local minimum when applying the standard BP neural network algorithm [13]. The 
convergence speed of the network is slow, and the determination of the number of nodes in the hidden layer is mostly based 
on the empirical formula, which lacks sufficient guidance of professional theory. This method cannot meet real-time 
requirements, so it is usually not used alone. The Kalman filter method, which cannot be ignored, provides the optimal 
solution for linear problems [14–17]. So far, the Kalman filter is still widely used. However, the Kalman filter is unable to 
solve the nonlinear problem of the charge and discharge state of lithium-ion batteries. As time goes by, the extended Kalman 
filter becomes a powerful tool to solve nonlinear filtering, but the EKF algorithm linearizes the battery model through 
Taylor series expansion, ignores the higher order term, and only uses the first-order partial derivative term of the non-
linear function Taylor expansion, which will lead to large errors in state estimation. At this time, the UKF algorithm is 
proposed to directly approximate the random distribution by using the weighted summation of samples [18–21], avoiding 
the analytical derivation of nonlinear functions. For any nonlinear system, the unscented Kalman filter can obtain the 
posterior mean and covariance estimates accurate to the third order [22, 23]. However, the UKF algorithm assumes that the 
statistical characteristics of the system noise obey the Gaussian distribution when estimating the battery SOC, which leads to 
the reduction and loss of accuracy [24–26]. Subsequently, the particle filter was proposed, and the particle filter algorithm 
was not limited by the noise distribution. Particle filters can handle any nonlinear model and any noise distribution [27, 28]. 
However, the particle filter algorithm itself also has many problems, for example, the particle filter algorithm has a particle 
degradation phenomenon, and although resampling can reduce this phenomenon to a certain extent, but greatly increases 
the calculation amount. On this basis, this paper combines an unscented Kalman filter and particle filter to obtain an 
unscented particle filter algorithm [29]. PSO algorithm is widely used as one of the optimization algorithms, and in this 
paper [30], an improved quantum particle swarm optimization (IQPSO) algorithm is proposed to optimize the parameters. 
At the same time, the improved PSO algorithm is used to adjust the noise in the unscented Kalman filter algorithm, 
which can effectively ensure that the number of particles will not decrease significantly and improve the accuracy of SOC 
estimation results. However, the Cholesky decomposition in the UKF algorithm will not work in the face of singular 
matrices. For this problem, square-root unscented Kalman filter algorithm is used in this article [31] instead of UKF 
algorithm based on Cholesky decomposition. We use singular decomposition instead of Cholesky decomposition in this 
article to solve the singular matrix problem. Hao et al. used the UPF algorithm to estimate SOC within the article but did not 
improve the UPF algorithm within the article [32]. Hong et al., within the article, improved the PF algorithm to predict the 
lifetime of lithium-ion batteries, verifying the wide range of uses of the PF algorithm [33]. Zhang et al., in their article, 
proposed the use of the AWCPF algorithm for SOC estimation of lithium-ion batteries, but only a first-order RC equivalent 
circuit model was used within the article, and the model accuracy was not high enough [34].

At present, the Thevenin model is often used to estimate SOC for ternary lithium-ion batteries, and the second-order 
resistance-capacitance (RC) model is an improvement of the Thevenin model [35–37]. In contrast, the second-order RC model 
can more accurately describe the operating characteristics of the battery. At the same time, compared with the offline parameter 
identification method, the online parameter identification method can better simulate the capacitance and internal resistance 
changes of the battery in the real working state [38–40]. Therefore, in this paper, an adaptive FFRLS method is used to 
identify on-line parameters of the improved Thevenin model, to improve the estimation accuracy of the improved unscented 
particle filter algorithm [41, 42].  

In this paper, to accurately describe the operating state of ternary lithium-ion batteries under complex operating conditions, 
the estimation of the charge state of lithium-ion batteries is investigated, taking into account the dynamic accuracy of the 
characterization and the precise estimation of the battery state. Online parameter identification of the equivalent circuit 
model is performed by the AFFRLS algorithm, while SOC estimation is performed using the improved SDUPF algorithm. 
The improved SDUPF algorithm is optimized by using an adaptive weighted PSO algorithm. The PSO algorithm with 
adaptive weights can adjust the noise well, which is conducive to improving the accuracy of the algorithm, while the 
addition of the singular decomposition method can make the system more stable. Meanwhile, under multiple temperatures, 
the algorithm has good performance even under different operating conditions as confirmed in this paper. 



Equivalent circuit model and parameter identification method 

Second‑order RC equivalent circuit model 

At present, the commonly used equivalent circuit models are the Thevenin model, second-order RC equivalent 
model, Rint model, PNGV model, and so on. Among them, the Thevenin equivalent circuit model has a simple 
structure, only needs a small number of parameters and a low computational cost to complete the modeling, and is 
widely used. In this paper, the second-order RC equivalent circuit model is used to add a set of RC circuits compared 
with the Thevenin equivalent circuit model [43, 44].  

Although a set of RC circuits is added, the computational complexity is not significantly increased, and the working 
state of the battery can be better simulated in actual work and better estimation accuracy can be achieved. Among them, the 
second-order RC equivalent circuit model structure is shown in Fig. 1.  

Fig. 1 Second-order RC equivalent circuit model 

In Fig.1, UOC represents the open circuit voltage, UL represents the terminal voltage, and R0 represents the ohmic 
internal resistance. The parallel links of R1 and C1 represent the electrochemical polarization process of the battery, while 
the parallel links of R2 and C2 represent the concentration difference polarization process of the battery. According to 
Kirchowski’s law, the voltage and current expressions of the equivalent circuit can be obtained by analyzing the 
constructed second-order RC equivalent circuit model as shown in eq. (1).  

