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Abstract
Based on an analysis of the information processing mechanism in the primary visual cortex of biological vision, this study 
proposes an integration method of bar-combination of shifted filter responses (B-COSFIRE) filter with the differential 
evolution (DE) algorithm for enhancing the precision of events extraction. First, the B-COSFIRE filter incorporates 
trainable and unsupervised features, utilizing the two-dimensional expression of the difference-of-Gaussians (DoG) model 
to simulate the receptive field model. By capitalizing on the blur and shift properties of the DoG response, the proposed 
approach enhances the continuous effective signal while attenuating discontinuous noise signal, thereby demonstrating 
superior noise robustness compared to conventional methods. Second, the selectivity of proposed filter is not predefined 
during the implementation but automatically determined based on the given prototype pattern during the configuration 
process, resulting in a universal solution adaptable to various target patterns. Lastly, we employ the DE algorithm to 
optimize the feature selection process, enabling the extraction of a minimum feature subset that maximizes the 
performance of events characterization. The B-COSFIRE method is widely used in the field of image processing. When 
applying it to seismic exploration, the seismic data used by this algorithm is in ‘sgy’ format, providing richer information 
than traditional image data. The proposed model can effectively detect the event in seismic data with significant data 
volume and substantial noise interference. The B-COSFIRE filter method outperforms conventional edge detection 
techniques by accurately capturing seismic events of varying widths, aligning with the principles observed in biological 
vision mechanisms. The extracted events exhibit enhanced continuity and accuracy compared to existing approaches.

Keywords Events extraction · B-COSFIRE filter · The differential evolution algorithm · Biological vision · The DoG model

Introduction

During the propagation of seismic wave, when they encounter rock interfaces characterized by varying medium properties, a 
portion of the energy is reflected back to the surface. During the propagation of seismic waves, when the waves 
encounter rock interfaces with different media properties, a portion of the energy will be reflected back to the surface 
and detected by the receivers, with each record corresponding to a specific geophone. As seismic waves are reflected by 
multiple interfaces, each trace of the seismic signal generates multiple reflection seismic wavelets. These wavelets 
manifest as distinct vibrational profiles, with the line connecting the extreme values (commonly referred to as peaks or 
troughs) of the vibrational profile’s phase on the seismic record presenting an event (Li 2015). Most information 
obtained in seismic exploration is included in these events, making it crucial to determine how to extract their visual 
features effectively (Zhao 2005). For instance, the self-shoot time of events provides partial insight into the depth of the 
interface, and the shape of the events represents the velocity of seismic wave within the medium. In seismic data 
processing and interpretation, the structural interpretation of the stratum profile, along with the description of the 
positions of seismic image detection point, constitutes a crucial component of the seismic profile’s structural 
interpretation. 
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The visual cognition in seismic data processing refers to the interpretation and understanding of seismic data using visual 
perception and cognitive processes. It involves the analysis of seismic profiles, waveforms, and various data 
representations to extract meaningful information about subsurface structures, geological features, and potential 
hydrocarbon reservoirs. Visual cognition allows geoscientists and seis-mic interpreters to visually identify patterns, 
anomalies, and seismic characteristics that may indicate geological formations or potential hydrocarbon prospects. The 
visual cognition in seismic data processing enables the events extraction of the seismic reflection profile influenced by 
stratum structure. Consequently, the visual information derived from the seismic section’s events can be harnessed to 
determine the position of effective oil/gas in the seismic section. This stratigraphic information, in turn, facilitates the 
processing and interpretation of seismic data, thereby enhancing the efficiency of seismic exploration. (Lu 1993). The 
seismic wavelet variation of events is caused by complex mechanisms, such as the seismic wave propagation, 
anomalies, anisotropy, and attenuation. Consequently, events contain substantial information about subsurface 
geological characteristics. Hence, the detection and pickup of events are indispensable for effective processing and 
interpretation of seismic data.

To extract event information from seismic data, various detection techniques have been developed for seismic 
exploration. Among these techniques, the following three methods are most representative.

(1) Edge detection method (Li 2007): The method entails the conversion of the amplitude value of each sampling point 
in a two-dimensional seismic record into different gray values, treating the seismic gather as a gray image. 
Subsequently, edge detection method used in image processing can detect events within the gray image. 
However, the information extracted using the edge detection method tends to be fuzzy, with the resolution being 
significantly disturbed by spatial and frequency interference, as well as the influence of noise factors. The 
detection result represents the envelope of the gray mutation region, leading to a notably low resolution; thus, it is 
not directly suitable for use as the definitive events detection results (Xiong 2009; Ning 2005).

(2) Neural network method (McComack 1993; Glinsky 1991): The method uses known events as standard 
samples to simulate a neural network, wherein the connection weights between neurons are gradually 
adjusted using the error backpropagation method. The neural network method requires an adequate number of 
samples for effective training. However, the selection of appropriate samples is challenging. Introducing new 
samples can also affect the neural network performance, and the numerous iterative operations required for 
training can result in prolonged processing time (Wang 2018; Bondar 1992; Ma et al. 2023).

