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Abstract—Antimicrobial resistance (AMR) is an increasingly
critical public health issue necessitating precise and efficient
methodologies to achieve prompt results. The accurate and
early detection of AMR is crucial, as its absence can pose life-
threatening risks to diverse ecosystems, including the marine
environment. The spread of AMR among microorganisms in
the marine environment can have significant consequences, po-
tentially impacting human life directly. This study focuses on
evaluating the diameters of the disc diffusion zone and employs
artificial intelligence and machine learning techniques such
as image segmentation, data augmentation, and deep learning
methods to enhance accuracy and predict microbial resistance.

Index Terms—Artificial intelligence, Machine Learning meth-
ods, Inhibition zone measurement, Convolutional Neural Net-
works, Antimicrobial susceptibility test

I. INTRODUCTION

Antimicrobial resistance (AMR) poses a significant threat to
diverse ecosystem components, including human, animal and
environmental [1]. In this study, our focus is specifically di-
rected towards the microorganisms inhabiting marine environ-
ments. The development and transmission of AMR between
microorganisms in marine environments can be attributed to
various factors, such as horizontal gene transfer, gene muta-
tion, and intrinsic resistance mechanisms [2]. It’s worth noting
that not all marine microorganisms exhibit resistance, and not
all possess the capacity to develop resistance mechanisms.
In this regard, human activities such as the discharge of
treated wastewater, agricultural runoff, aquaculture practices,
and the deposition of conventional and nuclear wastes have
exacerbated this issue [3]. AMR has been detected in marine
environments worldwide, including coastal waters and marine
sediments. Numerous studies have raised concerns about the
spread of AMR from marine microorganisms to other envi-
ronments, with significant implications for public health [4].

Accurate analysis and measurement of AMR in marine
microorganisms are essential for understanding the potential
problems associated with environmental pollution and the
spread of resistance. Therefore, the need for rapid and accurate
tools to address these issues becomes critical. While vari-
ous techniques exist for identifying and diagnosing bacterial

susceptibility or resistance to antimicrobial agents in clinical
settings, the most commonly used method in this field is the
disc diffusion method [5]. Laboratories employ this method
due to its simplicity, cost-effectiveness, and established in-
terpretive criteria [5]. However, there are several challenges
associated with its use that can impact result transparency,
including delayed response time, labour-intensive procedures,
etc [6]. With more details, The disc diffusion method has
inherent challenges such as the slow turnaround time required
for bacterial growth on agar plates and subjectivity in result
interpretation, which relies on visual assessment with using
a scope and ruler. This subjective process may introduce
variability between different observers, affecting the accuracy
of the results. But this method is still widely practised as a
gold-standard tool for determining bacterial sensitivity in most
clinical and health care areas [6]. In recent decades, artificial
intelligence (AI) and machine learning (ML)techniques have
come out as promising tools to address the limitations of the
disc diffusion method [7]. Several research teams have utilised
AI and ML algorithms to measure the zone of inhibition
around antibiotic discs in images. This approach has been
shown the potential to enhance the accuracy of disc diffusion
zone diameter measurement. Employing these advanced com-
putational approaches can greatly improve the efficiency and
speed of assessing AMR in marine microorganisms, offering
valuable insights for environmental management and public
health considerations. The goal of this study is to replace the
manual measurement, which involves using a scale to measure
the zone of inhibition around the antibiotic disc. Instead, we
used advanced algorithms and ML techniques to calculate the
diameter. In this case, Algorithms that have been developed
ought to work with any image from camera. Consequently, the
development of an efficient automated technique that enables
automatic image segmentation is required for the laboratory
to use for diagnosis.In the context of AMR identification in
marine microorganisms, we will have a particular focus on
data augmentation, segmentation methods, and conventional
neural network applications for detecting and measuring disc
diffusion zone diameters with high accuracy. This will ulti-



mately enhance decision-making for researchers, reduce the
risk of AMR through different human activities, and prevent
the spread of AMR organisms.

