
© 2024 Published by Elsevier Ltd on behalf of Beijing Institute of Technology Press Co., Ltd. 

This document was downloaded from 
https://openair.rgu.ac.uk 

CHEN, Y., DUAN, W., HE, Y., WANG, S. and FERNANDEZ, C. 2024. A hybrid data driven framework considering 
feature extraction for battery state of health estimation and remaining useful life prediction. Green energy and 

intelligent transportation [online], 3(2), article number 100160. Available from: https://doi.org/10.1016/
j.geits.2024.100160  

A hybrid data driven framework considering 
feature extraction for battery state of health 

estimation and remaining useful life prediction. 

CHEN, Y., DUAN, W., HE, Y. WANG, S. and FERNANDEZ, C. 

2024 

https://doi.org/10.1016/j.geits.2024.100160


Full length article

A hybrid data driven framework considering feature extraction for battery
state of health estimation and remaining useful life prediction

Yuan Chen a, Wenxian Duan b,*, Yigang He c,**, Shunli Wang d, Carlos Fernandez e

a School of Artificial Intelligence, Anhui University, Hefei 230009, China
b State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
c School of Electrical Engineering and Automation, Wuhan University, Wuhan 430000, China
d School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
e School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10-7GJ, UK

H I G H L I G H T S G R A P H I C A L A B S T R A C T

� A hybrid framework considering feature
extraction is proposed to achieve a more
accurate and stable prediction
performance.

� The framework combines variational
mode decomposition, the multi-kernel
support vector regression model and
the optimization algorithm.

� Elite chaotic opposition-learning strat-
egy and adaptive weights are introduced
to optimize the sparrow search
algorithm.
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A B S T R A C T

Battery life prediction is of great significance to the safe operation, and reduces the maintenance costs. This paper
proposes a hybrid framework considering feature extraction to achieve more accurate and stable life prediction
performance of the battery. By feature extraction, eight features are obtained to fed into the life predictionmodel. The
hybrid framework combines variational mode decomposition, the multi-kernel support vector regression model and
the improved sparrow search algorithm to solve the problem of data backward, uneven distribution of high-
dimensional feature space and the local escape ability, respectively. Better parameters of the estimation model are
obtained by introducing the elite chaotic opposition-learning strategy and adaptive weights to optimize the sparrow
search algorithm. The algorithmcan improve the local escape ability and convergenceperformance andfind theglobal
optimum. The comparison is conducted by dataset fromNational Aeronautics and Space Administrationwhich shows
that the proposed framework has a more accurate and stable prediction performance. Compared with other algo-
rithms, the SOHestimation accuracy of the proposed algorithm is improvedby 0.16%–1.67%.With the advance of the
start point, the RUL prediction accuracy of the proposed algorithm does not change much.
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1. Introduction

Lithium-ion batteries have the characteristics of high energy density
and long cycle life, and are now widely used in electric vehicles, mobile
phones, laptops and other electronic products [1]. As the number of
charges and discharges increases, the battery performance continues to
decline, manifested by a decrease in capacity and an increase in internal
resistance. It is characterized by state of health (SOH) and remaining
useful life (RUL) [2–4]. In this paper, the ratio of the current available
capacity to the rated capacity of the battery is used to express the battery.
The expression of SOH is as follows:

SOHn ¼ Qn=QN (1)

where, Qn represents the actual battery capacity during the nth charging
and discharging cycle; QN represents the rated battery capacity. RUL
prediction reflects the long-term battery life prediction, which can ensure
its safety and stability during the whole life cycle and provide informa-
tion for battery replacement. Battery capacity is easier to measure and
more meaningful than impedance or internal resistance, which is adop-
ted as the SOH definition in this study.

