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Abstract: This study focuses on leveraging data-driven techniques to diagnose brain tumors through
magnetic resonance imaging (MRI) images. Utilizing the rule of deep learning (DL), we introduce
and fine-tune two robust frameworks, ResNet 50 and Inception V3, specifically designed for the
classification of brain MRI images. Building upon the previous success of ResNet 50 and Inception V3
in classifying other medical imaging datasets, our investigation encompasses datasets with distinct
characteristics, including one with four classes and another with two. The primary contribution
of our research lies in the meticulous curation of these paired datasets. We have also integrated
essential techniques, including Early Stopping and ReduceLROnPlateau, to refine the model through
hyperparameter optimization. This involved adding extra layers, experimenting with various loss
functions and learning rates, and incorporating dropout layers and regularization to ensure model
convergence in predictions. Furthermore, strategic enhancements, such as customized pooling and
regularization layers, have significantly elevated the accuracy of our models, resulting in remarkable
classification accuracy. Notably, the pairing of ResNet 50 with the Nadam optimizer yields extraordi-
nary accuracy rates, reaching 99.34% for gliomas, 93.52% for meningiomas, 98.68% for non-tumorous
images, and 97.70% for pituitary tumors. These results underscore the transformative potential of
our custom-made approach, achieving an aggregate testing accuracy of 97.68% for these four distinct
classes. In a two-class dataset, Resnet50 with the Adam optimizer excels, demonstrating better
precision, recall, F1 score, and an overall accuracy of 99.84%. Moreover, it attains perfect per-class
accuracy of 99.62% for ‘Tumor Positive’ and 100% for ‘Tumor Negative’, underscoring a remarkable
advancement in the realm of brain tumor categorization. This research underscores the innovative
possibilities of DL models and our specialized optimization methods in the domain of diagnosing
brain cancer from MRI images.

Keywords: brain tumor; MRI; transfer learning; Inception Net; ResNet 50; convolution layer

1. Introduction

There are approximately 200 different kinds of aberrant tissue growths that can occur
in humans, and among these are tumors, which can be either malignant or benign. In
particular, brain tumors are a dangerous condition that involves abnormal growths in brain
tissue that impede the brain’s ability to operate. The fact that there has been a 300 percent
increase in the number of deaths attributable to brain tumors over the past three decades
demonstrates how critical it is to find a cure for this illness. Brain tumors have the potential
to be lethal if they are not treated, highlighting the significance of early diagnosis and
treatment in order to enhance patient survival rates. Despite the fact that biopsies of brain
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tumors can be difficult to perform because of the intricacy of the brain, magnetic resonance
imaging (MRI) is frequently utilized as a diagnostic tool [1–10].

The majority of brain tumors, known as gliomas, begin in the glial cells of the brain.
Gliomas are the most frequent type of brain tumor. They are responsible for approximately
30% of all tumors that can be found in the brain and central nervous system, and they
account for 80% of all malignant brain tumors [11]. According to the categorization used
by the World Health Organization (WHO), gliomas can be broken down into one of four
classes, ranging from grade I all the way up to grade IV. Grade I tumors are considered
benign and have a texture that is very similar to that of normal glial cells, whereas grade II
tumors have a texture that is only slightly different. Grade III tumors are malignant and
have an aberrant look to the tissue, whereas grade IV tumors are the most severe stage of
gliomas and have apparent tissue abnormalities [11,12]. Grade III tumors are malignant
and have an abnormal appearance of tissue.

Meningiomas, on the other hand, form on the membranes inside the head that cover
the brain and spinal cord. Meningiomas usually grow slowly, and most of them are
harmless. Pituitary tumors come from the pituitary gland, which controls hormone output
and the way the body works. These lumps can be harmless, harmless with bone growth, or
cancerous. Pituitary tumors can cause problems that can lead to lasting hormone shortages
and eye loss [13].

Based on what has been said so far, it is important to find and classify brain tumors
early in order to make an accurate diagnosis and choose the best treatment options to
save patients’ lives. When a case is complicated, the grading stage can be hard and take
a long time for doctors and experts. In these situations, experts usually need to look at
the tumor and figure out where it is. They may also need to compare the tumor’s cells
with those of nearby areas, add image filters if needed to make the images clearer for
humans to understand, and finally figure out if it is a tumor and, if possible, its type and
grade. This can take a long time, which shows how important it is to have computer-aided
diagnosis (CAD) tools that can find brain tumors at an early stage, shortening the time it
takes to diagnose and lowering the need for human intervention [11,12]. Recent advances
in machine learning (ML), especially Deep Learning (DL), have changed how medical
image patterns are found and put into groups. Machine learning has shown promise in a
number of medical areas, such as predicting and diagnosing diseases, classifying images,
and separating tissues. Convolutional Neural Network (CNNs) have become useful tools
for processing images because they can make accurate diagnoses from a large number
of incoming images. For representation learning, independent learning methods such as
autoencoders have also been used. Several studies have used different methods and models
to look into how to find brain tumors. However, some of these studies have problems, such
as the fact that they do not compare their results to those of traditional machine learning
methods or that they require complicated calculations. The knowledge of radiologists
is needed to diagnose tumors from medical medical X-ray or CT Scanned images, and
mistakes can happen. Computer-assisted interventions and computational intelligence
methods can help doctors find and describe brain tumors more correctly, so they do not
have to rely on their own opinions as much. DL and ML techniques, in particular, can be
very helpful for studying, segmenting, and classifying cancer pictures, including those of
brain tumors. By using these methods, tumors can be found accurately and reliably, making
it possible to tell those apart from other diseases that look similar. Although various studies
have been conducted in the field of DL-based brain tumor diagnosis, the literature review
section demonstrates that the performance of existing models varies depending on the
datasets, and there is room for improvement in the frameworks.

In this study, we present a functional system that combines the skills of an accurate
and automatic classification DL model to classify whether a brain MRI tumor image has a
tumor present or not, as well as identify three types of tumors such as glioma, meningioma,
or pituitary classification. At present, DL models have achieved good success in image
classification. In the case of feature extraction, these models can identify essential features
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of the object in the layer of these models, which makes it much easier for the classifier to
identify the different features.

