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A  B  S  T  R  A  C  T 

The State estimation and determination of time-varying model parameters are crucial for ensuring the safe management of lithium-ion batteries. This paper designs 
a limited memory recursive least square algorithm to improve the accuracy of online parameter identification. An adaptive radial basis correction-differential support 
vector machine model is constructed to correct the state of charge value by considering the dynamic characteristic parameters. It greatly reduces estimation error 
and noise, while monitoring the critical conditions for safe and reliable online battery operation. The estimation effects of the proposed model are verified under 
hybrid pulse power characterization and dynamic stress test working conditions. The maximum error values obtained are 0.037 % and 0.336 %, respectively, thus 
achieving high-precision estimation. The proposed method is adaptive to real-time battery management applications, laying a foundation for robust state estimation 
of lithium-ion batteries used in urban transportation electric vehicles. 
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1. Introduction

Since combustion engine-powered vehicles are a major contributor to global warming and its effects on the environment, the development of the
automotive industry is gradually shifting from internal combustion engine-powered vehicles to electric vehicles to solve energy and climate problems 
[1,2]. With the advancement of technology, lithium- ion batteries (LIBs) serve as one of the main components widely used in electric vehicles (EVs), 
smart devices, etc. due to their advantages, such as high energy density, lightweight and compact design, long cycling performance, low self-discharge 
rate, and no memory effect [3,4]. Therefore, LIBs have become an essential part of the new energy field, which is a key breakthrough not only in EVs 
but also in optimizing the existing energy storage and supply system. 

Effective management by the battery management system (BMS) is critical to extending the service life and reducing costs. Also, it ensures the 
safety and acceptable operation of LIBs in EVs [5,6]. With the increasing demand and application of LIBs, their safety and reliable operation have 
become the focus of attention in all walks of life [7,8]. BMS is responsible for monitoring the real-time status of the battery, such as the state of charge 
(SOC), state of health (SOH), and state of power (SOP) [9]. Among the BMS functions, the SOC is a key state parameter that serves as the basis for 
the safe and efficient management of LIBs, which promotes BMS applications and developments. 

The SOC is a measure of the ratio of the available energy to the maximum possible charge that can be stored in the battery and is determined by 
the BMS [10,11]. Accurate real-time estimation SOC can prevent the occurrence of hidden dangers that damage the battery cycle life and safe 
performance, such as overcharging and over-discharging [12]. Currently, there are three types of SOC prediction methods mainly include 
experimental tests, model-driven, and data-driven [13]. The experimental test-based method calculates the lithium battery SOC by measuring physical 
quantities such as battery voltage, current, and temperature, and then calculating the lithium battery SOC based on known physical relationships [14]. 
It is generally used as a calibration method for battery SOC estimation or for post-battery maintenance work.  

As the SOC change is a nonlinear state parameter in the application of LIBs, there are significant difficulties in improving the estimation accuracy [15]. The 
model-driven approach is an indirect estimation method with mainly electrochemical models and equivalent circuit models [16]. The electrochemical model accuracy 
is high, which is suitable for theoretical analysis, but the model structure is too complex and has many parameters, which is extremely computationally intensive 
[17]. The equivalent circuit model (ECM) is simple, with few parameters, and a small amount of calculation [18], usually combined with parameter identification 
and state space equations to achieve the pre- diction and estimation of lithium battery-related state.  