1.1. Literature review

Battery SOH estimation and RUL prediction methods are divided into
model-based and data-driven methods [5]. Model-based methods can
achieve life prediction though different models combined with the
filtering algorithm such as unscented Kalman filter (UKF) algorithm,
particle filter (PF) algorithm and some improved PF algorithms [6–9].
Dual exponential model is the most commonly used model. As the
number of iterations increases, the diversity of particles will disappear
and lead to the phenomenon of particle degradation. Improvement of
importance density function and resampling method can solve this
problem and improve the prediction accuracy [10–13]. In literature [14],
a framework combined improved ant lion optimization algorithm and
support vector regression is proposed to solve the degeneracy phenom-
enon of the standard PF method. It achieves prediction results with high
accuracy and robustness. The PF and improved PF algorithms have good
prediction accuracy and can describe the uncertainty of the battery with
the probability distribution function (PDF). However, model-based
methods depend on the battery capacity model, while there is no accu-
rate and universal model, the results will be affected. Data-driven
methods such as artificial neural networks (ANN) algorithm [15–17],
long short-term memory neural network (LSTM) [18] and support vector
machines (SVM) algorithm [19–22] have received widespread attention
at present. A new framework combined partial incremental capacity and
ANN is proposed in Ref. [23] for battery life prediction to get a good
performance with better generalization ability and higher prediction
accuracy. However, lots of data and time are needed to train the ANN
models. SVM as a kind of machine learning algorithms, can be used for
recognition and classification. The efficiency of regression convergence is
higher than other machine learning algorithms and suitable for small
sample prediction. Zhao et al. [24] develops a method combining the
feature vector and SVR algorithms for battery SOH estimation. Although
the prediction accuracy is higher than that of standard SVR algorithm, it
still fails to solve the problem of super parameter optimization. Hybrid
algorithms of SVR model and parameter optimization algorithms can
make better use of their respective advantages and overcome the limi-
tations of SVR model [25–27]. In Ref. [28], the particle swarm optimi-
zation (PSO) is applied to obtain optimized parameters of SVR model for
a better battery RUL prediction. However, PSO algorithm cannot handle
discrete optimization problems well and easily lead to local optimization.
An artificial bee colony (ABC) algorithm is designed in Ref. [29] to
identify the parameters of SVR model to solve the problem of local
optimization and improves the prediction accuracy to a certain extent. In
addition, in actual operation situation, the battery is affected by a lot of

noise produced by its own physical characteristics and the environment,
which is not considered in many articles. In order to reduce this random
noise interference, research on signal processing methods are conducted.
In Ref. [30], the empirical model decomposition (EMD) algorithm is
proposed to decompose the non-stationary signals for noise reduction.
However, the EMD method exists the problems of end effect and modal
component. The variational mode decomposition (VMD) can overcome
problems above to reduce the non-stationarity of time series.

1.2. Contributions of this paper

In this study, a hybrid framework considering feature extraction is
proposed for a better SOH estimation and RUL prediction performance. The
hybrid framework combining VMD, improved sparrow search algorithm
(ISSA) and multi-kernel support vector regression (MKSVR) model. The
contributions are summarized. First, eight features are obtained to fed into
the life prediction model by feature extraction. Secondly, VMD method is
applied to decompose the original data to make the capacity data more
stable. Then, elite chaotic opposition-learning strategy andadaptiveweights
are adopted to optimize the traditional sparrow search algorithm (SSA) to
obtainmore accurate parameters of the predictionmodel. Finally,MKSVR is
used to solve the low prediction accuracy problem caused by large sample
data and uneven distribution of high-dimensional feature space.

1.3. Organization of the paper

The remainder of this article is listed as follows. Section 2 introduces
the VMD decomposition, the MKSVR model, the ISSA algorithm for pa-
rameters optimization and the hybrid VMD-ISSA-MKSVR framework.
Section 3 discusses experimental results and analysis of the proposed
method. Conclusions are summarized in Section 4.

2. Basic theories

2.1. Variational mode decomposition

VMD is used for completely non-recursive modal variation to deal
with signals [31,32]. The optimal solution of the variational problem is
obtained finally by effective decomposition component of the given
signal. By iteration, the VMD algorithm can decompose the signals into
some intrinsic mode functions (IMFs) and a relevant residual value
containing multiple different frequency scales.

The constrained variational expression of VMD is as follows:

min
fQmg;fωmg

(XM
m¼1

k∂N ½ðδðNÞ þ j=πN Þ*QmðNÞ �expð�jωmNÞk22
)
;

s:t:
XM
m¼1

Qm ¼ f

(2)

where M is the number of modes to be decomposed,{Qm} ¼
{Q1,Q2,⋅⋅⋅,Qm} is the set of M modal components after decomposition,
{ωm} ¼ {ω1,ω2,⋅⋅⋅,ωm} is the set of center frequencies corresponding to
modal component, Qm is the m-th modal component, ωm is the center
frequency of m-th modal component, N is the number of sequences, δ(t)
represents the dirac function.