(3) Cross-correlation method (Spagnolini 1991; Ding 2012): The method relies on the fundamental principle of 
utilizing the waveform similarity features of events across seismic traces to extract events susceptible to noise. 
The spatial resolution decreases with an increas-ing number of calculation traces, which leads to a larger 
computational workload.

(4) Chain matching method: The method represents each waveform by identifying peaks and troughs with mul-tiple 
features, which are subsequently linked together. The task of events extraction is then transformed into a best 
matching problem between chains, i.e., finding the minimum link path. This method is also disturbed by noise, 
space, and frequency, making it difficult to solve complex events processing problems (Haralick 1984).

Additionally, Tu et al. (1993) proposed an automatic events extraction system. This method consists of three 
steps: a two-dimensional (2D) matched filter, a Kalman filter, and a flexible template. Matched filtering is used 
to detect targets, while the Kalman filter eliminates random interference and recovers data from noise. Waveform 
correlation-based detection methods can yield effective results, particularly when the separation between the main 
event and the target event is smaller than the dominant wavelength (Gibbons and Ringdal 2006a, b; Michelet and 
Toksöz 2007; Arrowsmith and Eisner 2006). Song et al. (2010); Song and Toksöz (2011) applied the correlation-
based weak event detection method to microseismic events caused by hydraulic fracturing. Yangkang Chen (2020) 
presents a concept of microseismic event detection method based on unsupervised machine learning. Zhou (2019) 
introduces a hybrid event detection and phase-picking algorithm utilizing a two-layer bidirectional RNN to pick P- 
and S-arrival times. Liu (2022) proposes a microseismic first-arrival picking method using fine-tuning feature 
pyramid networks.

In the domain of seismic data processing, improving the efficiency of seismic exploration requires obtaining 
the precise determination of position of effective oil and gas in the stratigraphic horizon, achieved through events 
extraction from the seismic profile. Then, processing and interpretation of seismic data can be achieved using the 
effective stratigraphic information. The simulation of the intricate biological visual recognition mechanism for 
achieving the extraction of target contours from seismic data presents an integration of seismic exploration with 
artificial intelligence. This interdisciplinary endeavor represents a challenging and vibrant frontier of ongoing 

research efforts, attracting significant attention in the scientific community.



The B-COSFIRE filter method, initially designed for retinal blood vessels delineation (Azzopardi and Petkov 2012), is 
based on the combination of receptive fields (CORF) computational model of a simple cell in the visual cortex and 
its implementation called combination of shifted filter responses (COSFIRE) (Azzopardi and Petkov 2013). The 
versatility of this filter has also been demonstrated in the analysis of computed tomography angiography (CTA) images 
(Zhu 2015), showcasing its suitability for extracting and segmenting various slender structures. In the proposed method, a 
2D representation of the difference of double-Gaussian (DoG) model is used to simulate the receptive field model of optic 
ganglion cell, enabling the central region of the receptive field to have excitatory (positive) and inhibitory domains with 
inhibitory surroundings (negative). The DoG response is further manipulated through blurring and shifting, and the 
resulting B-COSFIRE filter response model is obtained by calculating its weighted geometric average (Strisciuglio 2016, 
2017; Azzopardi and Petkov 2013; Azzo-pardi et al. 2015; Lara et al. 2019).

This paper presents a novel approach utilizing a set of B-COSFIRE filters to address the event picking problem in 
seismic data, specifically focusing on slender structures. These filters are capable of selecting events with varying 
widths. The methodology begins with the preprocessing of seismic data, involving the wavelet fusion of the instantaneous 
frequency of the envelope peak and the instantaneous amplitude of the slant stack peak of the pre-stack seismic data. 
Then, the principles of the B-COSFIRE filter and the feature selection process based on the DE algorithm are 
introduced. The study combines the responses of two B-COSFIRE filters: one for detecting events and the other for 
detecting the end of events. The selection of parameters for the end-events filter is dependent on maximizing the 
performance of both filters, with the configuration rely-ing on the events filter. The choice of filter parameters is 
crucial, and the configuration parameters for each filter are selected to optimize performance across all common widths of 
the bar structure. Subsets of the B-COSFIRE filters are determined using information theory and machine learning 
techniques, allowing for the selection of bar structures with different widths. The impact of system performance is evaluated 
by employing the DE algorithm as a feature selection method. The DE algorithm (Zhao 2019, 2012; Wang and Gao 
2012, 2010a, b) is used to construct the feature vector based on the response of the B-COSFIRE filter, aiming to obtain 
the minimum feature subset that maximizes event description performance. This approach enables the evaluation of the 
combined contribution of multiple features and exploration of a larger solution space. The proposed model can 
effectively  detect  the  event  edge  of  the  seismic data 
interferences. Compared to other traditional edge detection methods, the B-COSFIRE filter demonstrates the ability to 
pick up seismic data events with different widths, aligning more closely with the biological vision mechanism. The 
events picked up by this method exhibit higher continuity and accuracy compared to existing approaches.