Among them, the open circuit voltage can be characterized by the state variable SOC and the state space variable xk = 
[SOCk, U1, U2]T is selected, the equivalent circuit is discretized to obtain a discrete state space expression. As shown in eq. (2),  
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Here, ∆t is the sampling interval, τ1 = R1C1 , τ2 = R2C2, QN is the rated capacity of the cell, Wk is the state error, Vk 
is the measurement error, and is the zero-mean white noise of the covariance matrices Q and R, respectively, and η is the 
Coulomb efficiency.

Online parameter identification based on the AFFRLS algorithm 

In this paper, ternary lithium batteries are selected for testing, the nominal capacity of the battery is 70 Ah, and the actual 
capacity is 68 Ah. Since the parameters in the model are greatly affected by the temperature, the experiments are considered 
to be conducted at two temperatures, 25 °C and 35 °C, and the experiments are carried out in a constant temperature box. 
Because the charge and discharge of lithium-ion battery is a complex dynamic process [45], and in the process of charge and 
discharge, the equivalent circuit model parameters of lithium-ion battery will change with the change of the depth of charge 
and discharge, and the experimental environment is easy to affect the reaction process in the battery. In the SOC estimation 
of the battery, the offline experimental data will be utilized to determine the values of each parameter er in the battery 
equivalent circuit model by function fitting.  

However, when this method is used, absolute errors occur in the estimated results. Therefore, it is an effective method to 
improve SOC estimation accuracy to determine model parameters on-line and modify parameter values in real-time. Based on 
the second-order RC equivalent circuit model, the modified forgetting factor recursive least square method is used to 
determine the model parameters.  

Here, the AFFRLS algorithm will be used to determine the online parameters of the equivalent circuit model. 
Compared with the RLS algorithm, the addition of the forgetting factor makes the algorithm avoid being influenced too much 
by the old data and avoids data saturation problems [46, 47]. Compared with the FFRLS algorithm, the adaptive forgetting 
factor is added here. Higher parameter estimation accuracy can be obtained by automatically adjusting the forgetting factor 
[48]. The Laplace equation for the Li-ion battery model is shown in eqs. (5) and (6).  

Using a bilinear transformation for discretization, letting s = 2 1−z−
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yields the discretized transfer function as shown in eq. (7).
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where the parameters included are those to be estimated, converting the equation into a difference equation yields eqs. (8), 
(9), and (10). 

(8)yk = Ek − Uk = k1yk−1 + k2yk−2 + k3Ik + k4Ik−1 + k5Ik−2

(9)hk =
[
yk−1, yk−2, Ik, Ik−1, Ik−2

]T



where Ik is the system input, yk is the system output, and let the sensor sampling error at moment k be vk, eq. (11) can be 
obtained. 

Here, extending hk to N dimensions, giving eq. (12), while taking the generic function J(θ) gives eq. (13). 

Since the principle of least squares is to minimize J(θ), find the extreme value of J(θ) and make eqs. (14) and (15). 

Due t o t he “filter saturation” phenomenon of t he least square method, with the increase of the number of algorithm 
iterations, the value of the gain K and P becomes smaller and smaller, which makes the algorithm's ability to correct the 
data weaker and weaker, and the degree of data saturation becomes larger and larger, and eventually, the error of parameter 
identification becomes larger and larger. The final analysis results show that the algorithm's ability to correct the data is 
getting weaker and weaker, and the saturation of the data is getting bigger and bigger. Therefore, in order to improve the 
accuracy of the parameter identification results, the least squares method with the forgetting factor is chosen to identify 
the parameters in this paper. In the process of recognition, the role of the forgetting factor is to make the long-running data 
less weighted a nd t he latest observation data m  ore w eighted. I  n t  his p  aper, t  he f  orgetting f  actor λ (0 < λ < 1) i s 
introduced. The influence of old data will b e diminished, while t he f eedback effect of new data will be enhanced. At the 
same time, the variability of λ will be realized on the basis of FFRLS. The forgetting factor is adjusted according to the 
square of the time-averaged estimate of the autocorrelation o f t he a p  riori and a p osteriori e rrors. T he improved recursive 
equation is shown in eq. (16). 

where 𝜃  is the parameter estimate at moment k; yk + 1is the observed value at moment k + 1; the set of system samples vector 
is hk = [yk − 1, yk − 2, −uk, −uk − 1, −uk − 2]Tand the P0 = aI where a tries to go to a larger value, the I is the unit matrix. The least 
squares mathematical form of the second-order RC cell model is shown in eq. (17). Let the time constant be as in eq. (18): 
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After discretizing eq. (17), k1 to k5 are introduced instead of the actual parameters for abstract expression, as shown in eq. 
(19). In eq. (19), θ = (k , k , k , k , k )T. After obtaining the parameter vector, the actual parameters can be obtained by eq. 
(18), as in eq. (20).  

From the above expression, the basic mathematics of the AFFRLS algorithm can be understood in detail. Table 1 details 
the basic process of the AFFRLS algorithm, from which the computational steps of the AFFRLS algorithm can be 
clearly understood. 