The unconstrained variational expression is shown below by intro-
ducing the Lagrangian multiplication operator λ:

LðfQmg; fωmg Þ ¼ α
XM
m¼1

k∂N ½ðδðNÞ þ j=πN Þ*QmðNÞ �expð�jωmNÞk22þ
�����f ðNÞ

�
X
m

QmðNÞ
�����
2

2

þ〈λðNÞ; f ðNÞ �
X
m

QmðNÞ〉

(3)

where α is a secondary penalty factor.
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By alternating direction multiplier iterative algorithm to obtain
M modal components, the unconstrained variational problem can be
solved. The update expressions of Qm, ωm and λ are shown as
follows:

bQkþ1

m ðωÞ ¼
bf ðωÞ �Pm

i¼1

bQkþ1

i ðωÞ � PM
i¼mþ1

Qk
i ðωÞ þ bλðωÞ.2

1þ 2α
�
ω� ωk

m

�2
ωkþ1

m ¼
R∞
0 ω

�� bQkþ1

m ðωÞ��2dωR∞
0

�� bQkþ1

m ðωÞ��2dω
bλkþ1ðωÞ ¼ bλkðωÞ þ γ

 bf ðωÞ �XM
m¼1

bQkþ1

m ðωÞ
!

(4)

where γ is the update coefficient for Lagrangian multiplier which rep-

resents noise tolerance. bQmðωÞ, bQiðωÞ, bf ðωÞ and bλðωÞ are Fourier trans-

forms of bQm, bQi, bf and bλ.
The process of VMD algorithm is summarized as follows:

Step 1. Initialize three parameters bQ1
m, ω

1
m, bλ1 and set the iteration

count to k ¼ 1.

Step 2. Update bQm ωm and bλ by Eq. (4).

Step 3. For a specified acceptable tolerance ξ>0, the convergence cri-

terion is
PM

m¼1

��bQkþ1
m ðωÞ � bQk

mðωÞ
��2
2=
��bQk

mðωÞ
��2
2 < ξ. If the convergence is

realized, finish the iteration and output the final value, else return to
step 2.

2.2. Multi-kernel support vector regression

In 1995, SVM algorithm based on statistical learning theory was
proposed by Vapnik. It is mainly used to obtain the global optimal so-
lution for pattern recognition and classification. To reduce the parameter
dimension, the optimization process is simplified by introducing the
kernel function. When used as a regression tool, SVM implements a
variant of the algorithm called SVR.

A set of data T¼ {(x1,y1), (x2,y2), ⋅⋅⋅, (xn,yn)} is given, where xi 2 Rn, yi
2 Rn,{xi, i ¼ 1,2,⋅⋅⋅,n} is the input feature, {yi, i ¼ 1,2,⋅⋅⋅,n} is the output.
The target of SVR method is to find a functional relationship similar to
the hyperplane equation f(x), making it as close to the training data as
possible. In the feature space, the regression model corresponding to the
hyperplane can be described as Eq. (5):

f ðxÞ ¼ ws
TφðxÞ þ bs (5)

where φ(x) is a nonlinear mapping function, ws is the normal vector, bs is
the displacement term.

The optimization problem of SVR model can be expressed as:

min
1
2
kwsk2 þ C

Xn

i¼1
ðξi þ bξiÞ

s:t: ðws
TφðxiÞ þ bs � yi Þ � εþ ξi;

yi � ws
TφðxiÞ � bs � εþ bξi; ξi � 0; bξi � 0; i ¼ 1; 2; ⋅ ⋅ ⋅; n

(6)

where e is the regression error, similar to relaxation factor, which in-
troduces outliers into the support vector. C is the penalty constant.

Four Lagrangian multipliers αi, αi*, ui and ui* are introduced to obtain
Lagrangian function:

Lðws; bs; αi; αi
*Þ ¼ 1

2
kwsk2 þ C

Xn
i¼1

ðξi þ bξiÞ �Xn
i¼1

μiξi �
Xn
i¼1

μ*i bξi
þ
Xn
i¼1

αiðws
T ⋅ φðxiÞ þ bs � ξi � ε� yi Þ þ

Xn
i¼1

αi
*ðyi � ws

T

⋅ φðxiÞ � bs � bξi � ε Þ
(7)

where αi � 0, αi* �0, ui � 0 and ui* �0.
The SVR regression model can be finally transformed as the function

below:

f ðxÞ ¼ ws
T ⋅ xþ bs ¼

Xn
i¼1

Xn
j¼1

�
α*
i � αi

�
K
�
xi; xj

�þ bs (8)

where K(xi, xj) is the Gaussian radial basis kernel function, the expression

of which is Kðxi;xjÞ ¼ exp
�
� kxi�xjk2

2σ2

�
. The kernel function can improve

the Feature dimension of the model to improve the nonlinear fitting
ability of SVR. The larger the σ is, the smaller the nonlinear efficiency is,
and the less sensitive to noise is.