Method

The following is the flowchart of the proposed algorithm (Fig. 1).

Preprocessing of the seismic data

The preprocessing aims to enhance the signal-to-noise ratio (SNR) of pre-stack seismic data, leading to improved data 
quality. Events pickup is carried out using both pre-stack and post-stack seismic data. Pre-stack seismic data contain 
more information than post-stack seismic data. By avoiding processes such as NMO stretching and stacking, the 
amplitude and frequency information remains undamaged and enables the reflection of some fine formation 
characteristics. However, the disadvantage of higher noise level has always puzzled the researchers. Therefore, 
considering the low signal-to-noise ratio of pre-stack seismic data, we propose a high-precision events extraction 
method. In the following section, we provide a concise overview of the pre-processing procedure. Assume that the source 
wavelet can be approximated by the following constant phase wavelet with four parameters (Gao 2011; Zhao 2013):

target  contour  with  a  large  volume of data and various noise

where � is the modulated angular frequency, � is the energy attenuation factor, A′ and � are the amplitude and the phase, 
respectively.

The EPIF (envelope peak instantaneous frequency) of the zero-time source wavelet is obtained by (Gao 2011):
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Fig. 1  The flow chart of the proposed algorithm

Fig. 2  Schematic representation of the Radon transformation(Schultz and Yu Jeffrey 2013)

The calculation process of the slant stack peak amplitude (SSPA) profile is as follows (Zhao 2019). Figure 2 is 
the local linear Radon transform diagram. For a selected reference trace on the instantaneous amplitude section, �j 
denotes a certain time intercept, where several traces near the reference trace are superimposed along np straight lines 
with different slopes pj( j = 1, 2, … , np ) (slope in interval sampling Δp ). The sum of the instantaneous amplitude 
along different directions at the time intercept is recorded at the corresponding position 

(
�j, pj

)
 of the coordinate

� − p . When the selected stacking slope closely or equals to the slope of the events, the data in the time–distance
(t–x) domain exhibit maximum value. By averaging the maximum stacking values and placing them at the
corresponding position 

(
�j, xm

)
 in the t–x domain, a super-gather

axis

the slant stack peak amplitude (SSPA) profile.
So far, the EPIF profile and the SSPA profile have been obtained. Next, we calculate the wavelet fusion of these 

two profiles.

can be constructed to increase the SNR, which is called 



Trainable COSFIRE filter

The combination of shifted filter responses (COSFIRE) is an unsupervised pattern detection method in computer vision 
(Badawi and Fraz 2018). Similar to deep learning methodologies, the COSFIRE approach avoids the need of 
engineering hand-crafted features and instead learns to determine important features directly from prototype training 
patterns. The automatic learning of suitable data representations allows the construction of flexible and adaptive pattern 
recognition systems (Strisciuglio and Petkov 2017). In particular, Azzopardi and Petkov (2013) demonstrated the 
effectiveness of COSFIRE filters in detecting vascular bifurcations in retinal fundus images (Azzopardi and Petkov 2012). 
By using a collection of center-off and centeron DoG filters, we can effectively configure a contour operator. The COSFIRE 
method can be classified as a combination of shifted filter responses, key point detection, and pattern recognition. It 
functions as a trainable filter and combines the responses from a group of DoG filters. 

Trainable B‑COSFIRE filter

We apply B-COSFIRE filtering to the wavelet fusion pro-file due to the higher SNR of preprocessed seismic data. A B-
COSFIRE filter is derived from the existing COSFIRE approach; it achieves orientation selectivity by computing the 
weighted geometric mean of the output of a pool of DoG filters, whose supports are aligned in a collinear manner.

The human visual nervous system has evolved to receive and cognize external scenes with extremely high resolution. When 
the eyes receive light stimulation and excitation, gan-glion cells transmit sensory information to the central nervous system, 
and their response area is called the classical receptive field. The classical receptive field exhibits a concentric circle 
structure where the center and periphery have antagonistic effects, which can be described by the DoG model. Figure 3a 
shows the configuration of the B-COSFIRE filter as a horizontal bar, representing the response of the input central DoG 
filter at a specific position within the support area. Figure 3b shows the response of the DoG filter, and Fig. 3c shows the 
local maximum DoG response of the concentric circle along the target point (identified by the cross mark in the center). 
Figure 3d depicts the final filter, with the size of the spots corresponding to the standard deviation of the Gaussian blur 
function. The blurring operation calculates the DoG maximum weighted response to improve the robustness.