Table 1 Process of Adaptive forgetting factor least squares algorithm 

Step 1, Parameter initialization. 
Step 2, Input current and voltage data, that is, data vector h(k) = [ y(k − 1 ), y(k − 2), I(k), I(k − 1), I(k − 2)]T. 
Step 3, Setting parameter groups, θ = (k1, k2, k3, k4, k5)T and forgetting factor λ. 
Step 4, Calculate the least squares gain matrix K, calculate the least squares covariance matrix P. 
Step 5, Updating the forgetting factor λ and parameter vector. 
Step 6, Find the model parameters :R0, R1, R2, C1, C2. 
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Theoretical analysis of SOC estimation methods 

Particle swarm optimization algorithm 

The basic definition of the particle swarm optimization (PSO) algorithm is as follows: in the particle swarm algorithm, each 
particle is looking for its best position and speed during flight, and there will be a fitness value after each flight, which is 
determined by the objective function [49]. When a particle finds its current best position, the position is called individual 
extreme value (Pbest). This position is called the global optimal solution (Gbest).  

Suppose there is a population X of n particles in a D-dimensional space, where X = (x1, x2, L, xn). Let the ith 
particle in the population correspond to a vector Xi = (xi1, xi2, L, xil)T  in the D-dimensional space. This vector is the 
position of the ith particle in D-dimensional space and the fitness value of the particle’s position xi needs to be calculated 
according to the objective function. Let the vector corresponding to the velocity of the ith particle be Vi = (vi1, vi2, L, 
vil)T, then the vector of the extreme value of the individual particle can be represented as Pi = (pi1, pi2, L, pil)T, and the 
vector of the extreme value of the population X can be represented as Pg = (pg1, pg2, L, pgl)T. The individual extremum and the 
population extremum are calculated by the following formula for the speed and position of the updating particle. As shown in eqs. 
(21) and (22).



Where, vid is the current velocity; d = 1, 2, L, D; i = 1, 2, L, n; The k is the number of iterations; The c1, c2 denote the 
acceleration factor and c1 > 0, c2 > 0; The r1, r2 denote the stochastic function with the value range of [0, 1]. The motion of 
the 
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particle in the search space is shown in Fig. 2. 

Fig. 2 Motion of a particle in a PSO 

Variable weights shrinkage particle swarm optimization algorithm 

The basic particle swarm algorithm is simple in principle and convenient in operation, but the optimization process is more 
dependent on control parameters such as population size, iteration number, and acceleration factor, so the convergence 
is slower during the calculation process, resulting in a limited searchability of the particle swarm and easy to fall into the 
local minimum. 

In this paper, the basic particle swarm algorithm is improved by introducing the inertia weights while adding the 
contraction factor, to ensure that the particle swarm can better determine the search ratio of local optimum and global optimum 
during the optimization process and to find the balance point between the two to improve the search performance of the 
particle swarm, and the update formula of the particle velocity after the introduction of the inertia weights is shown in 
equations (23) and (24):  
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{
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vd,max, vid(t + 1) > −vd,max

where w is the inertia weight and vd, max is the maximum velocity of the particle swarm when it flies in the D-dimensional 
space. When the inertia weight increases, the global search performance of the particle swarm is enhanced and the local 
search performance is weakened; when the inertia weight decreases, the local search performance of the particle swarm is 
enhanced and the global search performance is weakened [50]. Reasonable selection of inertia weights can make the two 
balanced when the inertia weight is 1, that is, it becomes the basic particle swarm algorithm, which does not have the balance. 



When the standard PSO algorithm is used for simulation, the inertia weight w is usually reduced linearly from 0.9 to 
0.4, because the search range of the particle swarm is larger at the beginning of the iteration, and w is larger to lock the 
approximate location of the optimal solution quickly, and as the number of iterations increases, w is reduced so that the 
particle's speed becomes smaller, and a local search is carried out to look for the optimal solution within the approximate 
range of the optimal solution, which can show that the introduction of w is able to significantly improve the convergence speed 
of the algorithm. Where w is calculated as shown in eq. (25): 

(25)w(i) = wmax −
k

gen

(
wmax − wmin

)

where wmax is the maximum value of the inertia weights, wmin is the minimum value of the inertia weights, k is the current 
iteration number, and gen is the total number of iterations.  

The addition of inertia weights improves the search performance of the particle swarm, at the same time, in order to 
eliminate the limitation of the particle velocity boundary and accelerate the convergence of the PSO algorithm, this paper 
introduces a contraction factor into the basic PSO algorithm, which can change the value of the acceleration factor c1, c2, 
thus changing the velocity of the particles. The updated equations for the particle velocity after the introduction of the 
shrinkage factor are shown in eqs. (26), (27), and (28): 

where ϑ is the contraction factor, ∅ is the total acceleration factor with ∅ > 4, and K is the contraction factor. The 
contraction coefficient is used to control the global search ability and local search ability of the particle swarm, K tends to 1 
will make the particle speed larger, resulting in the expansion of the search range, a large number of global searches will 
make the particle swarm algorithm converge slowly, K tends to 0 will reduce the particle search speed, reduce the search 
range, and a large number of local searches will result in the convergence of the particle swarm algorithm too fast. The 
shrinkage factor K usually takes a fixed value, in this paper, in order to protect the particle swarm's ability to carry out global 
search in the early stage as well as local search in the later stage, so K is associated with the number of iterations. The 
algorithmic flow of PSO is shown in Fig. 3. 
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Fig. 3 The flowchart of the IPSO algorithm 