When the amount of sample data is large, the distribution of high-
dimensional feature space is uneven and there is heterogeneous infor-
mation, a single selection of local kernel function or global kernel func-
tion will lead to low prediction accuracy. This problem can be solved by
constructing multi-kernel functions by linear weighting.

By combining the linear kernel function with the Gaussian kernel
function, the multi-kernel function can be expressed as:

K
�
xi; xj

�¼ λk1ðxi; x0 Þ þ ð1� λÞk2ðxi; x0 Þ (9)

where k1ðxi; x0 Þ is a linear kernel function, k2ðxi; x0 Þ is Gaussian kernel
function. λ is the weight coefficient of linear kernel function, and the
corresponding (1-λ) is the weight coefficient of Gaussian kernel function.

2.3. Improved sparrow search algorithm

The SSA is a new type of swarm intelligence optimization algorithm,
and its basic structure is similar to ABC algorithm except the search
operator [33]. In this paper, SSA algorithm is used to optimize penalty
constant C and kernel function parameter σ to realize the accurate pre-
diction of the MKSVM model.

For SSA algorithm, each sparrow has only one position, which can be
represented by a matrix X, and the expression is:

X ¼

2664
x1;1 x1;2 ⋅ ⋅ ⋅ x1;d
x2;1 x2;2 ⋅ ⋅ ⋅ x2;d
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
xn;1 xn;2 ⋅ ⋅ ⋅ xn;d

3775 (10)

where d is the dimension of the variable. xi,j indicates the position of the i-
th sparrow in the j-th dimension.

The fitness value is calculated by:

FX ¼

2664
f ð½x1;1 x1;2 ⋅ ⋅ ⋅ x1;d �Þ
f ð½x2;1 x2;2 ⋅ ⋅ ⋅ x1;d�Þ
⋅ ⋅ ⋅
f ð½xn;1 xn;2 ⋅ ⋅ ⋅ xn;d�Þ

3775 (11)

Each sparrow has three possible behaviors: explorer, follower, and
vigilant investigation. Each generation selects the best P sparrows in the
populationas theexplorers, and the remainingn-P sparrowsas the followers.
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The position update equation is:

Xtþ1
i;j ¼

8><>:
Xt
i;j ⋅ exp

� �i
α ⋅M

	
; R2 < ST

Xt
i;j þ Qs ⋅ Ls; R2 � ST

(12)

where t is the number of current iteration, M is the maximum iterations
number. Xt

i,j indicates the position of the i-th sparrow in the j-th
dimension of the current iteration. α is a random number between 0 and
1. R2 is the alarm value and ST is the safety threshold. Q is a random
number. L is a 1 � d matrix with each element of 1.

The location updated equation is:

Xtþ1
i;j ¼

8><>:
exp
�
Xt
wp � Xt

i;j

i2

	
⋅ Qs; i > n



2���Xt

i;j � Xtþ1
bp

��� ⋅ Gs
þ ⋅ Ls þ Xtþ1

bp ; i � n
.
2

(13)

where Xbp is the best position occupied by the current explorer, Xwp is the
worst position.G represents a 1� dmatrix with elements assigned 1 or -1
and Gþ ¼ GT(GGT)�1.

While the sparrows are foraging for food, part of them will be respon-
sible for vigilance.When alerted to danger, theywill conduct anti-predation
behavior: give up food and move to a new location. The location update
formula is:

Xtþ1
i;j ¼

8><>:
Xt
bp þ μs ⋅

���Xt
i;j � Xt

bp

���; fsi > fsg

Xt
i;j þ Ks ⋅

� ���Xt
i;j � Xt

wp

���
ðfsi � fswÞ þ ξ

	
; fsi ¼ fsg

(14)

where Xbp is the current global optimal position, μs is the step-size
control parameter, K is the random with values between �1 and 1,
which represents the moving direction of the sparrows. fsi is the
fitness value of the current sparrow. fsg represents current global best
fitness value while fsw represents the worst one. ξ is a minimum
constant.