Fig.3 An example of a B-COSFIRE filter configuration using a horizontally synthesized bar structure. a Schematic diagram of the B-COSFIREfilter.

b Response of the DoG filter; c Local maximum DoG response along the concentric circles of the target point; d Sketch of the final filter



The key advantage of B-COSFIRE filters lies in their trainability nature, allowing for automatic configuration of the 
optimal filter parameters according to the target and leading to the best pickup results. It means that, unlike predefined 
selectivity in the filter implementation, the selectivity is determined by userdefined prototype patterns (such as straight 
containers, forks, or intersections) during automatic configuration. The 1D expression of the DoG model is given as follows 
(Strisciuglio 2016):
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where A1, A2 represent the sensitivity of the central excitatory domain and its surrounding inhibitory domain, respectively, �1 
is the mean square deviation of the Gaussian function in the central domain, and �2 is the mean square deviation of the 
Gaussian function in the inhibitory domain. The DoG response is blurred and shifted, and its weighted geometric average is 
computed to generate the output of the B-COSFIRE filter. Two sets of B-COSFIRE filters are established, and the responses 
of these two sets of filters are combined for seismic data event pickup. In the two sets of B-COSFIRE filters, one group is 
dedicated to detecting the events, while the other focuses on detecting the end of the events. Next, the B-COSFIRE filter is 
obtained. COSFIRE is a combination of shifted filter response models. Referred to as B-COSFIRE, this approach incorporates 
the selection of bar structures, exhibiting sensitivity to changes in direction and demonstrating strong resistance and 
adaptability in the presence of rotation and shape variations. The B-COSFIRE filter proposed in this paper is nonlinear, and 
its nonlinear response realizes directional selectivity by multiplying the output from a set of DoG filters with colinear 
alignment. The filter tolerates changes in rotation and slight deformations. To simulate the receptive field model, a 2D 
expression of the DoG model is given, which can realize the function of the central region with excitability (positive) and 
inhibitory domains with inhibitory surroundings (negative):
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Motivated by electrophysiological studies of LGN cells in owl monkeys (Irvine et al. 1993; Xu et al. 2002), the 
corresponding value of the central excitatory domain is set as 0.5� , where � is the spatial distribution degree of the Gaussian 
function (i.e., the standard deviation) of the surrounding inhibitory domain. The relationship between the value of and the 
peak of the Gaussian function is illustrated in Fig. 4. A smaller value of � leads to a higher peak in the Gaussian function, 
while a larger value results in a smoother peak and a more blurred and smoothed image convolution output. This function is a 
recognized calculation model for some cells in the lateral geniculate nucleus (LGN) of the brain (Rodieck 1965). As shown 
in Fig. 5, on the left is the original figure and the Gaussian blur of three different sigma 

graph (DOG for short) of the three Gaussian functions, obtained by successively subtracting the images after Gaussian 
filtering (in adjacent states) in pairs. The red mark is the current pixel point, and the corresponding yellow mark represents the 
adjacent point of the current pixel point. There are 26 (27 yellow points minus one red point in the figure below). If this 
point (red point) is the maximum or minimum value of all adjacent pixel points (yellow point), then the corresponding red 
mark is considered as a feature point.

values. On the right is the difference 

DoG+
�
(x, y) is the ON central-type receptive field, where

inhibitory domain. DoG
�

−(x, y) is the OFF center-type receptive field, which is defined as:
the center is the excitatory domain, and the periphery is the 

(5)DoG−
�
(x, y) = −DoG+

�
(x, y).

The above DoG model can simulate the concentric antagonistic structure of the cells.

F )or a given location (x, y) and intensity distribution I
(
x′, y′) of the seismic data I, the response of the DoG can

be calculated as follows:

(6)c�(x, y) | |
def
= |I ∗ DoG�

|+,
where * is the convolution and |⋅|+ is the half-wave rectifica-tion. We then consider the DoG responses along a concentric 
circle around a given point of interest, selecting the DoG with a local maximum from those responses.



Fig. 4  The 2D Gaussian function

Fig. 5  The work principle of the 2D DoG



Fig. 6  Schematic diagram of the 
B-COSFIRE filter

The direction of B-COSFIRE is chosen to be the same as that of the stripe tissue. We describe the ith point with 
three parameters �i , �i and �i,�i is the standard deviation of the DoG filter, 

(
�i, �i

)
 is the polar coordinate that represents 

its position. Using the DoG model with the predefined � , and the specified point is taken as the center of the circle to 
analyze the response c� (x, y) within the range of N concentric circles. Figure 6 illustrates the configuration of the B-COS-
FIRE filtering combination, taking into account the seismic data’s event characteristics. The center of the light gray 
circle corresponds to the center point of the B-COSFIRE filtering combination, and the black point, which arises from the 
intersection of the middle vertical line and the concentric circle, represents the extreme point of the DoG response. 
The parameters of filtering combination are:

where S defines a B-COSFIRE filter with a selective prefer-ence for a given prototype and n is the number of the DoG 
filters to be configured. The values used in the following equation correspond to the analysis of the vertical line 
depicted in Fig. 3c and are determined through automatic analysis of the corresponding input pattern. The values for 

� and � are obtained through automatic analysis and generat ion based on the points mentioned earlier:
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The initial step involves convolving the input images with the difference of Gaussian (DoG) function, which is 
characterized by a predefined standard deviation specified in the tuples of the set S.