Unscented particle filtering algorithm 

Currently, the main filtering algorithms used to solve non-linear system models are extended Kalman filtering (EKF), 
unscented Kalman filtering (UKF), particle filtering (PF), etc. The main idea of EKF is to approximate the nonlinear function 
linearly by ignoring or approximating the higher-order terms to solve the filtering problem. The main idea of the EKF 
algorithm is to linearize the approximation of nonlinear functions by ignoring or approximating the higher- order terms in order 
to solve the filtering problem of nonlinear systems. However, when the nonlinearity of the system is serious, ignoring the higher-
order terms of the Taylor expansion will lead to a large linearization error, which results in an increase in the filtering error 
or even dispersion of the EKF. Secondly, the Jacobian matrix is computationally intensive. To overcome the shortcomings 
of EKF, a UKF algorithm based on unscented transform (UT) is proposed, which uses deterministic sampling to approximate 
the probability distribution of a nonlinear function, avoids the problem of computationally heavy computation for solving the 
Jacobian matrices, and the approximation accuracy of the Gaussian distribution can be up to the third order. However, for 
non-Gaussian and strongly nonlinear system models, it is difficult to guarantee filtering accuracy. PF approximates the 
probability density function by finding a set of random samples propagating in the state space and replaces the integral 
operation with the sample mean to obtain the minimum variance estimation of the state. PF is suitable for state estimation 
of nonlinear non-Gaussian systems, especially for the filtering problem of strongly nonlinear systems, which has a unique 
advantage and gets rid of the constraint that the random quantities must satisfy the Gaussian distribution when solving the 
nonlinear filtering problem. However, PF suffers from the problems of difficulty in selecting the important density function 
and lack of particles [51]. 

The particle filtering method implements cyclic Bayesian filtering through a nonparametric Monte Carlo simulation 
method. It applies to any nonlinear system that can be described by a state space model. Due to its nonparametric nature, it is 
free from the restriction that random quantities must satisfy Gaussian distribution when solving nonlinear filtering problems. 
Compared with the Gaussian model, particle filtering is more widely used and has better modeling capability. The core idea is to 
use some scattered random sampling points to approximate the posterior probability density function (PDF) of the state. Then 
the sampling average is utilized instead of integral calculation. Finally, a minimum variance estimate for the final condition can 
be obtained. The UPF algorithm utilizes the most recent observations to obtain the PDF and uses the UKF algorithm to 
generate the recommended distribution.  

The PF algorithm in the UPF algorithm is optimized by taking advantage of the unscented transform algorithm. The UKF 
algorithm can theoretically compute the third-order squared difference with accuracy, which can be obtained by comparing 
the EKF algorithm based on the first-order Taylor expansion. The algorithm has high accuracy and the calculation results are 
valid. 

Singular value decomposition unscented particle filtering algorithm based on improved particle swarm 
optimization algorithm 

As the particles collected by the particle filtering algorithm have a great impact on the accuracy of the calculation, the 
main impact is divided into: 1. the imbalance phenomenon brought about by the different weights of the particles; 2. if the 
number of particles with small weights is large, a large amount of computational time will be used to compute the smaller 
particles with small weights, which greatly reduces the computational efficiency and accuracy, i.e., there exists a degradation 
phenomenon of the particle filtering algorithm.

Although resampling can reduce the particle degradation phenomenon and improve the calculation accuracy, it also 
increases the calculation amount of the algorithm, and the calculation efficiency of the algorithm decreases, at the same 
time, too many times of resampling will make a large number of particles eliminated, and the particle library greatly 
reduced, and seriously even appeared in the particle library depletion. Therefore, in order to ensure that the number of 
effective particles will not be depleted because of the massive reduction caused by resampling, the application can be used 
to set a reasonable density function of the proposal, so that the likelihood function and the a priori distribution of the basic 
match, the particle set of samples to a greater extent are transferred to the region covered by the likelihood function. In 
this paper, the improved particle swarm algorithm optimizes the UKF algorithm of singular value decomposition to 
generate particles.  

In this paper, the real-time tracking of changes in the statistical properties of noise in the UKF algorithm is realized by 
using the neo-interest sequence and the modified PSO algorithm to track the observation noise and process noise, respectively. 
The neo-interest ek is defined as shown in equation (29):  

 

(29)ek = yk − g
(
x̂k, uk

)



P is a matrix of order m × n, m ≥ n, where U is a matrix of order m × m, Λ is a semi-positive definite matrix of order m × 
n, G is a matrix of order n × n, where the matrix S = diag(s1, s2, s3, …, sr) within Λ is a diagonal matrix consisting of the 
singular values of the matrix P and r is the rank of the matrix P.  

Similarly, in using the SDUKF algorithm for achieving accurate estimation of SOC, the state equation and measurement 
equation of the lithium battery are similar to eq, (2). Here, for easy distinction, let uk = Ik, yk = UL, k. Then, the new equation 
of state and measurement equation can be obtained as shown in eq, (34). Among them, Wk is the state error, Vk 
is the measurement error. 

After describing the IPSO-SDUKF algorithm in detail, this paper utilizes the IPSO-SDUKF algorithm to improve the PF algorithm 
by implementing the sampling of the mean and variance of each particle it produces. The detailed principle step flow is shown 
in Fig. 4. In Fig. 4, P denotes the covariance matrix, wj

m, wj
c are the weights of the mean and variance, α is the scale parameter, 

usually 1e-4  ≤ α ≤ 1, and λ is the scale parameter, λ = 3 × α2 – na , q                          stands for the proposed density function,  
Wk

i is the particle weights, Xk  represents the estimated value.  