The major contributions of this paper are listed below:

a. The Resnet50 and Inception V3 designs from CNN Architecture were selected to
assess the effectiveness of DL models in the task of classifying tumors from brain MRI,
as these designs have shown expertise in picture categorization.

b. The performance of the model was assessed on two datasets. One dataset consists
of 3459 MRI scans belonging to four distinct classes, while the second dataset has
3000 MRI images belonging to two distinct classes.

c. In order to enhance the efficiency of the models in this particular task, various tech-
niques were employed, including Early Stopping and ReduceLROnPlateau. These
techniques were utilized to optimize the model through hyperparameter tuning,
which involved incorporating additional layers, experimenting with different loss
functions and learning rates, and implementing dropout layers and regularization to
mitigate overfitting. In both datasets, we observed exceptional performance that is at
the forefront of current advancements.

The subsequent sections of the paper are structured in the following manner: Section 2
of this study centers on the comprehensive analysis of the existing literature, while Section 3
provides a concise overview of the datasets utilized in this research. Section 5 provides a
theoretical exposition of the models. Section 6 provides an overview of the methodology
employed in this study, as well as the proposed architecture. Section 7 of the paper provides
an in-depth analysis of the experimental findings, while Section 8 serves as the concluding
section, summarizing the key points and implications of the study.

2. The Literature Review

Ghosal et al. [14] proposed a deep-neural-network-based approach using squeeze
and excitation ResNet-101 for automatic brain tumor classification in MR images. The
study focused on differentiating between the glioma, pituitary tumor, and meningioma.
They employed zero-centering intensity normalization and data augmentation to improve
performance. The experimental results showed significant improvements in precision,
specificity, and sensitivity compared to other recent methods for brain tumor classification.
Krishnapriya et al. [15] conducted a study to explore the capability of pre-trained deep
convolutional neural network (DCNN) models, specifically VGG-19, VGG-16, ResNet
50, and Inception V3, for categorizing brain MR images. The researchers employed data
augmentation and transfer learning techniques to enhance the performance of these models
in the classification task. Diaz-Pernas et al. [16] introduced an algorithm for brain tumor
segmentation and classification utilizing MRI scans of meningioma, glioma, and pituitary
tumors that is fully automated. They employed CNN to operationalize the concept of a
multi-scale strategy that is intrinsic to human cognitive processes. The researchers attained
a 97% level of precision when analyzing a set of 3064-slice images obtained from a cohort of
233 patients. A CNN architecture was employed [17] that consisted of 16 convolution layers,
pooling and normalization layers, and a dropout layer that preceded the fully connected
layer. The study revealed a 96% precision level when 68% of the images were utilized for
training purposes, while the remaining pictures were allocated for validation and testing.
The study conducted by Abd et al. [18] involved the analysis of 25,000 MRI images of the
brain using a differential (DCNN) for the purpose of identifying different types of brain
tumors. They attained an exceptional overall performance, exhibiting a precision rate of
99.25% during the training phase. The study by Sajja and colleagues [19] utilized Brat’s
dataset, consisting of 577 T1-weighted brain tumors, to classify malignant and benign
tumors through the implementation of the VGG16 network. The performers exhibited a
level of inaccuracy of 96.70 during their performance. A CNN was proposed in [20] to
classify different types of brain cancers, including the glioma tumor, meningioma tumor,
and pituitary tumor. The dataset consisted of 3064 T1-weighted contrast-enhanced MRI
images. The CNN architecture underwent training to effectively employ multiple convo-
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lutional and pooling techniques. The researchers achieved a 94% accuracy rate through
the implementation of a convolutional network that was resized based on convolutional
filters/kernels of varying sizes. Abiwinanda et al. [21] utilized 64 fully connected neurons
and two convolution layers. They did not use the entire dataset but instead selected 700 im-
ages from each form of brain tumor in order to balance the data. For training, a subset
of 500 tumor images from each class was used, and for testing, a subset of 200 images
was used. They did not utilize data enhancement. Their classification accuracy was 84.1%.
The classification CNN model proposed by Pashaei et al. [22] consists of four convolution
and normalization layers, three max-pooling layers, and a final completely connected
layer. They utilized 70% of the dataset for training with no data augmentation and 30%
for testing with 10-fold cross-validation. The accuracy of classification was 81.0%. Afshar
et al. [23] proposed the Capsule network (CapsNet) classification model for brain tumors.
To improve accuracy, they modified the feature mappings in the convolutional layer of
CapsNet. Using 64 feature maps and one convolutional layer of CapsNet, the maximum ac-
curacy of 86.56 percent was achieved. Table 1 summarizes the literature reviews. Ibrokhiov
et al. [24], in response to the rising incidence of pneumonia, particularly in the wake of
the COVID-19 pandemic, introduced an advanced DL-based computer-aided diagnostic
system, leveraging transfer learning and parallel computing techniques with VGG19 and
ResNet 50 models, achieving an impressive average classification accuracy of 96.6% on the
COVID-QU-Ex dataset. Edgar M et al. [25] address the challenge of interpreting machine
learning algorithms applied to medical image data, specifically in predicting brain tumor
survival rates from MRI scans. By leveraging explainable AI techniques, such as Shapley
overlays, in conjunction with CNN and the BraTS 2020 dataset, this research demonstrates
the improved interpretability of key features, facilitating expert validation and enhancing
the overall evaluation of predictive outcomes. Shokouhifar et al. [26] present THENDEL,
a three-stage DL model embedded in a camera scanning tool for noninvasive and rapid
lymphedema arm volume measurement. THENDEL combines various feature extractors
and regressors, with hyperparameters optimized using a swarm intelligence algorithm.
The study successfully measured arm volumes in 730 arms from 365 women, showing
strong reliability with a mean absolute error of 36.65 mL, a mean percent error of 1.69%,
and a 0.992 correlation with actual volumes. Veeraiah et al. [27] introduce MayGAN for
Leukemia classification with 99.8% accuracy. Aryai et al. [28] present MDML-RP for ef-
ficient health monitoring in WBANs, achieving substantial performance gains. Ibtisum
et al. [29] offer a comparative study on diverse Big Data tools, contributing to the evolving
data analytics field.

Table 1. Comparative analysis with state-of-the-art works.