The next step involves applying the blurring shift operation to the DoG filter in order to accommodate potential 
errors in the priority positions of relevant points. As depicted in Fig. 3d, the DoG 3D function is multi-scale, resulting 
in varying blob shapes. At the center point of the horizontally oriented bar, the mean square deviation of the DoG 
filter is the minimized, leading to the highest peak of the Gauss-ian function. As we move away from the center 
point, the mean square deviation of the DoG filter increases, resulting in smoother Gaussian peaks and reduced impact 
of blurring and shift operations. The mean square deviations �1 and �2 determine the image’s blurriness. The mean 
square deviation, represented by σ, determines the level of blurriness in the image. A larger σ value indicates a 
greater degree of blurriness, while a smaller σ value captures more detailed information. The blurring operation 
calculates the maximum value of the weighted threshold response of a DoG filter. The maximum DoG response in the



local neighborhood of the maximum weighted DoG response G�′ 

(
x′, y′

)
is computed by the blurring operation to improve 

its fault tolerance. The weight is obtained by multiplying the coefficient of the DoG filter response with the Gaussian 
function c�′ 

(
x′, y′

)
 , where the standard deviation �′ is a linear function of the distance �

i
 from the filter support center:

application requirements. �i represents the distance between the filter support center and the priority position of the 
correlation point.

In order to refine the alignment of the blurring DoG responses, this paper introduces a vector-based approach. 
Each blurring DoG response is shifted towards the center of the support region using a displacement vector of length      ,�i
which is the complementary angle of  ; the associated change vector is 

(
Δxi, Δyi

)
,Δxi = −i cos �i , and

i

 We calculate the fuzziness of the tuples �i, �i,�i

) and the response of DoG in the inverse direction 

the center of the filter support, |⋅|� is the response threshold representing the maximum response at the fraction 
�(0 ≤ � ≤ 1) . The weighted geometric mean is an “and” type function, meaning that a B-COSFIRE filter can only produce a
response if all fuzziness and shift responses s�i,�i,�i 

(x, y) are greater than zero. The contribution of blurring and shift
response decreases with increasing distance from the support center of the B-COSFIRE filter.

The above equations configure a B-COSFIRE filter, which can be used for horizontally oriented containers. To 
achieve multi-directional selectivity, multiple B-COSFIRE filters can be configured by using prototype patterns with 
different orientations. The weighted geometric average is an “and” function, where the response value is obtained  
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 from the filter support center: � � = � �
0 + ��i . The values of �′

0
 and � are constants that can be adjusted based on the specific

�i (Δyi = −� sin �i

of �i and shift it, as shown in the equation below:

where −3�� ≤ x�, y� ≤ 3��.
Next, the B-COSFIRE filter response model is calculated. The B-COSFIRE filter output response rs(x, y) is the 

weighted geometric average of all blurry and shifted DoG responses in the corresponding tuple S:
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, 
(
�i,�i

)
 is the polar coordinate of the ith DoG response with respect to

only when all the individual responses meet the condition “> 0.” It is noteworthy that the influence of blurring and shift 
operations decreases as the specified point moves farther away from the filter’s center. It can be seen that we should first 
set the bar direction for the filter. By manipulating the parameters � associated with each tuple, a new set R� (S) is created. 
Here, we integrate the set S and add the R� (S) to achieve rotation invariance:

(11)R� (S)=
( (
�i, �i,�i+�|∀ �i, �i,�i

)
∈ S

)
.

The above equation represents a B-COSFIRE filter with an orientation preference of radians � , offset from the 
orientation preference of the original filter S. It can track bar targets in all directions, sum all the responses obtained, and 
calculate the response values of each pixel at different orien-tations (0°, 15°, 30°,…, 165°), and then the maximum value is 
selected as the feature of this point. In this paper, a set of B-COSFIRE filters with diverse orientation preferences is 
selected, which can be expressed as:

where Ψ=
{
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i|0 ≤ i ≤ nr

}
, nr = 12.
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Due to the discontinuity and asymmetry of seismic data, such as the presence of primary reflection and 
multiple reflection waves, it is difficult to achieve comprehensive detection when events are picked up. B-
COSFIRE operates as a “logical and” function, requiring all inputs to be activated in order to produce a response. 
Consequently, it faces limitations in generating a response at points of discontinuity. To address this issue, the 
construction of specific filters for primary reflections and reflected waves is considered. The filters that detect 
continuous events and direct waves are called B-COSFIRE with symmetric structure, while the filters for 
discontinuous and reflected waves are called B-COSFIRE with asymmetric structure. Asymmetric structure filters
calculate the response in the range of 360°. In practical application, unlike symmetric filters that only calculate the 
target point on one side, the asymmetric structure filters need to double the number of azimuths to obtain the 
endpoints of the bar structure in all directions. The target points can be located in any direction. As shown in Fig. 7, 
the center of the concentric circles is the response center of the filter, and the black dots represent the response 
extreme values. A new B-COSFIRE filter is configured at the end of the bar structure to realize the end response. We 
utilize a point situated at the end of a bar structure as a notable point. In comparison with the symmetric B-COSFIRE 
filter, the asymmetric B-COSFIRE filter achieves a more pronounced response at the end of the bar structure.