2.3.1. Improvement of population initialization
Elite chaotic opposition-learning method is adopted to generate an

initial population to enhance its quality and diversity. By selecting elite
individuals on a larger scale, the algorithm can improve the local escape
ability and convergence performance of traditional SSA algorithm, then
lead to a more accurate solution.

In this paper, the chaotic skew tent map is chosen to generate the
initial population to enhance the stability of the initial individuals due to
its characteristic of randomness and ergodicity.

The chaotic skew tent map equation is described as follows:

xkþ1 ¼
�
xk=α; 0 < xk < α
ð1� xkÞ=ð1� αÞ; α < xk � 1

(15)

In Eq. (15), α is a random number between 0 and 1. β ¼ -αlogα-(1-α)
log(1-α), if β > 0, then the system is in chaos state.

The reverse-learning algorithm based on optical lens imaging prin-
ciple can solve the problem of local optimum by increasing the proba-
bility of a better solution.

Reverse population generation equation is described in Eq. (16):

x*n ¼
an þ bn

2
þ an þ bn

2k
� xn

k
(16)

where an represents the minimum value in the n dimension of the current
population, while bn represents the maximum one. k is the scaling coef-
ficient of the lens.

The initialize process of the sparrow population with the strategy
above is shown as follows:

Initialize the sparrow population randomly, then substitute population
X into Eq. (15) to generate chaotic population Y. Generate the lens imaging
opposition-learning population Zby substituting populationX into Eq. (16).
Sort the population X, Y and Z according to the individual fitness value and
select the better N individuals to form the initial sparrow population.

2.3.2. Improvement of follower location update
Since the update weight is large and not changed much during iter-

ation, it may miss the global optimum. To solve the problem, adaptive
weights are introduced to improve the performance of SSA algorithm.

The changed update equation is described as follows:

Xtþ1
i;j ¼

8>>><>>>:
ws ⋅

�
Xt
i;j ⋅ exp

� �i
αs ⋅ Itermax

		
; AR < ST

ws ⋅
�
Xt
i;j þ QsLs

�
; AR � ST

ws ¼ 1� lgððe� 1Þ ⋅ n=Itermax þ 1 Þ

(17)

2.4. A hybrid framework of VMD-ISSA-MKSVR

A hybrid framework combining VMD, ISSA and MKSVR model is pro-
posed to achieve a more accurate and stable battery life prediction per-
formance. The detailed prediction process is outlined in Fig. 1 (see Fig. 2).

The complete steps of the framework are summarized as follows.

Step 4. Some relevant features are extracted from current, voltage, and
temperature curves. Then, features with high correlation are used as the
input of VMD-ISSA-MKSVR model.

Step 5. Decompose the battery capacity by the VMD into 5 IMF com-
ponents. Each component is processed to the VMD-ISSA-MKSVR model
separately, and finally put it together.

Step 6. After VMD decomposition, ISSA algorithm is used to identify
the parameters of MKSVR model.

Step 7. Train the VMD-ISSA-MKSVR model, and then substitute the test
data into the trainingmodel for SOH estimation andRUL prediction results.
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Fig. 1. Detailed flow chart of the hybrid framework.
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3. Experimental results and analysis

Four lithium-ion batteries (B0005, B0006, B0007 and B00018) from
NASA are selected for SOH estimation and RUL prediction verification.
The tests are carried out at room temperature, taking B0005 battery as
an example: Charge the battery with a current of 1.5 A in a constant
current (CC) mode until it reaches the charging cut-off voltage of 4.2 V.
Then charge the battery by constant voltage (CV) mode with the voltage
of 4.2 V, stop charging when the current drops to 0.02 A. During dis-
charging, the battery is discharged in a CC mode, the discharging cur-
rent is 2 A, stop discharging when the discharge cut-off voltage of 2.7 V
is reached.

3.1. Evaluation criteria

For battery SOH estimation, this paper uses three popular criteria to
verify the stability and accuracy of the model. Mean absolute error
(MAE), root mean square error (RMSE), and mean absolute percentage
error (MAPE) are adopted as evaluation criteria.