The method based on the ECM first needs to collect information such as battery voltage, current, and temperature through experiments, then establish 
a suitable equivalent model to construct the state space equation, carry out model parameter identification, and finally use a suitable control theory 
algorithm to estimate SOC [19]. Currently, the Kalman Filter (KF) is widely used. Naseri et al. proposed an enhanced equivalent circuit model based 
on the Wiener structure to improve the nonlinear capability of capturing LIBs [20]. The results showed that the accuracy of the EKF algorithm to estimate 
the SOC is improved by 1.5 % compared to the conventional second-order equivalent circuit model. Duan et al. used a robust EKF method with correlated 
entropy loss for SOC estimation to improve the estimation accuracy in non-Gaussian environments, and the results show that the mean square error 
of the proposed method is reduced by 0.849 % [21]. Wang et al. find that the deviation of OCV would affect the accuracy of SOC estimation by the 
EKF algorithm, and quantitatively analyzed the influence of open-circuit voltage (OCV) deviation on the accuracy of SOC estimation by the EKF algorithm 
[22]. Furthermore, a dynamic matrix control-extended Kalman filter (DMC-EKF) algorithm is proposed to estimate OCV and SOC. The results show that 
the proposed algorithm can estimate SOC more accurately, and the error is reduced by 2 % compared with the unscented Kalman filtering (UKF) 
algorithm.  
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The data-driven method is based on using data to estimate SOC directly by mining the mapping relationship between the own characteristics 
of battery measurement parameters such as current, voltage, temperature, and internal resistance and the battery SOC [23–25]. Its advantage is that 
it does not need to build a battery model, but it must be backed by high-quality measurement data to obtain accurate estimation results. Hong et al. 
proposed a multi-step forward online joint SOC prediction method based on the long short term memory (LSTM) neural network and multiple linear 
regression algorithm, and the experimental validation showed that the method has good stability, flexibility, and robustness [26]. To overcome the 
shortcomings of the black box principle and thus fully exploit the performance of deep learning, Tian et al. proposed to integrate two kinds of domain 
knowledge into a deep learning-based approach [27]. Liu et al. proposed the improved barnacle mating optimizer-support vector machine (IBMO-SVM) 
model and used it for SOC estimation of LIBs [28]. The results show that the SOC estimation method proposed in this study is highly accurate and 
reliable. 

In summary, traditional methods and their improvements are more applied and mature, such as literature [20] and literature [21]. Some researchers 
use an AEKF based on the correction factor of the forgetting factor recursive least-squares method to realize SOC estimation [29]. There are also some 
researchers using an improved particle swarm optimization (IPSO) method combined with the EKF method to realize the state parameters online 
estimate [30]. Zhao et al. proposed a data-fusion (DF) method to improve the accuracy of SOC estimation for vanadium redox flow batteries (VRFBs) 
by combining EKF and AEKF SOC estimation results. The results show that the proposed DF method exhibited high fidelity and accuracy in estimating 
the SOC [31]. However, the data processing cost of this method is high, and two EKFs are used. Some scholars have introduced machine learning 
and neural network methods for SOC estimation, such as literature [26–28]. How- ever, these networks have high complexity, poor accuracy and 
stability, and high application cost. 

With highly nonlinear operating conditions, the acquisition and modeling of the time-varying internal parameters are essential factors affecting 
accurate parameterization in SOC estimation [32–34]. It is necessary to ensure the parameter acquisition of the state-space model under complex 
working conditions to obtain an accurate real-time SOC estimation of LIBs [35]. In this paper, an improved hybrid adaptive radial basis correction-
differential support vector machine (RBC-DSVM) model is proposed for the accurate SOC estimation of LIBs. The limited memory recursive least square 
LMRLS) parameter identification model is designed to improve the accuracy of online parameter identification. 

The SOC estimation from the AEKF method is used as input into the DSVM model with RBC iteration to correct the errors and optimize the final SOC. 
Finally, the SOC over the whole life cycle of the battery is accurately estimated. The SOC estimation effects are verified based on the actual working 
conditions, such as the dynamic stress test (DST) and hybrid pulse power characterization (HPPC). The proposed RBC-DSVM model is tested and 
verified under HPPC and DST working conditions with high accuracy and robustness advantages. 

2. Mathematical analysis

2.1. Equivalent modeling and state space equations 

The ECM composed of electrical components is used to characterize these nonlinearities and simulate the internal impedances and polarization 
effects of the battery [36–38]. Considering the circuit parameter characterization effect and subsequent computational cost and complexity, in this 
paper, a first-order Thevenin model (FOT-ECM) is constructed to simulate electrical behavior and characterize the dynamics of the LIBs, as shown in 
Fig. 1.  
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   Fig. 1. FOT-ECM. 

Where the R0 is the internal ohmic resistance, Rp is the electrochemical polarization resistance, and Cp is the electrochemical polarization capacitance. 
The parameter of Up is the polarization voltage, I is the charge-discharge current, Uoc is the open-circuit voltage, UL is the terminal voltage, and Uo is 
the voltage across the ohmic resistance. The electrical behavior of the established FOT-ECM is obtained based on Kirchhoff’s circuit law, as shown 
in Eq. (1). 

The ratio of the remaining capacity to the nominal capacity of the battery is termed for the SOC estimation. Its mathematical expression is obtained 
using the Ah integral method, as shown in Eq. (2). 