The width of seismic events, depending on the offset, may range from 1 pixel to several pixels. The larger offset 
corresponds to greater high-frequency attenuation, increased low frequency, and a broader waveform. 
Consequently, this paper employs a set of B-COSFIRE filters consisting of 21 bar structures 

{
S1, … , S21

}
 and 

21 bar structure ends 
{
S22, … , S42

}
 , allowing for the selection of bar structures of varying thicknesses. Large-scale 

filters exhibit selectivity for wide events and tolerance to background noise, yet they demonstrate minimal 
response to narrow events. Conversely, small-scale filters have higher selectivity for narrow events but exhibit less 
tolerance to background noise. The fused responses of these two filter types are anticipated to achieve superior 
events-extraction performance across various scales. For each event position (x, y) , We construct a pixelation-level 
feature vector �(x, y) comprising the responses of the 42 B-COSFIRE filters in the filter bank, in addition to the 
intensity value g(x, y) of the instantaneous amplitude:

Fig. 7  Example of the B-COS-
FIRE filter configured by using 
the end of a vertically synthe-
sized bar structure. a Prototype 
of the end of the bar structure; b 
Asymmetric B-COSFIRE filter 
configured via (a)

T

�(x, y) = g(x, y), r̂1(x, y), … , r̂42(x, y) , (13)

 

Before classification, this paper applies the inverse hyperbolic sine transformation function to each eigenvector 
element, reducing data bias and defined as follows:

[ ]

(14)f
(
�i, �

)
=

sinh−1
(
��i

)
�

.

where r̂ i (x, y) is the rotation tolerance response of the B-COSFIRE filter Si.



For larger values of �i and θ > 0, the function operates similarly to a logarithmic transformation. Let � → 0 , f 
(
�i, 

�
) 
→ �i . The Z-fraction is then calculated to normalize all 43 eigenvalues. This paper applies Z-fraction 

normalization separately to each image to compensate for lighting variations between images.
The filter library designed above may contain redundant filters. To address this issue, this paper investigates various 

feature-selection methods to identify a minimal feature subset that can maximize the characterization performance of 
the events. Ultimately, the differential evolution (DE) algorithm serves as the feature selection method, assessing 
the impact on system performance, determining the minimum feature subset to optimize event characterization 
performance, and completing seismic event extraction. We use a training data matrix of size N × 43 as the input, 
where N represents the number of pixels randomly selected from the training data, and the column number 
corresponds to the size of the filter bank plus the size of the EPIF (envelope peak instantaneous frequency) data.

The DE algorithm guides the selection of the optimal gene of each subcomponent by employing the local fitness 
function. Subsequently, it performs the inversion to search for the feature subset with the best performance among 
numerous possible combinations.

The DE method initially provides a population X con-taining M individuals (Wang and Gao 2010a, b, 2012):

� = [�1, �2, … , �M].                               (15)

�k

The kth individual in the population is represented as: 

 = [xk,1, xk,2, … , xk,N ], k = 1, … , M, (16)

where M is the initial number of individuals, which is set according to the actual situation, such as M = 400; and N is 
the dimension of 43 parameters to be estimated (i.e., EPIF and 42 B-COSFIRE filters). The fitness function calculates 
the average accuracy of the training data and the selected columns. The local fitness function of the kth individual, 
defined by the L1 norm, is:

where do,j(⋅) is the data of the events of the jth column, dk,j(⋅) is the training data of the jth column calculated by the for-
ward modeling of the kth individual, NR is the trace number of the observed seismic data, and g(l) is the Gaussian 
window function, defined as follows:

(17)fk,j =

NR∑
l=1

|||
[
do,j(l) − dk,j(l)

]
⋅

|||g(l) ,

(18)g(l) = exp

(
−
1

2
⋅

(l − P)2

��2

)
,

where l is the variable, and �′ is the standard deviation used to control the window’s width. The Gaussian window’s 
center is located at the wavelet envelope’s peak. For post-stack data, the time window’s center should be located at the 
subcomponent’s center, and for prestack data, the time window’s center should slide along the hyperbola as the offsets 
increase. We take the kth individual �k as the B-COSFIRE parameter, pick up the position of the seismic events, and 
calculate a local fitness value for each trace. Then, the local fitness value vector corresponding to the kth individual is:

(19)�k =
[
fk,1, fk,2, … , fk,N

]
,

where the element fk,1, fk,2, … , fk,N is the local fitness value of the 1st to Nth traces.
Therefore, for a population X containing M individuals, the local fitness value corresponding to the forward data 

is an M × N matrix:

(20)� =

⎡⎢⎢⎣

f1,1 f1,2 … f1,N
…

fM,1 fM,2 … fM,N

⎤⎥⎥⎦
.



The initial population X is also an M × N matrix.
The DE algorithm employs mutation, crossover, and selection operations to conduct iterative searches. The three main 
operations are introduced as follows.