II. BACKGROUND

The measurement of inhabitant zones in any disc diffusion
test is challenging to standardize. This involves considering
factors such as the measurement of zone diameter, inspec-
tion of the zone boundary, detection of colonies within the
inhibitory zone, susceptibility of the organism to the antimi-
crobial agent, diffusion characteristics of the agent, and agent
concentration [8]. Traditionally, a caliper or ruler is used by
people to manually measure the diameter of the inhibitory
zone. This manual process is labor-intensive, taking up to 72
hours, and prone to error [9]. Standardized interpretation is
crucial. For example, for some combinations of organisms
and agents, a sharp zone edge indicates the presence of a
resistance mechanism, while for others, it may not. The lack of
guidelines for interpretation can affect the result accuracy. To
address this issue, scientific resources like the EUCAST disc
diffusion test handbook and the EUCAST reading guide in
Europe [10], which provide valuable interpretation guidelines
to help standardize readings [11] [12] [13].To achieve accurate
and faster results, an advanced level of expertise and tools
for interpretation is required. Several automatic tools like
the Oxoid aura image system [14], Antibiogramj [15], and
image processing algorithms [9] [16] [17] [18], have improved
accuracy and reduced running time. Ideally, to atomate mea-
suring the inhibition zone effectually, addressing issues such as
bacterial growth homogeneity, the overlap between inhibition
zones, non-homogeneous growth, and the fractional action of
an antibiotic is needed. In this study, We anticipate that AI,
ML and deep learning methods will play a crucial role in
measuring the zone diameter, and enabling rapid evaluation
and interpretation of antimicrobial susceptibility testing (AST)
using the disc diffusion method.

A. Segmentation

There are two distinct image segmentation approaches:
Semantic segmentation classifies each pixel with a label
and Instance segmentation classifies each pixel and differ-
entiates each object instance [19]. Instance segmentation is
the optimal choice for Automatic Inhibition Zone Diameter
Measurement in Disc Diffusion Tests due to its precision
in identifying individual inhibition zones, ensuring accurate
measurements for antibiotic susceptibility evaluation. There
are several common instance segmentation techniques are used
for various segmentation challenges such as Modified edge
detection, DeepLab, Mask R-CNN, UNet, Fully convolutions
network(FCN), Hybrid approaches and etc. Notably, Mask R-
CNN which is an instance segmentation method based on
deep learning and U-Net which is Semantic segmentation
demonstrate remarkable results in this area. In this paper, we
aim to explore and compare different segmentation methods.
We will leverage the power of convolutional neural networks
(CNNs) for the automatic interpretation of AST. By employing

these advanced techniques, we seek to enhance the accuracy,
efficiency, and reliability of measuring the inhibition zone
diameter in the disc diffusion method to classify the bacteria
into three different classes.

1) U-Net Architecture: U-Net as a semantic segmentation
technique is a CNN architecture commonly used for image
segmentation tasks, is the most famous end-to-end FCN
model, which is known for its ability to effectively segment
objects in biomedical images [20]. Its distinctive U-shaped
design comprises an encoder and decoder network connected
through skip connections. The encoder part of the U-Net
architecture uses successive convolutional and pooling layers
to extract high-level features from the input image [20]. U-
Net Segmentation algorithm could be simplified as follow:
Consider the U-Net architecture with an encoder as E and
a decoder as D. Let input represent the input image, and let
C denote the feature maps from the contracting path. The re-
sulting segmentation map is given as S, and the concatenation
operation is represented as ⊕:

S = D(E(input)⊕ C) (1)

U-Net can learn to differentiate between foreground and back-
ground regions, enabling precise segmentation of objects of
interest. The U-Net architecture has been successfully applied
to various segmentation tasks, including disc diffusion test
image segmentation [21]. In the U-Net method, after the image
acquisition and pre-processing steps, the next crucial step is
image enhancement. We utilize the stochastic gradient descent
(SGD) optimization algorithm in Caffe, implemented using
through the Solver and Net classes provided by the framework.
Subsequently, diameter measurement is performed using a
boundary-finding technique. Our input is a disc diffusion test
image. Then the encoder will apply a series of convolutional
and pooling layers to extract high-level features and reduce the
spatial dimensions of the input image. Skip Connections will
connect the output of each encoder layer to the corresponding
decoder layer. Further, the decoder will upsample the feature
maps using transposed convolutions and concatenate them
with the corresponding feature maps from the encoder layers.
The final segmentation map using a series of convolutional
layers will be generated as our output. The below flowchart
shows the sequential steps of the UNet architecture for seman-
tic segmentation (Fig1). This architecture has demonstrated
success in various segmentation tasks.