In Eq. (2), Qn represents the nominal capacity of the battery and I(k) represents the charging and discharging load current of the battery at time 
point k. With the OCV, which is usually a function of the SOC, the state-space model is established based on the FOT-ECM, as show in Eq. (3). 

In Eq. (3), Δk is the sampling interval, w is the system noise, and v is the measurement noise. τ is the polynomial coefficient, and its calculation is 
expressed as τ = RpCp. 

2.2. FOT -ECM-based modeling with LMRLS parameter identification 

The RLS method can achieve the adaptive identification of model parameters by constantly revising and updating the system parameters to 
accurately obtain the real-time characteristics of the system [39,40]. It has a wide range of applications in the field of system identification. The 
equation form of the parameters to be identified in the RLS principle is shown in Eq. (4). 
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y(k) = ϕ(k)θ(k)T + e(k) (4) 

In Eq. (4), y(k) is the output value of the system at time k, ϕ(k) is the observation vector, θ(k) is the parameter vector to be estimated, and e(k) is the 
noise observation vector. 

The RC network’s equation is discretized to adaptively update the model parameters at each sampling time point, as shown in Eq. (5). 



In Eq. (5), T is the sampling interval. The discrete equation of the ECM is obtained, as shown in Eq. (6). 

In Eq. (6), there are three parameters R0, Rp, and Cp to be identified in the FOT -ECM. Then, the coefficient parameter values of a1,a2, and a3 
are calculated and simplified as a1 =  RpCp      , a2 = R0 +   Rp

1   , a3 = R0RpCp , as shown in Eq.(7). 
RpCp+1 RpCp+1 RpCp+1

In Eq. (7), the circuit parameters are obtained by simplifying the functional relationship between them. Therefore, the parameter to be identified 
is set as θ = [a1, a2, a3]T . The vector form of Eq. (7) is obtained, 
as shown in Eq. (8). 

In Eq. (8), e(k) is the measurement noise with a zero-mean Gaussian white noise. In the process of parameter identification, the minimum 
variance criterion is used to obtain the most suitable parameters for battery characteristics and operating conditions. The criterion function J is shown 
in Eq. (9). 

In Eq. (9), the parameter of the criterion function J is the least, which satisfies the required condition, as shown in Eq. (10). 

From Eq. (10), θLS represents the parameter vector to be estimated under the least square method. To adapt to different conditions, the parameters are 
updated iteratively. From the sampled results obtained at each sampling interval, a recursive method for parameter identification based on the 
minimum variance theory is obtained, the forgetting factor recursive least square (FFRLS) recursive least squares method is obtained, as shown in Eq. 
(11). 

In Eq. (11), λ is the forgetting factor used to prevent data saturation from causing untimely updates, and the general value is [0.95, 0.99]. λ is introduced 
to weaken the influence of old data and enhance the feedback effect of new data. Although FFRLS improves the shortcomings of RLS to some extent, there is still 
data supersaturation when there is too much data. Given the defects and deficiencies of the RLS algorithm and FFRLS algorithm, this paper designed the LMRLS, 
that is, when the input of new data, removes the old data, only uses the limited length of the latest data for parameter estimation [41,42]. Therefore, the LMRLS 
algorithm can effectively reduce the computational effort to improve the computational speed and accuracy and is more suitable for the estimation of time-varying 
parameters. Let the memory length of LMRLS be L, and the recursive flow is as follows. 
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Step1: Calculate the parameter estimate of memory length L 

Step2: Calculate the parameter estimate of length L + 1 at time k 
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Step3: Calculate the parameter estimate of length L at time k 

where K (*) is the gain function, P (*) is the covariance function, and H is the unit matrix. Where, θ(k - L, k - 1) represents the parameter identification 
result corresponding to the L set of data from the moment k-L to moment k-1, θ(k - L, k) denotes the parameter identification result corresponding to the 
L + 1 set of data from the moment k-L to moment k, θ(k - L + 1, k) stands for the parameter identification result corresponding to the L set of 
data from the moment k-L + 1 to moment k. 

The identification of the characteristic parameters of the battery at each SOC level is based on the existing experimental data and the established FOT 
-ECM. The wide application of LIBs determines the complexity of the working conditions. The active internal electrochemical characteristics of the
battery are greatly influenced by the present SOC value, charge-discharge current rates, ambient temperatures, etc., which are constantly changing. 
In this paper, the LMRLS online parameter identification is conducted to identify the parameters of the battery with time-varying parameter
characterization, which is more convenient and accurate than the offline procedure. It obtains more accurate values for the time-varying characteristic
parameters by continuously correcting and updating the system. The flowchart of the adaptive updating parameter identification method for the battery 
model is shown in. Fig. 2.