Ref. Adopted Model Dataset Description Accuracy Recall

[7]
ResNet 101

2762 images, 3 Class, (glioma, meningioma, pituitary)
74.09% 67.23%

Densenet201 68.71% 67.46%
Mobilenetv2 82.61% 80.32%

[14] Squeeze and Excitation
ResNet model based CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 93.83%

[20] CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 94.39% 93%
[30] ResNet 50 3064 images, 3 Class, (glioma, meningioma, pituitary) 95.33%
[31] SqueezeNet - 92.08%
[32] CNN Total: 253, 2 Class, Tumors: 155, Non Tumors: 98 91.6%
[33] CNN OASIS Dataset, 2 Class Classification 97.75% 96%

[14]
Inception V3

Total: 253, 2 Class, Tumors: 155, Non Tumors: 98
81.25% 63.25%

ResNet 50 97.92% 87.7%

[34]
CNN

Total: 253, 2 Class, Tumors: 155, Non Tumors: 98
96% 89.5%

VGG 16 98.15% 94.4%
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Table 1. Cont.

Ref. Adopted Model Dataset Description Accuracy Recall

[16] Multiscale CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 97.3%
[17] CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 96.13%

[19]
CNN BRATS dataset, 2 Class, Total 577 images 96.15% 97.05%
VGG-16 96.70% 97.05%

[20] CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 94.39% 93%
[21] CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 84.1%
[22] CNN 3064 images, 3 Class, (glioma, meningioma, pituitary) 81.0%
[23] CapsNet 3 Class, (glioma, meningioma, pituitary) 86.56%

3. Description of the Dataset

The research on brain tumor detection utilized two distinct datasets obtained from
publicly accessible online data repositories, namely, figshare.com (accessed on 1 April
2023) [35] and Kaggle (accessed on 1 April 2023) [36]. Cheng et al. [4] focused on the
problem of classifying 3-class brain tumors using T1-MRI data. This was the first significant
classification study to employ the figshare dataset. Four-class mixed datasets were discov-
ered in a GitHub repository [37]. The primary data source for the study was MRI images,
as MRI is widely acknowledged as the most effective modality for detecting brain tumors.
The first dataset was organized into four classes based on different types of brain tumors:
glioma tumor, meningioma, absence of tumor, and pituitary tumor. It consisted of a total
of 3459 MRI images. Specifically, there were 1426 images of glioma tumors, 708 images of
meningioma tumors, 395 images showing an absence of tumor, and 930 images of pituitary
tumors. The images were allocated into three distinct phases: training, validation, and
testing, with 60% designated for training, 20% for validation, and another 20% for testing.
Figure 1 shows the demonstration of the four-class dataset. Table 2 shows the distribution
of the tumor dataset among four classes (glioma, meningioma, non-tumor, and pituitary)
within these subsets. In the training phase, a total of 2213 MRI images were used, com-
prising 901 glioma tumor images, 449 meningioma images, 258 non-tumor images, and
605 pituitary tumor images. The validation phase included 554 images, with 222 glioma
tumor images, 120 meningioma images, 61 non-tumor images, and 151 pituitary tumor
images. Finally, the testing phase contained 692 images, with 303 glioma tumor images,
139 meningioma images, 76 non-tumor images, and 174 pituitary tumor images. In Figure 2,
a bar plot depicting the distribution of the training, testing, and validation datasets for the
four classes is displayed.

On the other hand, the second dataset was grouped into two classes: tumor present and
tumor absent. This dataset contained a total of 3000 MRI images. There were 1500 images
indicating the presence of a tumor and 1500 images showing the absence of a tumor.
Similarly to the first dataset, these images were divided into training, validation, and
testing sets using the same ratio. Figure 3 displays samples of MRI images from two
class datasets.

Table 2. Distribution Table of Tumor Dataset among Four Classes: Training, Testing, and Validation.

Phases Class:
Glioma

Class:
Meningioma

Class:
Non-Tumor

Class:
Pituitary Total

Training 901 449 258 605 2213

Validation 222 120 61 151 554

Testing 303 139 76 174 692

Total 1426 708 395 930 3459
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Similarly, Table 3 provides the distribution of the tumor dataset among two classes:
tumor present and tumor absent. Figure 4 provides a clear understanding of the distribution
of training, testing, and validation for the two class datasets. In the training phase, there
were 1920 images, with 940 indicating the presence of a tumor and 980 showing an absence
of a tumor. The validation phase comprised 534 images, with 247 images of tumor present
and 287 images of tumor absent. The testing phase had 546 images, with 313 images of
tumor present and 233 images of tumor absent.
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4. Deep Learning Frameworks

The utilization of transfer learning has been deemed advantageous in the context of
the multiclass classification of brain MRI tumors for various reasons:

The availability of data is constrained. The process of gathering and annotating an
extensive collection of brain MRI tumor images for individual tumor categories can present
difficulties and consume a significant amount of time. The technique of transfer learning
enables the utilization of pre-existing models that have been trained on extensive datasets
from domains or tasks that are related. This approach effectively addresses the challenge of
limited data availability and simplifies the process of training models.

The utilization of pre-trained models, particularly those that have undergone training
on extensive image datasets such as ImageNet, has resulted in the acquisition of com-
prehensive and versatile features that prove advantageous for diverse image recognition
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endeavors. The acquired features encapsulate universal visual representations that possess
versatility across various domains, such as the categorization of brain MRI tumors. Through
the utilization of transfer learning, the model is capable of leveraging the extracted features,
thereby reducing the need for manual design and extraction of pertinent features, resulting
in a more efficient and effective process.

The initialization of a model can be achieved through transfer learning, whereby
pre-trained weights are utilized. These weights have been optimized on a significant
quantity of data. The present initialization offers a favorable point of departure for the
purpose of training on the particular dataset of brain MRI tumors. The utilization of pre-
trained weights facilitates the acquisition of both low-level and high-level features, thereby
expediting the learning process and hastening the convergence of the model.

Transfer learning is a technique that can enhance the generalization capability of
models by transferring knowledge from a pre-trained model in the source domain to
a target domain, such as brain MRI tumor classification. The pre-existing model has
acquired comprehensive representations from a variety of images, and this expertise can
be efficiently applied to the task of categorizing tumors. Consequently, the model has the
ability to apprehend pertinent patterns and features of diverse tumor categories, resulting
in enhanced efficacy on unobserved data.

The phenomenon of overfitting poses a significant challenge when working with a lim-
ited amount of training data. In such cases, the model may tend to memorize the training
examples rather than acquiring meaningful representations, thereby increasing the likeli-
hood of overfitting. The utilization of pre-trained models’ regularization effects, learned
weights, and generalization abilities through transfer learning serves as a means to alleviate
overfitting. The utilization of this technique facilitates the model’s ability to effectively
extrapolate to novel tumor images despite a restricted quantity of training samples.