MAE ¼ 1
M

XM
n¼1

��y*n � yn
��

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
n¼1

�
y*n � yn

�2vuut
MAPE ¼ 1

M

XM
n¼1

����y*n � yn
yn

�����100%

(18)

Relative error (RE) is define as Eq. (19) for battery RUL prediction:

RE ¼ ��RULp � RULt

�� (19)

where RULp is the predicted value of RUL, RULt is the actual value of
RUL.

3.2. Feature extraction

The battery capacity cannot be obtained directly in practical. Some key
features can be extracted from the current, voltage and temperature in the
process of charging-discharging. It is easy to extract stable feature infor-
mation from vehicle sensors to establish the relationship with battery SOH,
and then usemachine learning technology to realize battery life prediction.

In the process of battery operation, the voltage curve can provide a lot
of information related to the available capacity. Time interval of equal
charge voltage rise (TIE-CVR), charge capacity rise of equal charge
voltage rise (CCR-CVR) and time interval of equal charge current drop
(TIE-CCD) can be used as features to estimate battery SOH. TIE-CVR in-
dicates the time for the voltage to rise from 3.8 V to 4.2 V during CCmode
charging, which is marked as F1. The corresponding capacity of CCR-
CVR is marked as F2. The highest temperature and the corresponding
time in each charging–discharging cycle are marked as F3 and F4,
respectively. During the period when the voltage is higher than 3.8 V and
the current drops to 0.4 A, the average temperature is recorded as F5. The
area under the temperature curve is recorded as F6. TIE-CCD is the time
when the current in the CV phase decreases from 1.5 A to 0.4 A, which is
marked as F7. During the period when the discharge voltage decreases
from 3.8 V to 3.4 V, the capacity of the discharged battery is recorded as
F8. Fig. 3 shows the eigenvalue of F1~F8.

The spearman rank correlation coefficients RS is used to analyze the
correlation between eigenvalues and battery available capacity.

The formula is shown in Eq. (20):

RS ¼
PM

n¼1ðXn � XÞðYn � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
n¼1ðXn � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
n¼1ðYn � YÞ2

q
X ¼ 1

M

XM

n¼1
Xn

(20)

where Xn is the available capacity for each discharge, Yn is the input ei-
genvalues in each charge–discharge cycle, X and Y are themean values of
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sample, n is the current charge–discharge cycle, M is the total number of
charge and discharge cycles.

Table 1 depicts the correlation coefficient between each feature and
available capacity.

Among the four batteries, the absolute values of the correlation co-
efficients between F1, F2, F3, F7, and F8 and the available capacity are all
between 0.9 and 1, indicating a high correlation between them. The cor-
relation values of eigenvalues F4, F5 and F6 with available capacity are all
low, indicating that their correlation is also relatively low. These three
features are eliminated, and not used as input to the estimation model.

3.3. SOH estimation

Before SOH estimation, the VMD method is used to decompose the
data. The VMD decomposition diagram of B0005 and B0007 is shown in

Fig. 4. Each data is divided into five components, The frequencies of five
components are different. The component frequencies of B0005 and
B0007 are similar.

In this paper, the capacity-based SOH definition method is adopted,
which is definedas the ratio of the current capacity to the rated capacity of the
battery. For the same battery, its rated capacity is constant, and the current
capacity and SOHhave the same trend. Theproblemof SOHestimation of the
battery can be transformed into the problem of capacity estimation.

For SOH estimation, the characteristic factors are extracted as the
input of VMD-ISSA-MKSVR model. The prediction start point of B0005,
B0006 and B0007 is Ty ¼ 81, while that of B00018 is Ty ¼ 61. The data
before the starting point is set as the training set, and the data after the
starting point is set as the test set.

Four methods including the IPSO-SVR [34], ISSA-SVR, VMD-IS-
SA-SVR and BL-ELM [35] are in comparison with VMD-ISSA-MKSVR for
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Fig. 3. The variation curve of eight characteristics (a)–(h) are F1–F8, respectively.

Table 1
Correlation coefficient between each feature and available capacity.