Fig. 2. Flowchart of the adaptive online parameter identification method. 
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2.3. Iterative RBC-DSVM-based parameter calculation 

As a system with highly nonlinear characteristics and multi-dimensional space, the SOC of LIBs is affected by many external factors, which 
increases the difficulty of real-time estimation. To solve this problem, the discrete-time domain state-space equation is established. At each discrete 
sampling point, SOC and battery capacity are regarded as two circuit links in system state variable prediction and correction to improve the robustness 
of the system. The state-space and measurement equations of the discrete nonlinear system are shown in Eq. (15). 

In Eq. (15), xk is the state-transition matrix, uk is the control-input vector, and yk is the measurement matrix. f(xk, uk) is a nonlinear state function 
of the system, which represents the cumulative change of state parameters under the effect of the input vector uk, and g(xk, uk) is a nonlinear 
measurement equation of the system. The nonlinear function is linearized by a first-order Taylor series expansion around the filtering value, as shown 
in Eq. (16). 

{
xk|k− 1 = f (xk− 1, uk) + ωk

yk = g(xk, uk) + νk
(15) 



In Eq. (16), the coefficients are calculated to obtain the nonlinear equation after linearization, as shown in Eq. (17). 

In Eq. (17), xk is the estimated value of the state vector at the time point k. After linearizing the space-state equation, the nonlinear sysem’s state-
space and measurement equations are obtained, as shown in Eq. (18). 

In Eq. (18), the nonlinear system is subjected to iterative filtering processing through the linearization processing described. The specific iterative 
steps are expressed as follows: (1) Initialization of state vari- ables and the error covariance matrix; (2) Time update of the prior state estimate; (3) Time 
update of the prior error covariance matrix; (4) Up-date of the Kalman gain; (5) Measurement update of the posterior state estimate; (6) Measurement update of the 
posterior error covariance matrix. The corresponding calculation equations are defined, as shown in Eq. (19). 

In Eq. (19), x0|0 and P0|0 are the initial values of the system state and error covariance matrix, respectively. xk+1|k is the estimated value of the state 
parameter vector at time point k + 1, xk|k-1 is the estimated value of the state parameter vector at time point k, Pk|k-1 is the priori error covariance matrix, 
Pk+1|k is the posteriori error covariance matrix. After the system is initialized, the filter estimation value of each sampling point is updated recursively. 
The goal of time-series problems is to estimate the state quantity and error covariance at the previous time based on the filtered value and input quantity 
at the previous time. 

The measurement update is based on the observed value outside the system. The state estimate value and error covariance matrix update under 
the system noise are considered for correction to obtain the optimal estimation in the sense of minimum variance. The obtained optimal filter value 
is used as the input when updating the time at the next moment to realize a recursive “prediction and correction” iteration. The system is initialized 
first with its variables, as shown in Eq. (20). 
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In Eq. (20), Xk is the estimated value using the initial state variable and Pk is the error covariance matrix. Then, the time update of the 
Kalman gain K is performed with the error covariance matrix, as shown in Eq. (21). 

{
X̂ k = E(X0)

Pk = E(X0 − X̂ k)(X0 − X̂ k)
T (20) 
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In Eq. (21), the Kalman gain matrix is obtained by combining the difference between the real-time data and system observation data, which 
corrects the prior estimate. If the difference is large, the state variable is recursively updated accordingly, as shown in Eq. (22). 

{
xk+1 = x̂k+1 + Kk+1(yk+1 − Ck+1 x̂k+1 − Dk+1uk+1)

Pk+1 = (E − Kk+1Ck+1)P̂k+1
(22) 
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In Eq. (22), the adaptive update of SOC is achieved by estimating and correcting the time-varying characteristics of the process noise and the 
measurement noise of the system, as shown in Eq. (23). 

Maximizing the interval between support vectors, the improved RBC-DSVM finds the maximum interval to the hyperplane for the training dataset, 
which is the maximum interval principle, optimizing the distance to the farthest sample point from the hyperplane. First, a training dataset is sampled 
as {(xi, yi)|i = 1, 2, 3, …, n},xi ∈ Rn, where xi is the ith m-dimensional input vector and yi is the corresponding output vector. f(x) = sign (w*x + b) is 
the hyperplane found. The conditions are to be satisfied by this hyperplane, as shown in Eq. (24). 