Also the real-time estimated covariance based on the new interest Ĥk and the observation noise covariance Rk can be estimated 
online by eqs. (30) and (31): 

From the above equation, the estimation of the observation noise covariance is updated based on the observations of the 
current step and the information from the previous iterations. In this case, if the process noise Qk does not change, the above 
estimation of the covariance of the observation noise based on the hibernation sequence is accurate; however, when the 
two types of noise change at the same time, other methods are needed to make the estimation separately. In this paper, 
based on the online estimation of the observation noise using the new interest series, the process noise Qk is tracked in real 
time by the modified PSO algorithm. The key point of combining the UKF filter and the modified PSO algorithm is to choose 
a reasonable fitness function. Considering that the covariance matrix of the new hibernation contains two kinds of noise 
information at the 

(30)Ĥk = eke
T
k

(31)
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{
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i=0
w(i)
c

[
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]
T
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The UKF algorithm in this paper uses the improved PSO algorithm to adjust the noise based on UKF, which can improve 
the accuracy and real-time performance in the estimation process through the real-time update of the noise matrix. Whether 
in the UKF algorithm or the improved UKF algorithm, it uses the unscented transform to deal with the nonlinear problem, 
but the UT transform has a limitation, when the error covariance is singular then it will lead to the UT transform can't be 
carried out, which will result in the instability of the system. To address this problem, this paper adopts the UKF algorithm 
based on SVD decomposition as a way to realize the estimation of SOC, and the SVD decomposition is shown in equation 
(33). 

same time, the fitness function is defined as shown in equation (32) here: 
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Fig. 4 IPSO-SDUPF algorithm flow chart 

Online SOC estimation based on the AFFRLS‑IPSO‑SDUPF algorithm 

In this paper, based on the state equations and observation equations of lithium-ion batteries, the joint estimation algorithm 
of SOC for lithium-ion batteries based on online parameter identification and IPSO-SDUPF is realized by combining the 
AFFRLS algorithm and IPSO-SDUPF algorithm. It also reduces the impact on the SOC estimation accuracy due to the 
fixation of model parameters in the offline parameter identification method and thus the SOC estimation accuracy, in which 
the flow chart of the SOC estimation algorithm for lithium-ion batteries, as shown in Fig. 5.



Fig. 5 Flowchart of SOC estimation for AFFRLS-IPSO-SDUPF 



Fig. 6 Experimental platform 

Validation and analysis of experimental results 

Experimental platform 

In this paper, a Li-ion ternary battery with a nominal capacity of 70Ah and an actual capacity of 68Ah was selected for 
testing. The experimental platform is shown in Fig. 6. Among them, we simulate the experimental conditions, simulating 
the BBDST condition and DST condition, respectively. We will conduct the experiments on the battery in a constant temperature 
box, and to avoid the variation of model parameters with temperature, the tests are conducted at 25 °C and 35 °C, respectively. 

Parameter identification analysis 

Currently, the application scenarios of lithium-ion batteries, as well as the operating conditions are very complex, and the 
variation of the operating current is large. In this paper, the joint algorithms based on AFFRLS and IPSO-SDUPF were 
tested using the Beijing Bus Dynamic Stress Test (BBDST) operating conditions and Dynamic Stress Test (DST) operating 
conditions at 25 °C ambient temperature conditions as well as at 35 °C high-temperature conditions, while ensuring a 
constant temperature environment. where the DST working condition is obtained by simplifying the U.S. Federal Urban 
Driving Schedule (FUDS). And the BBDST working condition is the Beijing Bus Dynamic Stress Test working 
condition. The experiments of the lithium-ion battery in these two conditions can be a good test of the accuracy of the 
algorithm. For the forgetting factor, the difference between FFRLS and AFFRLS algorithms lies in whether the forgetting 
factor can be adjusted adaptively or not. The FFRLS algorithm has a weak tracking ability when the current and voltage change 
is large due to the limitation of the forgetting factor during the online parameter identification, whereas the AFFRLS 
algorithm, which has a variable forgetting factor, can correct the forgetting factor automatically, and has a strong tracking 
ability. The following is an example to compare the tracking ability of FFRLS and AFFRLS on the real voltage curve with 
BBDST working conditions. When the temperature is set to 25 °C, as shown in Figs. 7, 8, and 9. 



In Fig. 7, the forgetting factor λ was set to 0.99. At this point, it can be seen that both the AFFRLS algorithm and the 
FFRLS algorithm can track the real voltage better, but the FFRLS algorithm will still lead to a larger error at some moments 
due to the fast voltage change. In Fig. 8, the forgetting factor λ was set to 0.98. The FFRLS algorithm explicit error starts to 
increase due to the fact that the forgetting factor value at this time may differ from the optimal value, but since the 
AFFRLS algorithm can automatically adjust the forgetting factor value, adjusting the forgetting factor value to be close to 
the optimal value, the change of the initial value of the forgetting factor cannot have a big impact on the AFFRLS 
algorithm. Figure 9 is divided into two parts (a) and (b) and shows us the error curves of the FFRLS algorithm as 
well as the AFFRLS algorithm for the two cases of λ = 0.99 and λ = 0.98, respectively, and it can be seen that the 
maximum error of the FFRLS algorithm becomes bigger at λ = 0.98, which is not capable of estimating the real voltage 
well. Through the above comparison, it can be confirmed that the AFFRLS algorithm has better stability compared with 
the FFRLS algorithm, so this paper chooses to use the AFFRLS algorithm as the parameter identification method of the 
equivalent circuit model. 

Fig. 7 Comparison of voltage 
at BBDST operating conditions 
when λ = 0.99 

Fig. 8 Comparison of voltage 
at BBDST operating conditions 
when λ = 0.98 



Fig. 9 Comparison of error measurements at BBDST operating conditions 

Fig. 10 Resistance and capacitance identification results under BBDST operating conditions 

As shown in Fig. 10, in part (a) are our real-time estimates of the three resistor values for the equivalent circuit model, 
and in part (b) are our real-time estimates of C1 and C2 within the equivalent circuit. 