The U-Net algorithm combines the encoder and decoder
paths through skip connections, allowing the network to cap-
ture both local and global context information while retaining
fine-grained details from the input image. In this method, the
energy function is computed by a pixel-wise soft-max over
the final feature map combined with the cross entropy loss
function. The soft-max is defined as the following equation:

pk(x) =
exp(ak(x))∑K
k=1 exp(ak(x))

, (2)

where ak(x) denotes the activation in feature channel k at
the pixel position x ∈ Ω with Ω ⊂ Z2. K is the number
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Fig. 1: Sequential Steps of the UNet Architecture for Semantic
Segmentation

of classes, and pk(x) is the approximated maximum-function.
That is, pk(x) ≈ 1 for the k that has the maximum activation
ak(x), and pk(x) ≈ 0 for all other k. The cross-entropy then
penalizes, at each position, the deviation of p(x)(x) from 1
using:

E =
∑

x∈Ω

w(x) log(p(x)(x)), (3)

Where Ω → {1, ...,K} is the true label of each pixel, and
w : Ω → R is a weight map that we introduced to give some
pixels more importance in the training. We pre-compute the
weight map for each ground truth segmentation to compensate
for the different frequency of pixels from a certain class in
the training dataset and to force the network to learn the
small separation borders that we introduce between touching
cells.The separation border is computed using morphological
operations. The weight map is then computed as:

w(x) = wc(x) + w0 · exp
(
− (d1(x) + d2(x))

2

2σ2

)
, (4)

Where wc : Ω → R is the weight map to balance the class
frequencies, d1 : Ω → R denotes the distance to the border of
the nearest cell, and d2 : Ω → R denotes the distance to the
border of the second nearest cell. In our experiments, we set
w0 = 10 and σ ≈ 5 pixels. Proper initialization of the weights
is crucial in deep networks with multiple convolutional layers
along with various network paths. Otherwise, certain regions
of network could activate too much while other parts never
do. The initial weights should be modified so the variance of
each feature map in the network is about equal [21].

2) Mask R-CNN Architecture: Is more advanced and widely
adopted framework for object detection and instance seg-
mentation, following the ’detect-then-segment’ strategy in
the visual field [22] [23]. Which can be utilized for object

Fig. 2: Schematic diagram of U-Net methods

identification, accurately outlining the object’s boundary, and
detecting key points [27].The Mask R-CNN architecture builds
upon the Faster R-CNN by adding the mask generation head.
The backbone, RPN, RoIAlign, and bounding-box detection
head are shared between Faster R-CNN and Mask R-CNN
[22] [27]. The network architecture of Mask R-CNN can be
illustrated As shown in the below flowchart (Fig3).
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Fig. 3: Sequential Steps of the Mask R-CNN Algorithm for
Object Detection and Instance Segmentation

The framework efficiently detects objects and simultane-
ously generates high-quality segmentation mask for each in-
stance in an image. Mask R-CNN is known for its accurate
instance segmentation capabilities. It can detect and segment
multiple objects within an image, providing pixel-level masks
for each instance. This makes it well-suited for tasks where
precise localization and segmentation of individual objects
are required [22]. Here is a simplified equation representing
the mathematical formulation of the Mask R-CNN algorithm.
Given the R-CNN object detection output as (C, B, M) where:
C is class predictions. B is bounding box coordinates. M is
the region of interest (RoI) feature maps. The mask prediction
P is computed for each RoI using a mask head:

P = Mask Head(M)

In this study, the network will pass the image through a
CNN to extract high-level features [22].To provide additional



insight, After finalizing the network architecture of Mask R-
CNN, it was trained using Petri dish images and the corre-
sponding annotation images. These annotation images were
provided with an annotation tool to label the images. The
labeled images were randomly split into a training set and
a validation set to ensure the model’s accuracy and stabil-
ity. During training, minimizing the loss function improves
its performance in both object detection (classification and
bounding box regression) and instance segmentation (mask
prediction) tasks [22] [23]. The CNN model provided optimal
performance and results in this process. This trained model
was then applied to predict and analyze new images.

Fig. 4: Schematic Diagram of Mask R-CNN methods.

The total loss for Mask R-CNN is a combination of this
three components [22]:

Ltotal = Lclass + Lbox + Lmask (5)

Where Lclass + Lbox have been recognized in the same
manner as in Faster R-CNN, their definition is as follows:
we denote the predicted class probabilities as Pclass and the
ground-truth class labels as GTclass. The classification loss can
be defined as:

Lclass = −
N∑

i=1

C∑

j=1

GTclass[i, j] log(Pclass[i, j]) (6)

Where: N is the number of anchor locations (region pro-
posals). C is the number of object classes.

GTclass[i, j] is the ground-truth probability that anchor i
corresponds to class j. Pclass[i, j] is the predicted probability
assigned to anchor i for class j.