In Eq. (24), the relationship is used as the basic convergence law of the iterative calculation process. Then, the optimization target of the SVM is 
realized, as shown in Eq. (25). 

In Eq. (25), if most of the data in the original space cannot be partitioned, the original data is mapped to a higher dimensional space using the kernel 
function. Inevitably, there will be sample points that do not fall into the sample points in the actual use of the process. The solution to this problem is 
to introduce a loss function lz after the introduction of the loss function SVM optimization target, as shown in Eq. (26). 

In Eq. (26), Φ(x) is the kernel function, and C is the regularization constant, which is a fixed value and has an effect on the model’s complexity. ε 
is the approximate accuracy of the training samples, which controls the number of support vectors. After introducing the relaxation 
variables ξi, and ξ*, Eq. (26) is optimized, as shown in Eq. (27). 
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(23) 

d ≤
ε

√̅̅̅
1+ ‖ w ‖

(24) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
1
2

wT w + C
N∑

i=1

(
ξi + ξi

*)

i

i

yi − (w • Φ(x) + b ) ≤ ε + ξi

w • Φ(x) + b − yi ≤ ε + ξ*

ξiξ* ≥ 0

(27) 

In Eq. (27), since the battery is a nonlinear system, a nonlinear RB kernel function is introduced, as shown in Eq. (28). 

⎧
⎨

⎩

K(x, xi) = Φ(x)*Φ(xi)

f (x) =
∑

s

(
ai − ai

*)K(K(x, xi) ) + b
(28) 



The final nonlinear regression equation after the introduction of the nonlinear RBC of the kernel is K(x, xi), where s is the number of support vectors. 

2.4. RBC-DSVM-based optimization and correction  

The improved RBC-DSVM method is constructed with the Vapnik-Chervonenkis (VC) dimensional statistical learning and structural risk minimization, which 
enables the statistical noise characteristics in the filtering method to be updated adaptively. The RBC-DSVM model is proposed to correct and optimize the accurate 
final SOC estimation. The flowchart of the proposed RBC-DSVM-based SOC estimation is presented in Fig. 3. 

Fig. 3. The flowchart of the RBC-DSVM model for battery state estimation. 

 In Fig. 3, the specific model implementation steps are to first train a three-input, one-output (xk), using the RB kernel function, the input variables are the voltage 
value Uk at time point k, and the SOC estimate s(k). The SOC value socahk estimated by the Ah integration method, and the output is the estimation error s(k)− ̂s(k). 
The training datasets are divided according to 7:3, which is 70 % as training data and 30 % as validation data. 

3. Experimental methods and effect verification 

3.1. Experimental test platform construction  

An experimental platform is established for LIB tests to obtain real-time data under various working conditions to test and verify the proposed method. After 
constructing the structural battery principles, OCV is the LIB’s voltage for no-load and no-power supply conditions. The relevant experiments are conducted for the 
actual working conditions to obtain experimental data. The LIB’s test platform provides a stable working environment, and the upper computer is used to set the 
required steps of various working conditions. The high-power charge-discharge tester records the current, voltage, temperature, etc., of the battery during its operation 
at a time interval of 0.1 s.  

For the research object, an LNCM50Ah (lithium nickel cobalt manganese oxide) LIB is used. It has a nominal capacity and voltage of 50 Ah and 3.7 V, respectively. 
It has a nickel-cobalt manganese cathode electrode and a natural graphite anode electrode with a metallic backing. The LIB’s basic technical specifications are shown 
in Table 1. 

Table 1 
Basic technical information about the experimental LIB cells. 

Value 
50 Ah 
3.65 V 
4.5 ± 0.05 V 

Parameter 
Normal capacity 
Normal voltage 
Charge cut-off voltage 
Discharge cut-off voltage 2.5 ± 0.05 V 

Parameter 
Standard charge current 
Maximum discharge current 
Internal resistance 
Dimensions: l × w × h 

Value 
1C 
5C 
0.8 mΩ 
148 × 27 × 93 (mm) 



For the experimental tests, the NEWARE battery test equipment (CT- 4016) is used. It has a maximum current of 100 A, a voltage range of 25–100 V, 
and a maximum charge and discharge power of 12.4 kW. The temperature testing equipment is a DGBELL BTT–331C, which maintains the battery’s 
temperature at 25 ◦C during its operation. The entire experimental test platform is primarily comprised of a computer for configuring, monitoring, 
and storing the test data for each operating condition. It also includes the primary battery testing equipment for charging and discharging the battery, 
a functioning LIB, and a temperature test chamber for controlling and stabilizing the battery’s working temperature. 