5. Inception V3 and ResNet 50
5.1. Inception V3

The Inception V3 framework is an extension of the fundamental principles of the orig-
inal InceptionNet, incorporating various improvements to enhance its overall performance.
The integration of factorization into reduced convolutions is a significant breakthrough.
Multiple convolution layers make up the Inception V3 model. This layer applies a set of
learnable filters to the input brain MRI image and performs a convolution operation. The
convolution operation consists of sliding the filters over the MRI input and computing the
dot product between the filter weights and the respective input segment. The discrete time
convolution method can be described by Equation (1):

r(t) = (y ∗ w)(t) = ∑ ∝
a=−∝y(a)w(t − a) (1)

Here, w is the kernel filter, is the input to the method, t is the time taken, and r is the
results. In the case of 2D input data being taken, Equation (2) can be considered:

R(i, j) = (I ∗ K)(i, j) = ∑ m∑ n I(i, j) ∗ K(i − m, j − n) (2)

The terms i and j show the areas of the desired matrix required after the DL convolu-
tion method

The Inception V3 employs factorized convolutions that involve the partitioning of
3 × 3 and 5 × 5 filters into a sequence of 1 × 3 and 3 × 1 convolutions, as opposed to the
direct application of larger convolutions. The utilization of this factorization technique
results in a reduction of the network’s parameters, while simultaneously preserving its
representational capacity. This facilitates more effective training and inference processes,
thereby enhancing the overall efficiency.

The utilization of batch normalization is a notable enhancement incorporated in
Inception V3. The technique of batch normalization involves the normalization of layer
activations across a batch of training samples, which results in a decrease in internal
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covariate shift and an acceleration of the training process. The utilization of this technique
aids in the stabilization and acceleration of the training process for deep neural networks,
such as Inception V3 [33,34].

The batch normalization process can be described by the following equations [10]:

Qi =
Pi − µB√

σ2
β + ε

(3)

αβ =
I

M∑ M
i=M

(
Pi − µβ

)2
(4)

µβ =
1
N ∑ M

i=1Pi (5)

where N is the total number of input data, Pi = 1, . . ., N, µβ is the stack’s average value,
σβ is the stack’s standard deviation, and Qi is the new values obtained as a result of the
normalization procedure.

Moreover, the Inception V3 model integrates the method of “label smoothing” during
the training phase. The technique of label smoothing pertains to the substitution of binary
hard labels (0 or 1) with probabilistic soft labels that exhibit values marginally below 1 for
affirmative classes and marginally above 0 for negative classes. The implementation of
this regularization technique serves the purpose of preventing the model from exhibiting
excessive confidence in its predictions, thereby potentially enhancing its generalization
performance.

The final layer of Inceptiont V3 is a softmax layer that utilizes probability distribution
to allocate probabilities to various categories of brain tumors. The classes offered may
encompass a range of tumor types, including but not limited to gliomas, meningiomas,
and pituitary tumors, as well as varying degrees of malignancy. The process of training
Inception V3 for the purpose of brain tumor classification necessitates the provision of
a substantial labeled dataset of brain tumor images to the network. The neural network
acquires the ability to reduce a loss function, such as cross-entropy, by means of backpropa-
gation. The optimization procedure involves the modification of the network’s parameters,
with the aim of refining them to enhance the precision of tumor categorization.

5.2. ResNet 50

ResNet 50 is a residual network with 50 layers and 26 million parameters that was in-
troduced by Kaiming He et al. at Microsoft Research in 2015 [35]. The term “residual” in the
residual network architecture refers to feature subtraction, where instead of learning new
features, the network learns from the subtracted features of each layer’s input. This novel
training method makes ResNet 50 relatively easier to train than conventional deep (CNNs).
The ResNet 50 model used in the study was trained on the ImageNet database, which is a
large collection of labeled images frequently used to train DL models. By incorporating
skip connections, also known as gated recurrent units or gated units, ResNet 50 overcomes
the problem of declining image classification precision. These skip connections establish a
direct connection between the input of the nth layer and the (n + xth) layer, allowing for the
addition of additional layers to build a more complex neural network [36–39]. ResNet 50
has a lower time complexity than models such as VGG16 and VGG19, which is a significant
benefit. In order to conduct their experiment, the researchers utilized a pretrained ResNet
50 model and customized it to fit their unique input image dataset. Figure 5 depicts the
architecture of the pretrained Inception V3 and ResNet 50 model.
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5.3. 2D Global Average Pooling Layer

To facilitate the transition from the convolutional layers to the fully connected layers
in a DL model, the feature maps are often flattened into a vector using 2D global average
pooling. However, 2D global average pooling is used instead of flattening the feature maps.
In this pooling procedure, the output is the global average of all feature maps. Global
average pooling preserves the feature maps’ spatial information, as opposed to standard
pooling methods that down sample the feature maps. It aids in lowering the data’s dimen-
sionality while keeping important features unaffected, which improves generalization and
lessens the likelihood of overfitting.

5.4. Dropout Layer

Overfitting in DL models can be avoided with the use of the regularization method
known as dropout. It does this by randomly setting some of the input units to zero at
the beginning of each training cycle. This method increases the network’s robustness and
resistance to overfitting by introducing noise and forcing it to learn redundant representa-
tions. Dropout is an efficient tool for decreasing neuronal dependency and nudging the
model toward learning more transferable characteristics. It can be implemented after either
convolutional or fully connected layers in the model and has been demonstrated to increase
deep neural networks’ generalization capacity.

5.5. Dense Layer

It is also called the fully connected layer because each neuron in this layer communi-
cates with its counterpart in the preceding layer. These layers are in charge of figuring out
intricate nonlinear connections in the data. Dense layers are frequently added at the end of
a DL model to complete the classification of brain MRIs. Depending on the difficulty of the
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classification task, the thick layer’s neuron count might change. In order to incorporate
nonlinearity and enable the model to capture complicated patterns in the data, activation
functions such as the rectified linear unit (ReLU) or sigmoid are generally applied to the
outputs of dense layers.

5.6. L2 Regularization

Unlike dropout, L2 regularization does not involve deactivating neurons but rather
adds a penalty term to the loss function. This penalty encourages the model’s weights to
remain small, effectively reducing the complexity of the network. By doing so, L2 regu-
larization prevents individual weights from becoming excessively large and dominating
the training process. This regularization method promotes smoother weight distributions,
which can lead to improved generalizations on unseen data. L2 regularization is often
used in conjunction with other techniques to enhance a deep neural network’s ability to
generalize while maintaining the model’s capacity to learn important features from the
training data.