The bounding box regression loss is calculated using the
smooth L1 loss function, which is less sensitive to outliers.
Let’s denote the ground-truth bounding box coordinates as
GTbox and the predicted bounding box coordinates as Pbox.
The bounding box regression loss can be expressed as:

Lbox =
N∑

i=1

4∑

k=1

smooth L1 loss(GTbox[i, k],Pbox[i, k]) (7)

Where: N is the number of anchor locations (region pro-
posals). k represents the four coordinates of the bounding box:
x, y, width, and height. GTbox[i, k] is the ground-truth value
of coordinate k for anchor i. Pbox[i, k] is the predicted value
of coordinate k for anchor i.

The smooth L1 loss is defined as follows:

smooth L1 loss(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(8)

The bounding box regression loss is calculated using the
smooth L1 loss function, which is less sensitive to outliers.
Let’s denote the ground-truth bounding box coordinates as
GTbox and the predicted bounding box coordinates as Pbox.
The bounding box regression loss can be expressed as:

Lbox =
N∑

i=1

4∑

k=1

smooth L1 loss(GTbox[i, k],Pbox[i, k]) (9)

Mask Prediction Loss (Lmask): The mask prediction loss
measures the quality of the predicted instance masks. It is
typically calculated using the binary cross-entropy loss. Let’s
denote the ground-truth binary masks as GTmask and the
predicted masks as Pmask. The mask prediction loss can be
expressed as:

Lmask =−
N∑

i=1

M∑

p=1

GTmask[i, p] log(Pmask[i, p])

+ (1− GTmask[i, p]) log(1− Pmask[i, p])

(10)

The model aims to minimise the total loss Ltotal.The perfor-
mance of the trained Mask R-CNN model was quantitatively
evaluated by mean average precision (mAP) metrics, to under-
stand how accurate the model is in detecting and segmenting
Petri dish in the validation set. A higher mAP indicates better
performance in accurately localizing and segmenting objects
in the validation. The mAP is obtained by taking the mean of
all The Average Precision (AP) values across all classes. AP
is calculated as follows:

mAPi =
Area(Ai ∩ Bi)
Area(Ai ∪ Bi)

(11)

where A is the model segmentation result and B is the
corresponding Bacterial Contour1 delineated by laboratory
technicians using a microscope and ruler as ground truth. NT
is the number of images. TP/FP determination is based on how
you evaluate the overlap between the model’s prediction and
the ground truth annotation for bacterial growth diameter in
Petri dish images and the measure of the true growth diameter.

True Positive (TP)i =

{
1, if mAPi ≥ mAP threshold
0, otherwise

(12)

False Positive (FP)i =

{
1, if mAPi < mAP threshold
0, otherwise

(13)

Precision =

∑NT
i=1 TPi∑NT

i=1 TPi +
∑NT
i=1 FPi

(14)

Recall =
∑NT
i=1 TPi

Total number of true bacterial growth instances
(15)

Average Precision (AP) =
∑

r

∆recallr·max(precisionhigh(r))

(16)

1The ”Bacterial Contour” refers to the measurement of the zone or boundary
of the bacterial colony or growth area present on the Petri dish image.



mAP =

∑
c APc

Number of classes
(17)

It is important to recognize that large databases of fully
annotated medical images are required for the implementa-
tion of above approaches. However, in the medical domain,
datasets are not readily accessible, and it is considered a time-
consuming and labor-intensive procedure. There are several
strategies and tailoring them to overcome this challenge, like
the multi-instance learning methods (MIL) [28] or 3D Self-
Supervised Methods for Medical Imaging [29].

B. Deep learning approaches

Over the past decade, deep CNN have consistently exhib-
ited state-of-the-art performance in various biomedical image
analysis applications and in many visual recognition tasks
[24]. CNNs are typically employed in classification tasks,
where the output to an image is a single or multiple-class
label that represents the predicted category or categories for
input image [25]. These networks have proven robust in
handling challenges related to image quality, such as variations
in lighting conditions, irregularities on agar plates, and the
presence of debris or impurities. The development of deep
learning algorithms has not only enabled accurate image
detection but has also demonstrated superior capabilities in
segmentation approaches [26]. CNNs are extensively utilized
in image processing tasks, including image classification,
object detection, and image segmentation, and have achieved
remarkable results. CNNs have the ability to learn and extract
complex patterns and features from diverse biomedical image
datasets. Several studies [30] [31] [32] have employed CNNs
for pathogen identification and detection in clinical diagnoses
and pathogenesis studies, making them a suitable option for
identifying and measuring the zones of inhibition in disc
diffusion.Moreover, CNN models can accurately segment and
measure the zones of inhibition without the need for human
intervention. Convolutional layers within CNNs play a critical
role by utilizing filters (kernels or feature detectors) to extract
spatial and temporal features from input images [33]. This
level of automation significantly improves the results.