Battery number Feature number

F1 F2 F3 F4 F5 F6 F7 F8

B0005 0.991,3 0.991,3 0.991,1 �0.588,0 0.071,7 �0.625,1 �0.981,9 0.998,7
B0006 0.993,6 0.993,6 0.991,5 �0.156,2 0.164,7 0.104,0 �0.952,2 0.999,2
B0007 0.988,8 0.988,8 0.989,7 �0.453,5 0.037,9 �0.071,2 �0.944,4 0.997,2
B0018 0.978,2 0.978,2 0.982,3 �0.263,1 0.708,4 0.212,7 �0.912,8 0.998,6
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battery SOH estimation. The relevant parameters are set in Table 2. The
kernel parameters are Obtained by three optimization methods listed as
Table 3.

To verify the effectiveness of the proposed method for SOH estima-
tion, a comparison of the battery capacity estimation is conducted as
shown in Fig. 5. The SOH estimation results clearly show that the
conformance between estimation and measurement are adequate. The
capacity estimation values all follow the actual value, and the errors are
quite small. Compared with the capacity obtained by the IPSO-SVR and
ISSA-SVR, that obtained by the VMD-ISSA-SVR and the VMD-ISSA-
MKSVR are closer to the actual capacity.

The capacity estimation error is shown in Table 4 and Fig. 6. Take
B0005 battery as an example, the MAE of the five methods are 2.160,3%,
0.708%, 0.651%, 0.647% and 0.489%, respectively, while the RMSE of
that are 2.331%, 1.354%, 1.282%, 0.854% and 0.665%, respectively;
and the MAPE of that are 1.345%, 0.508%, 0.470%, 0.455% and 0.346%,
respectively. The capacity estimation error of the IPSO-SVR is largest,
that of the proposed VMD-ISSA-MKSVR method is smallest, the error
reductions of MAE, RMSE, and MAPE are obvious. Compared with the
results predicted by the IPSO-SVR algorithm, the proposed method

improves the estimation SOH accuracy by nearly 0.51%–2.11%. These
results suggest that the proposed VMD-ISSA-MKSVR method has a rela-
tively high estimation accuracy.

3.4. RUL prediction

The battery RUL prediction results are discussed in this section. Take
the cycle number as input of the prediction methods, the EOL threshold
for the B0005, B0006 and B00018 batteries are set to 70% of the standard
rated capacity, which is 1.4 Ah. The EOL threshold for the B0007 battery
is set to 75% of the standard rated capacity, which is 1.5 Ah. The pre-
diction start points of the four batteries are Ty ¼ 41.

Fig. 7 and Table 5 show the battery RUL prediction results. The RE of
the proposed hybrid method is smaller than those of the other methods,
indicating that the hybrid algorithm has a higher prediction accuracy.

Table 2
The parameter setting.

Algorithm Parameters

IPSO-SVR N ¼ 100, Itermax ¼ 100
ISSA-SVR N ¼ 100, Itermax ¼ 100
VMD-ISSA-SVR N ¼ 100, Itermax ¼ 100
BL-ELM N ¼ 100, Itermax ¼ 100
VMD-ISSA-MKSVR N ¼ 100, Itermax ¼ 100

Table 3
The kernel parameters are Obtained by three optimization methods.

Algorithm B0005 B0006 B0007 B00018

IPSO-SVR σ ¼ 0.01 σ ¼ 0.01 σ ¼ 0.01 σ ¼ 0.01
ISSA-SVR σ ¼ 0.012,2 σ ¼ 0.01 σ ¼ 0.01 σ ¼ 0.541,4
VMD-ISSA-SVR σ ¼ 404.72 σ ¼ 337.7 σ ¼ 1,386 σ ¼ 512.9
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Fig. 5. Battery capacity estimation results. (a) B0005. (b) B0006. (c) B0007. (d) B00018.

Table 4
Battery capacity estimation error.

Battery Algorithm MAE (%) RMSE (%) MAPE (%)

B0005 IPSO-SVR [34] 2.160,3 2.331 1.345,3
BL-ELM [35] 0.650,599 1.281,78 0.469,636
ISSA-SVR 0.708,46 1.354,1 0.507,59
VMD-ISSA-SVR 0.647,32 0.853,72 0.455,3
VMD-ISSA-MKSVR 0.489,48 0.665,29 0.345,72

B0006 IPSO-SVR [34] 2.818 2.665,5 1.555,2
BL-ELM [35] 0.907,669 1.897,84 0.692,424
ISSA-SVR 0.932,02 2.019,6 0.713,44
VMD-ISSA-SVR 0.847,19 1.277,6 0.640,3
VMD-ISSA-MKSVR 0.701,88 1.075,7 0.531,36