Mutation operation: the effective mutation strategy can rapidly improve the genes (parameters to be estimated) 
within the individual, eventually obtaining the optimal individual after multiple generation iterations. To determine the 
correct direction of gene mutation, the local fitness function is employed to guide each sub-component’s mutation direction 
in the mutation operation, and a new mutation operator is proposed. We arrange all variables in the jth column of the 
group X in ascending sort:

where the superscript s represents the sorted sequence. The local fitness value of this sequence is:

(21)�
s
⋅,j
= sort[x1,j, x2,j,… , xM,j] = [xs

1,j
,xs
2,j
,… , xs

M,j
],

(22)�
s
j
=
[
f s
1,j

(
xs
1,j

)
,f s
2,j

(
xs
2,j

)
,… , f s

M,j

(
xs
M,j

)]
.

Fig. 8  a The synthetic seismic data; the noisy signal with the SNR of b 10 dB, c 20 dB, d 30 dB



The local fitness function �j corresponds to the sequences before sorting and � j
s is composed of �j , which correspond to 

the elements of �
⋅

s
,j
 , rather than ascending sorting the elements of �j.

To enhance calculation speed, this paper employs the following method to mutate the individual corresponding to 
� j

s . By designating the variable corresponding to the local fitness function’s minimum value as xr,j , and 
randomly selecting two variables (excluding the minimum value) in the jth column of the population, the variation 
strategy for the jth element of the kth individual is:

where F is a control parameter with a value that is a random variable between 0 and 1. All individuals undergo iteration to 
update genes in column j. The mutated genes are disturbed near the optimal value point, and the mutated values of different 
individuals slightly vary due to the distinct randomly selected variables and control parameters, which also align with nature 
laws and reflect mutation randomness. 

(23)xM
k,j

= xr,j + F ⋅

(
xr1,j − xr2,j

)
,

Crossover operation: genes are randomly chosen from the target individual �G
i

 and its corresponding mutant individuals

�
G
i i

 and combined into a test individual �G . The two 
 exponential crossover. We adopt the uniform crossover as follows:

where CR ∈ [0, 1) is the crossover rate and nrand is a random integer between 1 and D, ensuring that at least one of the 
genes in the test individual originates from the mutant individual.

Selection operation: the conventional selection operator selects an individual to advance to the next generation as a 
whole, according to the global fitness value of the target individual x

i
G and the test individual u

i
G , expressed as:

(24)uG
i,n

=

{
vG
i,n

xG
i,n

if r and ≤ CR or n = nrand,

n = 1, 2,… ,D,

(25)u�G
i,j

=

{
u
g

i,j
if fj

(
uG
i,j

)
≤ fj

(
uG
i,j

)
,

xG
i,j

j = 1, 2,… , J.i = 1, 2,… , NP
.

commonly used crossover methods are uniform crossover and 

In each iteration, we configured a support vector machine (SVM) classifier with a linear kernel using 90% 
of the training set and applied it to the remaining 10%. The SVM classifier is particularly suitable for binary 
classification problems, as it identifies an optimal separation hyperplane that maximizes the boundaries between 
classes. After training all samples once in the training set, we arrange the individuals in descending order according 
to their fitness values and retain only the top 10% of individuals. We generate the remaining 90% of new 
individuals by crossing over the randomly selected optimal individual pairs. Each new individual has a 10% chance 
of mutating (i.e., changing the code from 1 to 0 or from 0 to 1). We execute these iterative steps until all individuals 
are optimal and no further mutations occur. Finally, we select the filter corresponding to the position of the 
individual with the highest fitness value in the population.

Examples

Data set 1: synthetic seismic data with increasing SNR

We evaluate the noise resistance of the proposed method using a synthetic CMP record. Figure  8a displays the 
synthetic record with linear events and 3-layer nonlinear (hyperbolic) events. The source signature is a constant

spaced 10 m apart. The sampling rate is 1 ms. The synthetic CMP record is augmented with white Gaussian noise, 
with the SNR ranging from 10–30 dB at intervals of 10 dB, as shown in Fig. 8b–d. The picked events are presented in 
Fig. 9a–c. As indicated by the solid ellipse in the images, as the SNR decreases, the precision of event extraction 
decreases and the events become discontinuous. However, when the SNR is high, the events picked up by the B-
COSFIRE method remain relatively stable, indicating that the method has good noise resistance. Moreover, as 
highlighted by the dashed ellipse in Fig. 9a, this method can effectively separate thin layers. The filter system proves 
to be robust in noisy environments.