Due to the large influence of temperature on lithium batteries, the equivalent circuit model parameter identification for 
lithium batteries under BBDST condition is set here at 35 °C constant temperature. Different forgetting factor values are also 
set to validate the AFFRLS algorithm and FFRLS algorithm. As shown in Figs. 11, 12, and 13. 
Here, all the parameters are the same as at 25 °C except for the temperature. It can be seen that the AFFRLS algorithm still 
works well for accurate estimation of the equivalent circuit model. Meanwhile, under different forget- ting factors, the 
forgetting factor can be adjusted adaptively, which is an obvious improvement compared with the FFRLS algorithm. Next, in 
Fig. 14, we will show the parameter identification results. 



Fig. 11 Comparison of voltage 
at BBDST operating conditions 
when λ = 0.99 

Fig. 12 Comparison of voltage 
at BBDST operating conditions 
when λ = 0.98 

Fig. 13 Comparison of error measurements at BBDST operating conditions 



Fig. 14 Resistance and capacitance identification results under BBDST operating conditions 

In this paper, mean absolute error (MAE) and root mean squared error (RMSE) are used as our evaluation metrics for the 
estimation accuracy of the equivalent circuit model using AFFRLS as well as FFRLS algorithms. 

MAE and RMSE are calculated as shown in Eq. 35 and Eq. 36, respectively. xk̂ represents the estimated value, and xk 
represents the true value; MAE and RMSE are the two most common metrics regarding continuous variables. 

In Table 2, it can be learned in detail that the value of the forgetting factor has a great influence on the FFRLS algorithm, 
and the inappropriate forgetting factor directly affects the estimation accuracy of the FFRLS algorithm, which further 
illustrates the dependence of the FFRLS algorithm on the forgetting factor, whereas, in the AFFRLS algorithm, the 
AFFRLS algorithm can still be estimated accurately, because the forgetting factor can be adjusted adaptively and the 
inappropriate value of the forgetting factor can be corrected automatically in the iteration. Meanwhile, experiments on 
lithium-ion batteries at two temperatures, 25 °C and 35 °C, show that the temperature change has an effect on the 
equivalent resistance and equivalent capacitance of the equivalent circuit model of the battery, but the estimation 
accuracy of the AFFRLS algorithm for the equivalent circuit model of lithium-ion batteries still maintains a high level. 

Table 2 Error a nalysis of p arameter i dentification a t λ = 0.99 a nd λ = 0.98 

Temperature Identification method AFFRLS AFFRLS FFRLS FFRLS 
(λ = 0.99) (λ = 0.98) (λ=0.99) (λ = 0.98) 

25 °C MAE 0.00984 0.00984 0.01238 0.02318 
RMSE 0.01211 0.01212 0.01448 0.02313 

35 °C MAE 0.01011 0.01012 0.01381 0.03156 
RMSE 0.01213 0.01211 0.01503 0.03881 

Lithium‑ion battery SOC joint algorithm estimation 

In this paper, the AFFRLS-IPSO-SDUPF joint algorithm will be used to estimate the SOC of Li-ion batteries under BBDST 
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and DST operating conditions, while the AFFRLS algorithm will be used as a parameter identification method and EKF, 
SDUKF, IPSO-SDUKF, and SDUPF joint algorithms, respectively, will be used for estimation of SOCs of Li-ion batteries. as a 
comparison. Here, in this paper, the initial process noise of all five algorithms is set to Q = 10−5 × E3×3, while the initial 
sampling noise of all five algorithms is set to R = 0.02. In addition, the initial error covariance of all five algorithms is set to P = 
0.8 × E3 ×3. 
The experiments in Figs. 15 and 16 were all performed at 25 °C. In Figs. 15 and 16, the estimation curves of the five 
algorithms for the actual SOC in the BBDST condition can be seen, Fig. 15 demonstrates the estimation curves of the five 
algorithms for the SOC under the BBDST condition, and Fig. 16 kind of demonstrates the estimation errors of the five 
algorithms under the BBDST condition. Among them, the error of the EKF algorithm fluctuates the most, and the estimation 
error of the SDUKF algorithm is improved compared with the EKF algorithm, it is worth mentioning that the estimation error 
of the IPSO-SDUKF algorithm has a large improvement in estimation accuracy after the adaption of noise by IPSO algorithm. 
Meanwhile, in the SDUPF algorithm, since the PF directly uses the particles generated by the SDUKF algorithm, it can be seen 
that compared to the SDUKF algorithm, not only is the error reduced, but the error fluctuation is also reduced at the same 
time. Finally, it can be seen that the IPSO-SDUPF algorithm has the smallest error fluctuation and the smallest estimation 
error among the five algorithms. 

Fig. 15 SOC estimation under  BBDST working conditions 

Fig. 16 SOC estimation error curve under BBDST working conditions 



As shown in Fig. 17 and 18, it can be seen that the difference in estimation error of SOC by different algorithms is more 
obvious in the DST condition; also, EKF algorithm has the worst performance among all five algorithms, with 
large fluctuation of error, and it cannot estimate the SOC very well, similarly, SDUKF algorithm also has a large estimation 
error of SOC, both IPSO-SDUKF algorithm and SDUPF algorithm have a smaller estimation error, but the SDUPF 
algorithm has smoother fluctuations in estimation error. Finally, from the error curves and the SOC estimation curves, it can 
be seen that the IPSO-SDUPF algorithm also has the best estimation performance in the DST condition. 