3.2. Parameter identification and experimental verification 

With time, the aging phenomenon of LIBs occurs, which is characterized by the gradual change of battery capacity, internal resistance, polarization 
resistance, and other parameters. To establish the coupling relationship among the parameters to extract the aging characteristics of the battery, 
intermittent discharge tests, and aging tests are conducted for LIBs. After every 100 aging tests, OCV, SOC, and capacity data are extracted to establish 
the capacity-OCV-SOC coupling relationship, as shown in Fig. 4. 

Fig.4. Fitting diagram of battery coupling information with Qmax-OSV-SOC fitting relationship. 

In Fig. 4, through a large number of tests on LIBs, it is found that the OCV-SOC function of LIBs is not constant in the process of use. With the aging 
process, its indicators will change, and several aging characteristics need to be extracted to characterize the changes in the health status of the LIB. 
Multi-parameter fitting polynomials are used to minimize the variance between the capacity, OCV, and SOC values of the LIB are established, as shown 
in Eq. (29). 

In Eq. (29), x represents the estimated SOC, y represents the maximum available capacity Qmax, and Z represents the OCV. Based on the 
empirical formula, x is designed as a fifth-order polynomial, and y is a second-order polynomial. The final coefficient values of the OCV, SOC, and 
Qmax are shown in Table 2. 

Table 2 

Final coefficient values of the OCV, SOC, and Qmax of the LIB cells. 
P00 P01 P02 P10 P11 

-2.605 0.1793 -0.001365 32.47 -0.9279 

P12 P20 P21 P22 P30 

0.00718 -71.1 1.971 -0.01551 50.93 

P31 P32 P40 P41 P50 

-1.182 0.009637 -8.577 -0.03275 2.828 

Z = P00 +P01y+ P02y2 +
(
P10 + P11y+P12y2)x+

(
P20 + P21y+P22y2)x2

= +
(
P30 +P31y+P32y2)x3 +(P40 +P41y)x4 +P50x5 (29)

By establishing the coupling function relationship between Qmax, OCV, and SOC, accurate observation equations are obtained to update and correct 
the SOC estimation results. Various battery test conditions that conform to the vehicle’s operating conditions are very necessary. The complex working 
condition experiments in this section mainly include the HPPC test, DST test, and Beijing bus dynamic stress test (BBDST). 
The experimental data is used subsequently for verification of the established FOT-ECM and state estimation. The FOT-ECM parameter values 
fluctuate due to factors such as aging level, SOC value, and charge-discharge current rate. The model parameters are updated adaptively based 
on the LMRLS method by using actual working condition datasets. Also, to eliminate the influence of the aging phenomenon on the battery, the 
OCV is corrected to realize the optimal characterization of the internal characteristics of the battery. The parameter identification results and the 
observed voltage error under the HPPC working condition are obtained, as shown in Fig. 5. 



Fig. 5. Time-varying parameter identification and voltage traction error curves of the FOT –ECM. 

In Fig. 5, subfigure (a) is the identified change curves of ohmic resistance R0 and polarization resistance Rp, and subfigure (b) is the identified 
change curve of Cp. In subfigure (c), the time-varying result for the output voltage is obtained by comparing the actual voltage with the simulated 
voltage. By comparing the actual voltage and the simulated output, it can be observed that the simulated voltage by the LMRLS tracks the actual voltage 
variation of the LIB well, with a maximum error value of 0.064 V, as shown in subfigure (d). Especially at the moment of voltage abrupt change, the 
tracking ability is superior to RLS. And the overall error curve of LMRLS fluctuates less in the whole process. By critically analyzing the error 
curves, an increased margin error is observed at the latter stage of the traction process due to the drift of the load current at the end of the discharge 
cycles, which is an inherent limitation of the LIB. 

3.3. RBC-DSVM-based SOC estimation under the HPPC working condition 

The HPPC and DST working conditions are conducted as the test conditions to simulate the actual operating conditions of the LIB, verifying that 
the proposed RBC-DSVM model has good accuracy and adaptability under different working conditions. The SOC is estimated with voltage variation 
characteristics. The actual SOC is input into the RBC-DSVM model for training. The SOC estimation results under the HPPC working condition are 
shown in Fig. 6. 