6. Methodology and Proposed Architecture

Figure 6 illustrates the comprehensive architecture of our proposed system, which
encompasses multiple stages in our experimental process. Upon dataset extraction, we
maintained a consistent size of 224 × 224 to ensure uniformity. To alleviate RAM constraints
within the training, testing, and validation folders, we meticulously divided the data in
accordance with the previously mentioned ratios. The data generation process, orchestrated
within the data model, employs diverse data augmentation techniques aimed at mitigating
model overfitting. After experimenting with various batch sizes during the loading phase,
we settled on a batch size of 16 for optimal performance.
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Our data has been trained with ResNet 50 and Inception V3 model optimization. Then,
for the purpose of the experiment, we trained our data for up to thirty epochs. Several
performance metrics were utilized to evaluate the system as a whole.

Our dataset underwent extensive training, with each model (ResNet 50 and Incep-
tion V3) being trained for up to 30 epochs. During this training period, we conducted
experiments with three different optimizers: Adam, Nadam, and RMSprop. Additionally,
categorical cross-entropy was employed as the loss function. It is noteworthy that our
ResNet 50 model achieved its highest accuracy within the initial 12 epochs. To compre-
hensively assess the system’s performance, we employed a range of performance metrics,
providing a holistic evaluation of its efficacy and capabilities.

During the training phase, the inner weights of the model were maintained as non-
trainable, with the primary focus placed on training the introduced additional layers. This
process involved a systematic introduction of key components, commencing with the
incorporation of global average pooling, followed by the sequential implementation of
dropout layers. Optimal convergence was determined via experimentation with dropout
values ranging from 0.1 to 0.9, ultimately converging on a dropout value of 0.4.

In pursuit of further model optimization, a fully connected layer consisting of 1024 units
was introduced, followed by the integration of another dropout layer. Subsequently,
a connected layer comprising 512 units was introduced, followed by another dropout
layer, culminating in the incorporation of a SoftMax classifier responsible for categorizing
images into their respective classes. Vigilant monitoring of the model’s training progress
on the validation dataset facilitated judicious adjustments to the fine-tuning strategies
as necessitated.

In summary, for optimizing our ResNet 50 and Inception V3 models, we adopted a
strategic approach to hyperparameter tuning, with a focus on the additional layers. We kept
the base model weights static and experimented with dropout rates, settling on an effective
rate of 0.4 after testing various options between 0.1 and 0.9. Our network architecture was
enhanced with two fully connected layers, the first containing 1024 neurons and the second
512 neurons, each followed by dropout layers to combat overfitting. The models utilized
Adam, Nadam, and RMSprop optimizers for their distinct advantages in convergence
and efficiency, with categorical cross-entropy as our loss function. This configuration was
refined through continuous validation to ensure optimal performance without overfitting.

7. Experimental Results

The experiments and the outcomes are described in this section. Using an Intel(R)
Xeon(R) E5-2680 v4 processor clocked at 2.40 GHz and 32 GB of RAM, the experiments
were run in JupyterLab. JupyterLab is the most recent web-based interactive development
environment for notebooks, code, and data. It allows users to configure and organize
workflows in data science, scientific computing, computational journalism, and machine
learning through its adaptable user interface. Moreover, the experiment utilized the libraries
Sklearn, numpy, Tensorflow, and Matplotlib.

Two types of transfer learning operations were employed in our study. First, fixed
features were removed, and the model was trained using the data at the middle layer.
Second, fine-tuning was performed by utilizing the net weights of ResNet 50 and Inception
V3, where the fully connected layer at the end was replaced. Additionally, dense and
regularization layers were incorporated.

The primary objective of our model was to detect and analyze brain tumors. The
classification of our data has involved differentiating between glioma tumors, meningioma
tumors, no tumors, and pituitary tumors. To evaluate the performance of our model, we
have constructed a 4 × 4 confusion matrix and calculated the true positives, false positives,
true negatives, and false negatives. These metrics have provided insights into accurately
identifying affected images and correctly detecting tumor presence.

During our data evaluation, our model demonstrated superior results. We have
employed the Adam optimizer, which has facilitated quicker and more accurate result
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calculations. Despite high memory constraints, the Adam optimizer has exhibited efficient
performance. In our experiments, we have compared the Adam and Nadam optimizers,
both with an initial learning rate of 0.001. The training of the model has employed dynamic
learning, wherein the learning rate was reduced after the improvement phase. We have
utilized ReduceLROnPlateau with parameter values such as a factor of 0.3 and patience of
5 to monitor and adjust the learning rate based on the validation loss.

To prevent overfitting, an early stopping technique was applied, monitoring the
validation loss with a tolerance of 10 s. If the validation loss has not decreased in the
remaining 10 epochs, the training phase is concluded. The experiments were conducted for
50 epochs with a batch size of 20, resulting in a training time of approximately 35 min. The
loss function employed in our multi-class classification was categorical cross-entropy.

The presented tables showcase the performance metrics of various DL models for
brain tumor classification using different optimizers, namely, Adam, Nadam, and RMSprop.
Table 4 outlines the results obtained by DL models with the Adam optimizer. Notably, the
ResNet 50 model demonstrates outstanding precision and recall for different brain tumor
classes, achieving an accuracy consistently above 97%. Remarkably, it achieves 98.97%
precision, 97.69% recall, and an impressive F1 score of 98.33% for glioma classification.
The meningioma class also exhibits excellent results, with precision, recall, and F1 scores
exceeding 93%. Additionally, the non-tumor class achieves a perfect precision of 100%.
The pituitary class shows commendable performance with an F1 score of 97.14% and an
accuracy of 97.70%. On the other hand, Inception V3, while not surpassing ResNet 50,
still demonstrates robust performance across classes, with accuracy ranging from 93.52%
to 97.36%.

Table 4. Evaluating Brain Tumor Classification with Adam Optimizer: Four-Class Test Dataset
Performance Metrics.