In Fig. 19, the ability of the five algorithms to estimate SOC will be measured using the mean absolute error (MAE), 
root mean square error (RMSE), and MAX error, respectively. It can be seen that part (a) in Fig. 19 represents the BBDST 
working condition. Among them, under the MAE metric, the EKF algorithm performs the worst and the IPSO-
SDUPF algorithm performs the best. Under the RMSE metric, the EKF algorithm performs the worst, and it is worth 
noting that the performance of the IPSO-SDUKF and IPSO-SDUPF algorithms are close to each other, which shows 
that the IPSO optimization algorithm is effective in improving the accuracy of SOC estimation. However, under the MAX 
error metric, the IPSO-SDUPF algorithm has superior SOC estimation performance. 

In part (b) of Fig. 19, the five algorithms are shown for the DST working condition with three evaluation criteria. 
Among them, unsurprisingly, it is still the EKF algorithm that has the worst estimation performance, where the IPSO-
SDUPF algorithm is still improved compared to the IPSO-SDUKF algorithm under the two major evaluation criteria of 
MAE and RMSE, but the IPSO-SDUPF has the best performance under MAX error. The advantages of the IPSO-SDUPF 
algorithm are further illustrated in Table 3. It performs well under both MAE, RMSE, and MAX error evaluation criteria. 

Above, the IPSO-SDUPF algorithm performs well in the testing of Li-ion batteries under BBDST condition and DST 
condition in a constant temperature environment at 25 °C, as well as in the on-line estimation of SOC of Li-ion batteries. 
Next, we will test the Li-ion batteries again under BBDST and DST conditions in a constant temperature environment at 35 
°C to evaluate the performance of the IPSO-SDUPF algorithm in performing SOC on line estimation. Here, the noise 
parameters within each algorithm are unchanged compared to the experiments in the 25 °C constant temperature 
environment. 

Fig. 17 SOC estimation under 
DST working conditions 



Fig. 18 SOC estimation error 
curve under DST working 
conditions 

Fig. 19 MAE, RMSE, and MAX error analysis of SOC 

Table 3 Comparison of MAE, 
RMSE, and MAX errors for 
BBDST and DST conditions at 
25 °C 

Working condition Estimation method EKF SDUKF IPSO-SDUKF SDUPF IPSO-SDUPF 

BBDST MAE 0.01281 0.01159 0.00949 0.00889 0.00465 
RMSE 0.01496 0.01293 0.01181 0.01074 0.00551 
MAX 0.03642 0.04152 0.0327 0.02032 0.01137 

DST MAE 0.01216 0.00896 0.00355 0.00594 0.00253 
RMSE 0.0144 0.01208 0.00408 0.00701 0.00298 
MAX 0.0374 0.02974 0.02096 0.0105 0.00797 



In Figs. 20 and 21, comparing the experiments at 25 °C and 35 °C, the basic situation is the same in the validation 
of the five algorithms. Among them, EKF has the worst estimation performance, with large fluctuations in accuracy 
during estimation, and the SDUKF algorithm is improved compared to the EKF algorithm, but still has large error 
fluctuations. The SOC estimation of lithium-ion batteries by the IPSO-SDUKF algorithm has already had a significant 
improvement compared to the EKF and SDUKF algorithms, but the error fluctuations are still large. It can be seen that 
the estimation error curve of the SDUPF algorithm has smaller fluctuations compared to the IPSO-SDUKF algorithm. 
Finally, it can be seen that the estimation error curve of the IPSO-SDUPF algorithm has a maximum error of only 
0.01015, and the overall estimation error is within a good range, which can be well realized for the online SOC 
estimation of lithium-ion batteries. Next, as shown in Figs. 22 and 23, in this paper, online SOC estimation is performed 
for Li-ion batteries under DST operating conditions in a constant temperature environment at 35 °C. 
In Figs. 22 and 23, similar to the test results of the five algorithms in the BBDST case, the IPSO-SDUPF algorithm 
undoubtedly achieved the best estimation results. Among them, the IPSO-SDUKF algorithm improves 
significantly compared to the EKF and SDUKF algorithms, and the IPSO-SDUPF algorithm also improves the estimation 
effect compared to the SDUPF algorithm. Meanwhile, the overall maximum error of the IPSO-SDUPF algorithm is only 
0.01029. 

Fig. 20 SOC estimation under 
BBDST working conditions 

Fig. 21 SOC estimation error 
curve under BBDST working 
conditions 



Fig. 22 SOC estimation under 
DST working conditions 

Fig. 23 SOC estimation error 
curve under DST working 
conditions 

In Fig. 24, the five algorithms are represented in part (a) under the BBDST condition at 35 °C under the three 
evaluation metrics of MAE, RMSE, and MAX error, in which it can be seen that all the metrics of EKF are the worst, and the 
performance of the IPSO-SDUKF algorithm, SDUPF algorithm, and IPSO-SDUPF algorithm is progressively improved under 
these three evaluation metrics. In part (b), the performance of the five algorithms under the DST condition at 35 °C is 
represented under the three evaluation metrics of MAE, RMSE, and MAX Error. Similar to the BBDST condition, the 
IPSO- SDUPF algorithm has the best performance, where the MAE is 0.409% and the RMSE is 0.491%. 

Here, the listed Table 4 further illustrates the advantages of the IPSO-SDUPF algorithm. Meanwhile, the IPSO- SDUPF 
algorithm performs best compared to the other four algorithms under the evaluation criteria of MAE, RMSE, and MAX 
errors at 35 °C. 