III. METHODOLOGY

This study delves into the exploration and comparison of
diverse segmentation methods, leveraging convolutions neural
networks (CNNs) to automate the interpretation of AST. The
overarching goal is to elevate the precision, efficiency, and de-
pendability of measuring inhibition zone diameter, ultimately
categorizing bacteria into three distinct classes.

Our study aims to harness deep learning algorithms for the
analysis of microscopic images derived from disc diffusion
tests. With a precise identification and measurement of an-
tibiotic disc inhibition zones, we aspire to heighten decision-
making processes and counteract the propagation of antibiotic-
resistant microorganisms within marine ecosystems. The steps
are done as follow: Step 1: Collect Microbial Samples, Micro-
bial samples were obtained from marine ecosystems. Step 2:
Prepare Agar Plates, the microbial samples were plated onto

Fig. 5: CNN to predict in three classes Resistance(R), Inter-
mediate(I), Susceptible(S)

agar surfaces, and the plates were then incubated for 24 hours
at 37°C. Step 3: Capture Images of Agar Plates, a ProtoCOL 3
Plus camera mounted on an all-in-one PC was used to capture
images of the agar plates. Ensure onsistent lighting conditions
and camera settings were maintained for all images. Step
4: Apply Segmentation Algorithms, the U-Net segmentation
algorithm and Mask R-CNN segmentation algorithm were
applied to the captured images. Step 5: Pair Segmented Images
with Ground Truth, segmented images from both algorithms
were matched with ground truth measurements of disc diffu-
sion zone diameters. Step 6: Segmentation of Infected Cells:
a segmentation method was employed to separate infected
cells from the background in the images. Step 7: Automated
Diameter Prediction, CNN was trained using a labeled dataset
of disc diffusion images with known zone diameters. The CNN
learned to predict zone diameters, automating measurements.
Step 8: Inhibition Zone Identification, segmentation identified
inhibition zones on the agar plates. Step 9: Classification of
Zone Diameters: CNN predicted and classified zone diameters
into resistance, intermediate, and susceptible categories. Step
10 : Model Evaluation, Sensitivity, specificity, accuracy, and
other metrics were utilized to evaluate the deep learning
model’s performance. Comparative analyses with alternative
methods were conducted to validate the proposed methodol-
ogy’s effectiveness.
Traditional methods often used as decision-making tools for
clinicians, might not provide sufficient support for treatment
choices due to concerns over operator-dependent discrepancies
and the intricate nature of result interpretation. This automated
measurement process anticipates the elimination of manual
ruler-based measurements. The integration of segmentation
and CNNs offers a solution for automating the measurement
and evaluation process in disc diffusion testing, reducing
manual effort, enhancing accuracy, and expediting the analysis
of antimicrobial susceptibility test results.

IV. CONCLUSION AND FUTURE SCOPE

This study introduces an advanced deep learning-based
methodology for accurate measurement of disc diffusion zone
diameters in AST. By utilizing the potential of deep learning
algorithms and incorporating microbiological knowledge, our
approach offers accurate identification and measurement of
AMR. Our research aims to review the use of ML techniques



in segmenting and measuring inhibition zones in AST. Our
methodology has the potential to improve AST by enhancing
measurement accuracy and efficiency. By leveraging deep
learning, it improves antimicrobial susceptibility analysis, aid-
ing antibiotic selection and reducing resistance risks. Addition-
ally, this work contributes to addressing environmental and
public health concerns related to AMR. Precise measurements
support informed decision-making, reduce antibiotic misuse,
and promote prudent antimicrobial agent use. Adoption of
our methodology can positively impact patient outcomes and
global antimicrobial resistance efforts. While the proposed
algorithm effectively identifies zones from images captured
by any device, it currently faces a significant limitation
due to extended execution time and improved solutions for
zone identification tasks. Future works will concentrate on
developing a new, optimized method that achieves substantial
speed enhancements while maintaining desired accuracy and
robustness levels. This pursuit entails leveraging advanced
neural network architectures, with a focus on adopting deep
learning architectures to minimize the semantic gap between
encoder and decoder sub-networks, streamlining segmenta-
tion. Additionally, efforts will be directed toward making the
method more applicable in real-world scenarios. Addressing
this critical facet of image segmentation aims to make a
substantial contribution to the field’s advancement. We plan
to conduct a user study for empirical and human evaluations
of our models to assess their performance comprehensively.
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