Model Class Precision (%) Recall (%) F1 Score (%) Accuracy (%)

ResNet 50

Glioma 98.97 97.69 98.33 97.69
Meningioma 93.79 97.84 95.77 97.84
Non-Tumor 100 94.73 97.29 94.43
Pituitary 96.59 97.70 97.14 97.70

Inception V3

Glioma 97.03 97.03 97.03 97.03
Meningioma 93.52 93.52 93.52 93.52
Non-Tumor 100 98.66 98.66 97.36
Pituitary 96.02 96.57 96.57 97.12

Table 5 highlights the performance metrics obtained using the Nadam optimizer. Once
again, ResNet 50 stands out, achieving a precision of 97.09%, recall of 99.33%, and an
impressive F1 score of 98.20% for Glioma classification, accompanied by a high accuracy
of 99.34%. The meningioma class also performs well with precision, recall, and F1 score
exceeding 93%. The non-tumor class maintains a perfect precision of 100%. Inception V3
demonstrates strong performance with an accuracy of 96.70% and an F1 score of 97.50% for
glioma classification.

Table 6 presents the performance characteristics for the RMSprop optimizer. ResNet
50 continues to produce outstanding results for glioma classification, with precision, recall,
and F1 score over 98%. The meningioma class attains excellent precision and recall levels
of approximately 95%, but the non-tumor class maintains a flawless precision of 100%.
With an F1 score of 98.33 percent for glioma categorization, Inception V3 fares highly. With
high recall and F1 score values, the pituitary class displays impressive performance. From
Figures 7–9, the accuracy and loss curves of the models trained on the four-class datasets
can be observed.
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Table 5. Evaluating Brain Tumor Classification with Nadam Optimizer: Four-Class Test Dataset
Performance Metrics.

Model Class Precision (%) Recall (%) F1 Score (%) Accuracy (%)

ResNet 50

Glioma 97.09 99.33 98.20 99.34
Meningioma 97.74 93.52 95.58 93.52
Non-Tumor 100 98.68 99.33 98.68
Pituitary 97.70 97.70 97.70 97.70

Inception V3

Glioma 98.32 96.70 97.50 96.70
Meningioma 91.11 96.40 93.70 96.40
Non-Tumor 100 97.36 98.66 97.36
Pituitary 98.26 97.70 97.98 97.70

Table 6. Evaluating Brain Tumor Classification with RMSprop Optimizer: Four-Class Test Dataset
Performance Metrics.

Model Class Precision (%) Recall (%) F1 Score (%) Accuracy (%)

ResNet 50

Glioma 98.67 98.35 98.51 98.35
Meningioma 95.65 94.96 95.30 94.96
Non-Tumor 100 97.36 98.66 97.36
Pituitary 95.50 97.70 96.59 97.70

Inception V3

Glioma 98.03 99.01 98.52 99.01
Meningioma 95.55 92.81 94.32 95.68
Non-Tumor 100 96.05 97.98 96.05
Pituitary 96.61 98.27 97.43 98.27
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Figure 9. Accuracy and Loss Curve of Resnet50 Training with Nadam Optimizer.

These curves depict the model’s performance over epochs during the training process.
The accuracy curve illustrates how well the model improves its predictions as it learns
from the training data, while the loss curve shows the decrease in the model’s loss function
over time. Analyzing these curves helps in understanding the model’s convergence and
potential overfitting or underfitting issues, guiding further optimization and fine-tuning of
the brain tumor detection model.

Figure 10 shows all the confusion matrices of the models with different optimizers,
providing a comprehensive visual representation of their performance. The analysis of
these matrices offers valuable insights into the strengths and weaknesses of each optimizer.
Table 7 presents the performance evaluation of several models and optimizers applied
to a four-class dataset. ResNet 50 optimized with Nadam stands out for its remarkable
97.68 percent accuracy and 98.13 percent precision. Inception V3, when paired with RM-
Sprop, exhibits solid performance, obtaining a 97.25 percent accuracy and a 97.02 percent
F1 score. The results demonstrate that the choice of optimizer has a considerable impact
on the overall performance of the model for this particular dataset, hence, offering helpful
guidance for picking the optimal model–optimizer combination.

After achieving the highest performance with Resnet50, we intended to apply only
this architecture with the same layers as the prior architecture on the two-class dataset.
Table 8 shows the performance metrics for tumor classification on a two-class dataset using
various models and optimizers. ResNet 50 with Adam achieves 100% precision and 99.65%
recall for tumor positive, with an F1 score of 99.82% and an accuracy of 99.62%.

Table 7. Overall Test Evaluation on Four Class Dataset with Various Models and Optimizers.

Model Optimizer Loss MAE Precision Recall F1-Score Accuracy

Inception V3
Adam 15.01 6.06 96.64 96.26 96.44 96.38
Nadam 11.83 4.19 96.93 97.04 96.96 96.96
RMSprop 14.60 4.19 97.15 96.92 97.02 97.25

Resnet50
Adam 7.33 4.04 97.37 96.99 97.11 97.39
Nadam 10.78 3.75 98.13 97.31 97.70 97.68
RMSprop 13.03 4.47 97.45 97.09 97.26 97.39
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Table 8. Performance Metrics of Resnet50 Models with Different Optimizers for Tumor Classification
on Test Dataset of Two-Class Tumor Dataset.

Model Optimizer Class Precision (%) Recall (%) F1 Score (%) Accuracy (%)

Resnet50

Adam
Tumor Positive 100 99.65 99.82 99.62
Tumor Negative 99.68 100 99.81 100

Nadam
Tumor Positive 99.65 99.30 99.47 99.30
Tumor Negative 99.36 99.68 99.52 99.68