In order to verify the stability of the IPSO-SDUPF algorithm for SOC estimation of lithium batteries, this paper will 
combine the UKF algorithm, SDUKF algorithm, IPSO-SDUKF algorithm, and IPSO-SDUPF algorithm based on the on 
line parameter identification of AFFRLS in the singularity of error covariance, i.e., the error covariance matrices P0 = − 
0.8 × E3 × 3. The rest of the parameters are kept constant to estimate the SOC of the Li-ion battery, where the SOC 
estimation curves and error curves at 25°C are shown in Figs. 25 and 26, and the SOC estimation curves and error 
curves at 35 °C are shown in Figs. 27 and 28. 



As shown in Figs. 25, 26, 27, and 28, for the UKF algorithm, the SOC of the Li-ion battery cannot be correctly estimated 
because the initial error covariance is set to a singular matrix, but SDUKF, IPSO-SDUKF and IPSO-SDUPF all use 
singular value decomposition instead of the Cholesky decomposition, thus avoiding the adverse effect on the stability 
of the algorithms when the error covariance matrix is singular. stability of the algorithm when the error covariance 
matrix is singular. Meanwhile, to have a better test, we validate the algorithm at 25 °C and 35 °C. It can be seen that the use 
of SDUKF, IPSO-SDUKF, and IPSO-SDUPF algorithms is not affected when the error covariance matrix is singular. It 
can be seen that the use of singular value decomposition instead of Cholesky decomposition can be a good solution to the 
problem of instability caused by singular error covariance matrices in the iterative process. 

Fig. 24 MAE, RMSE, and MAX error analysis of SOC 

Table 4 Comparison of MAE, 
RMSE, and MAX errors for 
BBDST and DST conditions at 
35 °C 

Fig. 25 Estimated battery SOC 
of singular matrix at 25 °C for 
BBDST condition 

Working condition Estimation method EKF SDUKF IPSO-SDUKF SDUPF IPSO-SDUPF 

BBDST MAE 0.01444 0.00926 0.00919 0.00886 0.00429 
RMSE 0.01691 0.01248 0.01098 0.01001 0.00501 
MAX 0.03953 0.03507 0.02679 0.01716 0.01015 

DST MAE 0.01596 0.00664 0.00599 0.00564 0.00409 
RMSE 0.01872 0.00904 0.00726 0.00681 0.00491 
MAX 0.04984 0.02339 0.02445 0.01434 0.01029 



Fig. 26 Battery SOC estimation 
error of singular matrix at 25 °C 
for BBDST condition 

Fig. 27 Estimated battery SOC 
of singular matrix at 35 °C for 
BBDST condition 

Fig. 28 Battery SOC estimation 
error of singular matrix at 35 °C 
for BBDST condition 



Conclusion 

In this paper, based on the second-order RC equivalent circuit model, the AFFRLS online parameter identification method 
is combined with the IPSO-SDUPF algorithm to characterize the state and output characteristics of lithium-ion batteries 
under different operating conditions at multiple temperatures. The basic contributions can be summarized in the following 
four points: 

1. For the stable and accurate estimation of SOC, the core parameter of lithium-ion battery, an adaptive variable forgetting
factor FFRLS model parameter identification method is proposed and combined with the IPSO-SDUPF algorithm to
carry out a joint online estimation method of SOC for lithium-ion battery (AFFRLS-SDUPF). Good identification
accuracy is guaranteed under two complex working conditions.

2. The AFFRLS online parameter identification method was combined with EKF, SDUKF, IPSO-SDUKF, SDUPF, and
IPSO-SDUPF algorithms to estimate the SOC of lithium-ion batteries using five algorithms at the same time under the
BBDST and DST conditions, and it was experimentally demonstrated that the IPSO-SDUPF algorithm had the highest
estimation accuracy.

3. Parameter identification of Li-ion batteries was carried out at 25 °C and 35 °C and also tested under BBDST and DST
conditions. The results show that temperature affects the internal resistance and capacitance of batteries, but the IPSO-
SDUPF algorithm still performs well in the experiments in terms of SOC estimation accuracy of Li-ion batteries.

4. The singular value decomposition added to the UPF algorithm by the SDUPF algorithm is a good solution to the problem
of system instability caused by the negative determination of the error covariance, and the addition of IPSO, which is self-
adaptive to the noise, further improves the estimation accuracy of the system. The estimation of lithium-ion batteries by
the IPSO-SDUPF algorithm combines both the stability and the accuracy and combines it with the AFFRLS algorithm to
carry out the online estimation in real time. Combined with the AFFRLS algorithm for real-time online estimation of the
SOC of lithium-ion batteries, the system can satisfy the various demands for SOC estimation.

Accurate estimation of SOC of Li-ion batteries is the focus and difficulty of condition monitoring of Li-ion batteries. The
SOC data of the battery is not only the core parameter of the BMS, but also very important to ensure the accurate estimation 
of SOC to ensure the stability and safe use of the battery. In order to ensure that the algorithm can still work well under 
various complex environments, the AFFRLS-IPSO-SDUPF algorithm proposed in this paper is validated under BBDST 
and DST conditions for the above three aspects. At the same time, after the experimental demonstration at both temperatures, 
the IPSO-SDUPF algorithm outperforms the EKF, SDUKF, IPSO-SDUKF, and SDUPF algorithms in terms of system 
stability and estimation accuracy under the premise that the AFFRLS algorithm performs the online parameter estimation of 
the lithium-ion battery. Meanwhile, when the initial error covariance is set to a singular matrix, the IPSO-SDUPF algorithm 
performs well in terms of both system stability and estimation accuracy, which ensures the accuracy of SOC estimation. 
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