Fig. 6(a) presents the SOC estimated by the constructed model, where S1 represents the actual SOC of the battery system, 
which is obtained by the Ah integration method. S2 represents the SOC estimated by the AEKF method, and S3 represents the 
SOC estimated by the RBC- DSVM model. Fig. 6(b) represents the SOC estimation error, where Err1 represents the SOC 
estimation error of the AEKF method, and Err2 represents the SOC estimation error of the RBC-DSVM model. Comparing the 
two estimation results, it can be observed that the AEKF method has a maximum error of 0.362 %, and that of the proposed 
RBC- DSVM model is 0.037 %. The adaptability of the estimation of the RBC- DSVM model by showing stability to the actual 
SOC for the entire estimation process makes it robust and optimal compared to the AEKF method. 

3.4. RBC-DSVM-based SOC estimation under the DST working condition 

To further verify the accuracy and robustness of the proposed RBC- DSVM model, the SOC estimation is carried out under 
the DST working condition. The SOC estimation results are shown in Fig. 7. 

Fig. 7(a) presents the SOC estimation results under the DST working condition, where S1 is the actual SOC estimated of the 
battery system, which is obtained by the Ah integral method. S2 is the SOC estimated by the AEKF method, and S3 is the SOC 
estimated by the RBC-DSVM model. Fig. 7(b) shows a plot of the SOC estimation errors, where Err1 is the error curve of the 
SOC estimated by the AEKF method, and Err2 is the error curve of the SOC estimated by the RBC-DSVM model. It can be 
observed that the maximum error of the AEKF method is 0.358 %, while the RBC-DSVM model has a maximum error of 0.336 
%. Also, the error of the AEKF method shows a monotonic increasing order, while the error fluctuation of the RBC-DSVM model is 
significantly less compared to the AEKF method, which verifies its robustness and accuracy. 

4. Conclusion

As the technical bottleneck of the development of pure electric new energy vehicles, the performance level of power batteries 
directly affects the performance of pure electric vehicles. SOC is a critical state quantity that must be accurately evaluated in a 
battery management system and is a necessary prerequisite for the effective realization of functions such as balance control, 
charge/discharge strategy adjustment, and fault diagnosis. To achieve an accurate evaluation of power battery SOC, this paper 
designed LMRLS online parameter identification method based on FOT-ECM and established the RBC-DSVM model. By 
establishing the coupling function relationship between Qmax, OCV, and SOC to obtain accurate observation equations. The 
SOC estimation is further corrected and optimized by inputting it into a proposed RBC-DSVM model.  

To verify the accuracy and robustness of the proposed RBC-DSVM model, SOC estimation effect analysis is conducted 
under different working conditions. The estimation results show that the proposed RBC- DSVM model has a maximum error of 
0.037 % and 89.78 % performance improvement compared to the AEKF method under the HPPC working condition. 
Additionally, under the DST working condition, the proposed RBC-DSVM model shows a maximum error of 0.336 % and a 
6.15 % performance improvement compared to the AEKF method. Therefore, the proposed RBC-DSVM model can accurately 
estimate the SOC in real- time applications. This lays the foundation for state estimation of LIBs under various working 
conditions. 

Fig. 7. SOC estimation results under the DST working condition.  

Fig. 6. SOC estimation results under the HPPC working cocondition.



However, there are still some details that need to be improved and optimized in this study. 
(1) SOC evaluation time and computational complexity need to be seriously considered and solved. The estimation time and

computational complexity of SOC are related to the efficiency and security of BMS. However, at present, there is no unified 
evaluation index for evaluation time and computational complexity, and it is difficult to verify computational complexity. 

(2) The performance under noise and parameter uncertainty needs to be further verified. The working conditions and
environment in reality are often complex and variable. The data in this study come from the working conditions designed in 
the laboratory, which have some deviation from the operating conditions of electric vehicles in reality and fail to consider the 
problems of noise and various changing parameters issues well. 

(3) The influence of different temperature and state noise needs to be further considered. In reality, ambient temperature and
noise change from time to time, so it is necessary to consider the influence of time-varying temperature and state noise. 

Given the above limitations of this study, the author will carefully consider and address them in future research work. For 
example, the use of real vehicle data is considered to further validate the methodology proposed in this study, and the program 
of this study will be improved based on the validation results. 
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