RMSprop Tumor Positive 99.50 98.06 98.78 98.06
Tumor Negative 98.37 99.95 98.97 99.58
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For tumor negative, it achieves 99.68% precision, 100% recall, and an F1 score of 99.81%,
resulting in a perfect accuracy of 100%. With Nadam, ResNet 50 attains 99.65% precision,
99.30% recall, and a 99.47% F1 score for tumor positive, with an accuracy of 99.30%. For
tumor negative, it achieves 99.36% precision, 99.68% recall, and a 99.52% F1 score, with
an accuracy of 99.68%. With RMSprop, ResNet 50 demonstrates 98.96% precision, 99.65%
recall, and a 99.30% F1 score for tumor positive, with an accuracy of 99.65%. For tumor
negative, it achieves 99.67% precision, 99.04% recall, and a 99.35% F1 score, with an accuracy
of 99.04%. Overall, ResNet 50 consistently performs well across all optimizer configurations,
making it a suitable choice for accurate tumor classification in a two-class dataset. On the
other hand, Table 9 presents a detailed assessment of the performance of the Inception V3
model using various optimization algorithms for the task of tumor classification. The table
focuses on two distinct classes: tumor positive and tumor negative, providing essential
metrics in percentage form. Precision, which gauges the accuracy of positive predictions,
exhibits consistently high values across all optimizer-model combinations, with values often
exceeding 98%. This indicates that the model’s positive predictions are highly accurate.
The recall metric, measuring the model’s ability to correctly identify positive instances, also
shows strong performance, with values typically above 97%, indicating effective capture of
positive cases. The F1 score, a harmonic balance of precision and recall, further highlights
the model’s overall accuracy and balance in classification. Finally, the accuracy metric,
which reflects the overall correctness of the model’s predictions, consistently demonstrates
impressive results, frequently surpassing 98%. These results collectively underscore the
robustness and effectiveness of the Inception V3 model in tumor classification, with varying
optimizers demonstrating strong performance across both positive and negative classes.

Table 9. Performance Metrics of Inception V3 Model with Different Optimizers for Tumor Classifica-
tion on Test Dataset of Two-Class Tumors Dataset.

Model Optimizer Class Precision (%) Recall (%) F1 Score (%) Accuracy (%)

IncepitonV3

Adam
Tumor Positive 98.06 98.06 98.06 98.62
Tumor Negative 98.68 99.25 98.81 98.35

Nadam
Tumor Positive 98.56 97.61 97.08 96.61
Tumor Negative 97.14 97.94 97.54 97.94

RMSprop Tumor Positive 98.96 99.65 99.30 99.65
Tumor Negative 99.67 99.04 99.35 99.04

Figures 11 and 12 showcase the performance evaluation of models trained on the
two-class brain MRI tumor dataset. Figure 10 illustrates accuracy and loss curves, offering
insights into the model’s learning progress and convergence during training. On the other
hand, Figure 12 presents the confusion matrix, providing a comprehensive view of the
model’s predictions for tumor present and tumor absent classes.
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Table 10 provides a comprehensive performance comparison of two prominent DL
models, ResNet 50 and Inception V3, utilizing different optimization algorithms on a two-
class tumor dataset. For the ResNet 50 model, when optimized with Adam, it achieves
a relatively low MAE of 1.6, showcasing the accuracy of its predictions. The model also
demonstrates outstanding precision, recall, F1 score, and accuracy, all consistently above
99%. This indicates its exceptional ability to distinguish between the two tumor classes.

Table 10. Performance Comparison Overall Test Evaluation of ResNet 50 and Inception V3 Model
with Different Optimizers on Two-Class Tumor Dataset.

Model Optimizer Loss MAE Precision Recall F1-Score Accuracy

Resnet50
Adam 8.83 1.6 99.84 99.82 99.82 99.83
Nadam 1.82 0.53 99.50 99.49 99.49 99.50
RMSprop 2.91 0.16 99.84 99.82 99.83 99.33

Inception V3
Adam 8.94 1.17 98.21 98.21 98.21 98.22
Nadam 10.86 2.67 97.35 97.28 97.31 97.33
RMSprop 5.49 1.11 98.94 98.82 99.88 98.88
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When the ResNet 50 model is optimized with Nadam and RMSprop, it continues to
exhibit remarkable precision, recall, F1-score, and accuracy, although with slightly different
loss values. This indicates that the choice of optimizer can affect training dynamics and
model performance.

On the other hand, Inception V3, while still performing well, shows slightly lower
precision, recall, F1 score, and accuracy compared to ResNet 50 across all optimizer settings.
The MAE values for Inception V3 are also higher, suggesting that it might have slightly less
accurate predictions. These results emphasize the importance of selecting the appropriate
model and optimizer combination based on specific requirements and trade-offs in the
context of tumor classification on this dataset.

8. Conclusions and Future Work

In conclusion, this study has introduced two DL frameworks utilizing ResNet 50 and
Inception V3 models for the categorization of brain MRI images, demonstrating promising
results in tumor classification; reflecting the achievements seen in other medical image
classification tasks. These models were evaluated on openly available datasets, exhibiting
high accuracy and precision rates for various tumor types. The optimization was performed
using three different optimizers: Adam, Nadam, and RMSprop. A classification accuracy of
97.68% for the multi-class dataset was achieved, and an impressive accuracy rate of 99.84%
was attained for the binary dataset, highlighting significant progress in the automation of
brain tumor detection from MRI scans. Fine-tuning the models with techniques such as
average pooling, layer-by-layer fully connected adjustments, and L2 regularization played
a pivotal role in enhancing their effectiveness for tumor classification. However, as we
move forward, several avenues for future work have been identified. First and foremost,
expanding the assessment to diverse datasets with larger image samples is essential to
ensure the generalizability of the frameworks. Additionally, incorporating state-of-the-art
CNN architectures such as MobileNet, SqueezeNet, and Vision Transformers, as well as
exploring ensemble learning techniques with different loss functions, could further enhance
classification performance. Fine-grained tumor classification and optimization using swarm
intelligence algorithms are also on the horizon. Efficiency improvements in training and
clinical validation with medical professionals are essential aspects of our future research
agenda. Nonetheless, it is important to acknowledge that real-world medical applications
may involve challenges related to data privacy, regulatory compliance, and integration
into clinical workflows, where federated learning has come as rescue, which should be
addressed in future research and development efforts. By pursuing these directions, we
aim to advance the field of brain MRI image analysis, ultimately contributing to more
accurate and efficient brain tumor diagnostics in clinical practice.
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Lacković, I., Ibbott, G.S., Eds.; Springer Nature: Singapore, 2019; pp. 183–189.

22. Pashaei, A.; Sajedi, H.; Jazayeri, N. Brain Tumor Classification via Convolutional Neural Network and Extreme Learning
Machines. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad,
Iran, 25–26 October 2018; pp. 314–319.

23. Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain Tumor Type Classification via Capsule Networks. In Proceedings of the 2018
25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3129–3133.