 � =50Hz , �= 130 , A� = 1 , � = 0.
2� 

phase wavelet located at the surface with zero-offset, where There are 100 geophones 



Fig. 9  Events picked up by the B-COSFIRE filter



Fig. 10  Real seismic data. a Original pre-stack CSP data; b Instantaneous amplitude profile of (a)

Fig. 11  Instantaneous frequency at the peak of the envelope Fig. 12  Wavelet fusion profile of the instantaneous frequency of 
the envelope peak and the peak amplitude of the tilt superposition

Data set 2: real zero‑offset VSP data

This paper applies the method to the real common shot point gather (CSP), which has 595 traces, 1250 
sampling points, and 2-ms sampling interval. The minimum offset is 90 m, and the distance between the 
geophones is 10 m. Figure 10a displays the real pre-stack seismic data. The figure reveals that the original data have 
obvious events, but the background noise is substantial. In particular, the events at the near offset and shallow surface 
are indistinguishable. The peaks and troughs of the events interact, complicating dips and other attributes extractions. 
Figure 10b presents the instantaneous amplitude profile. Figure 11 displays the envelope peak instantaneous frequency 
(EPIF) profile, demonstrating that the envelope peak instantaneous frequency reduces peaks and troughs interference, 
concentrating effective information. However, deep medium noise remains significant. Figure 12 shows the wavelet 
fusion results of EPIF and the slant stack peak amplitude profile. The fused image emphasizes events and suppresses 
noise to a certain extent. Figure 13 illustrates the dip profile picked up by the Radon transform. Figure 14 presents the 
B-COSFIRE filter response. Figure 15 displays the events extraction results using the proposed method. Events 
extraction in the shallow layer is relatively complete. Thick strata events have been entirely picked up, and the noise 
marked by the ellipse has been significantly reduced, indicating the validity of the pro-posed method. Figure 16 shows 



the result from the automatic events extraction method proposed by Zhao (2019). The auto events extraction method 
detects the upper and lower boundaries of each event (As indicated by the arrows), requiring human interaction for 
the final result. Figure 17 displays the non-maximum suppression result using the Canny operator. Figure 18 presents 
the events detection results using both Canny and Sobel operators. These results exhibit strong noise and disturbance, 
with the events being less complete compared to those obtained with the B-COSFIRE method. By comparing Fig. 15 
with Figs. 16, 17 and 18, it is evident that the events picked up by the B-COSFIRE method are more complete and more 
continuous, demonstrating good noise resistance.

Fig. 13  Dip profile obtained by Radon transform

Fig. 15  Events picked up by the B-COSFIRE filter Fig. 16  The result of the automatic events extraction method

 

Fig. 14  Response result of the B-COSFIRE filter

 



Fig. 17  Events detection result by Canny operator Fig. 18  Events detection result by Canny and Sobel operator

Fig. 19  A 2D section of F3 block (North seas) Fig. 20  Instantaneous amplitude (IA) profile of F3 block (North seas)

Data set 3: 2D section of F3 block (North seas)

We applied the method to the F3 block of the North Sea data (Fig. 19) to identify horizons in stacked 
sections with faults or folding. Figure 20 displays the instantaneous amplitude (IA) profile of the F3 block. 
Figure 21 is the instantaneous frequency (IF) result of the F3 block. Figure 22 shows the envelope peak 
instantaneous frequency (EPIF) section. Figure 23 presents the response result of the B-COSFIRE filter. 
Figure 24 presents the events detection result for the F3 block. The extracted events and folding appear 
complete, and the noise has been sig-nificantly reduced, demonstrating the effectiveness of the proposed 
method.



Fig. 21  Instantaneous frequency (IF) profile of F3 block (North seas) Fig. 22  EPIF profile of F3 block (North seas)

Fig. 23  The Response result of the B-COSFIRE filter 
for F3 block

Fig. 24  The Events detection result of F3 block



Conclusions

This paper introduces a seismic events extraction method based on the B-COSFIRE filter combined with the 
differential evolution algorithm. In this approach, each sampling point is described by two values—one from the bar 
structure selection filter, and the other from the bar structure end selection filter—both of which are merged through 
summation. This combination enhances the response to the bar structure and its endpoints, thereby improving the 
extraction ability of events and increasing extraction accuracy. The B-COSFIRE filter proposed in this paper is a trainable 
filter, as its selectivity is not predefined upon implementation but is determined by the user-specified prototype pattern 
during the automatic configuration process. The filter’s optimal parameters are automatically configured according to 
the target, ultimately yielding optimal extraction results. The weighted geometric mean used in this paper is a 
nonlinear function that produces a response only when all the filters for points of interest are present. This means it cannot 
generate a response at discontinuities, which enhances the continuous effective signal and weakens the discontinuous 
noise signal, making this type of function more robust to noise than other methods. The method can automatically 
select bar structures with different widths using the differential evolution algorithm, evaluate the combined 
contribution of numerous features, and explore a larger solution space. The seismic data used by this algorithm is in 
‘sgy’ format, which contains abundant information. In accordance with the unique visual cognition method applied in 
the seismic field, we do not convert the seismic data into grayscale images but instead use the data itself. More 
attribute information can be extracted from the data, such as instantaneous frequency and instantaneous amplitude, 
to perform event extraction. We maximize the resolution and retain the information. The proposed method 
demonstrates high flexibility and can pick up events with different widths. The target’s contour within the events is 
well extracted, and the extraction results can be applied to the subsequent seismic interpretation and reservoir 
prediction.
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