24. Ibrokhimov, B.; Kang, J.-Y. Deep Learning Model for COVID-19-Infected Pneumonia Diagnosis Using Chest Radiography Images.
BioMedInformatics 2022, 2, 654–670. [CrossRef]

25. Eder, M.; Moser, E.; Holzinger, A.; Jean-Quartier, C.; Jeanquartier, F. Interpretable Machine Learning with Brain Image and
Survival Data. BioMedInformatics 2022, 2, 492–510. [CrossRef]

https://doi.org/10.7763/IJCTE.2010.V2.207
https://doi.org/10.1371/journal.pone.0140381
https://www.ncbi.nlm.nih.gov/pubmed/26447861
https://doi.org/10.3390/app12115645
https://doi.org/10.3390/computers12050095
https://doi.org/10.3390/s23010480
https://doi.org/10.3390/electronics11071146
https://doi.org/10.1016/j.cancergen.2012.10.009
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.3390/a16040176
https://doi.org/10.3389/fnhum.2023.1150120
https://www.ncbi.nlm.nih.gov/pubmed/37151901
https://doi.org/10.3390/healthcare9020153
https://www.ncbi.nlm.nih.gov/pubmed/33540873
https://doi.org/10.1109/ACCESS.2019.2919122
https://doi.org/10.3390/brainsci11030352
https://www.ncbi.nlm.nih.gov/pubmed/33801994
https://doi.org/10.3390/biomedinformatics2040043
https://doi.org/10.3390/biomedinformatics2030031


BioMedInformatics 2023, 3 1144

26. Shokouhifar, A.; Shokouhifar, M.; Sabbaghian, M.; Soltanian-Zadeh, H. Swarm Intelligence Empowered Three-Stage Ensemble
Deep Learning for Arm Volume Measurement in Patients with Lymphedema. Biomed. Signal Process. Control 2023, 85, 105027.
[CrossRef]

27. Veeraiah, N.; Alotaibi, Y.; Subahi, A. MayGAN: Mayfly Optimization with Generative Adversarial Network-Based Deep Learning
Method to Classify Leukemia Form Blood Smear Images. CSSE 2023, 46, 2039–2058. [CrossRef]

28. Aryai, P.; Khademzadeh, A.; Jafarali Jassbi, S.; Hosseinzadeh, M.; Hashemzadeh, O.; Shokouhifar, M. Real-Time Health Monitoring
in WBANs Using Hybrid Metaheuristic-Driven Machine Learning Routing Protocol (MDML-RP). AEU-Int. J. Electron. Commun.
2023, 168, 154723. [CrossRef]

29. Ibtisum, S. A Comparative Study on Different Big Data Tools; North Dakota State University: Fargo, ND, USA, 2020.
30. Divya, S.; Padma Suresh, L.; John, A. A Deep Transfer Learning Framework for Multi Class Brain Tumor Classification Using MRI.

In Proceedings of the 2020 2nd International Conference on Advances in Computing, Communication Control and Networking
(ICACCCN), Greater Noida, India, 18–19 December 2020; pp. 283–290.

31. Shah, A.; Chavan, P.; Jadhav, D. Classification of Brain Tumor MRI Scans Using Transfer Learning with a Comparative Analysis
on Pre-Trained Networks. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa,
India, 21–22 January 2022; pp. 1–7.

32. Brain Tumor Detection Using Deep Learning Models. Available online: https://ieeexplore.ieee.org/abstract/document/9344555/
(accessed on 24 September 2023).

33. Hussain, E.; Hasan, M.; Hassan, S.Z.; Hassan Azmi, T.; Rahman, M.A.; Zavid Parvez, M. Deep Learning Based Binary Classification
for Alzheimer’s Disease Detection Using Brain MRI Images. In Proceedings of the 2020 15th IEEE Conference on Industrial
Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1115–1120.

34. Younis, A.; Qiang, L.; Nyatega, C.O.; Adamu, M.J.; Kawuwa, H.B. Brain Tumor Analysis Using Deep Learning and VGG-16
Ensembling Learning Approaches. Appl. Sci. 2022, 12, 7282. [CrossRef]

35. Cheng, J. Brain Tumor Dataset, Figshare. 2017. Available online: https://figshare.com/articles/dataset/brain_tumor_dataset/15
12427 (accessed on 1 April 2023).

36. Br35H:: Brain Tumor Detection 2020|Kaggle. Available online: https://www.kaggle.com/datasets/ahmedhamada0/brain-
tumor-detection (accessed on 18 August 2023).

37. Brain-MRI-Image-Classification-Using-Deep-Learning/Brain-Tumor-Dataset/Training at Main Strikersps/Brain-MRI-Image-
Classification-Using-Deep-Learning. Available online: https://github.com/strikersps/Brain-MRI-Image-Classification-Using-
Deep-Learning/tree/main/Brain-Tumor-Dataset/Training (accessed on 25 September 2023).

38. Gheisari, M.; Ebrahimzadeh, F.; Rahimi, M.; Moazzamigodarzi, M.; Liu, Y.; Dutta Pramanik, P.K.; Heravi, M.A.; Mehbodniya, A.;
Liu, Y.; Pramanik, P.K.D.; et al. learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey.
CAAI Trans. Intell. Technol. 2023, 8, 581–606. [CrossRef]

39. Ghaderzadeh, M.; Aria, M.; Hosseini, A.; Asadi, F.; Bashash, D.; Abolghasemi, H. A fast and efficient CNN model for B-ALL
diagnosis and its subtypes classification using peripheral blood smear images. Int. J. Intell. Syst. 2022, 37, 5113–5133. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bspc.2023.105027
https://doi.org/10.32604/csse.2023.036985
https://doi.org/10.1016/j.aeue.2023.154723
https://ieeexplore.ieee.org/abstract/document/9344555/
https://doi.org/10.3390/app12147282
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://github.com/strikersps/Brain-MRI-Image-Classification-Using-Deep-Learning/tree/main/Brain-Tumor-Dataset/Training
https://github.com/strikersps/Brain-MRI-Image-Classification-Using-Deep-Learning/tree/main/Brain-Tumor-Dataset/Training
https://doi.org/10.1049/cit2.12180
https://doi.org/10.1002/int.22753

	coversheet_template
	AHMMED 2023 Enhancing brain tumor calssification (VOR).pdf
	Introduction 
	The Literature Review 
	Description of the Dataset 
	Deep Learning Frameworks 
	Inception V3 and ResNet 50 
	Inception V3 
	ResNet 50 
	2D Global Average Pooling Layer 
	Dropout Layer 
	Dense Layer 
	L2 Regularization 

	Methodology and Proposed Architecture 
	Experimental Results 
	Conclusions and Future Work 
	References