B0007 IPSO-SVR [34] 0.944,4 1.608,6 0.559,21
BL-ELM [35] 0.552,247 1.252,03 0.374,816
ISSA-SVR 0.67 1.38 0.455
VMD-ISSA-SVR 0.558,14 0.811,74 0.370,43
VMD-ISSA-MKSVR 0.439,31 0.650,92 0.293,01

B00018 IPSO-SVR [34] 2.866,2 3.017,9 1.814
BL-ELM [35] 1.277,36 2.009,69 0.896,704
ISSA-SVR 2.269,7 2.510,5 1.576,9
VMD-ISSA-SVR 1.640,7 1.348,9 0.937,12
VMD-ISSA-MKSVR 1.271,3 1.100,8 0.882,36
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The RE value predicted by the IPSO-SVR for four batteries are 12, 4, 7 and
11, respectively; by the BL-ELM method those are 5, 3, 6 and 11,
respectively; by the ISSA-SVR method those are 6, 3, 7 and 10, respec-
tively; by the VMD-ISSA-SVRmethod those are 3, 1, 5 and 8, respectively;
by the VMD-ISSA-MKSVR method those are 1, 0, 0 and 3. Especially for
B00018, the RUL prediction accuracy has been greatly improved.

The RUL prediction results of four batteries with different start points
are shown in Table 6. ∞ in the table represents that the prediction curve
and EOL do not intersect and the RUL cannot be predicted. It can be seen
that the five methods can predict the RUL of the four batteries very well

after Ty ¼ 41 and the RE values obtained by the VMD-ISSA-MKSVR
method are the smallest for every battery. The RE values predicted by
the five methods generally show an roughly upward trend with the
advancement of the start point. When Ty ¼ 31, the RUL predictions of
B0005 and B0007 batteries by IPSO-SVR and ISSA-SVR cannot be per-
formed because of the small amount of data. The RUL errors predicted by
BL-ELM, VMD-ISSA-SVR and VMD-ISSA-MKSVR are still suitable. With
the advance of the start point, the prediction accuracy of the proposed
hybrid method does not change much, indicating that the RUL predicted
by VMD-ISSA-MKSVR method is stable.
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4. Conclusion

As a key approach of prognostics and health management, accu-
rate life prediction of the battery is significant to reduce the proba-
bility of system failure effectively. This work focus on a hybrid
method considering feature extraction that combines VMD, ISSA and
MKSVR.

The main contributions are summarized as follows: (1) eight features
are extracted to establish the relationship with battery SOH by measured
data; (2) decompose the original sequence by the VMD to solve the
backward problem of the capacity data caused by auto-correlation to
make the capacity data more stable; (3) elite chaotic opposition learning
strategy and adaptive weights are introduced to optimize the SSA algo-
rithm to find the global optimum faster and more efficient; (4) multi-
Kernel support vector regression is used to solve the low prediction ac-
curacy problem caused by large sample data, uneven distribution of high-
dimensional feature space. Training data is used to train the hybrid
model, and the test data is substituted into the training model for battery
life prediction results.

Dataset from National Aeronautics and Space Administration are
applied for experimental verification. The RUL predictions with different
start points are conducted to verify the stability of the VMD-ISSA-MKSVR

framework. By comparison with IPSO-SVR, ISSA-SVR, BL-ELM and VMD-
ISSA-SVR, it can be verified that the errors of SOH estimation and RUL
prediction obtained by the VMD-ISSA-MKSVR framework are the
smallest. It has relatively high prediction accuracy and stability.

CRediT authorship contribution statement

Yuan Chen: conceptualization, methodology, software, validation,
formal analysis, data curation, writing—original draft preparation.

Wenxian Duan: methodology, software, validation, formal analysis,
writing—review and editing.

Yigang He: writing—supervision, funding acquisition.
Shunli Wang:writing—review and editing.
Carlos Fernandez:writing—review and editing

Data availability statement

The data and materials used to support the findings of this study are
available from the corresponding author upon reasonable request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation
of China (Grant number 51577046), the State Key Program of the Na-
tional Natural Science Foundation of China (Grant number 51637004),
and the National Key Research and Development Plan “Important Sci-
entific Instruments and Equipment Development” (Grant number
2016YFF0102200).

References

[1] Wang, S., Fernandez, C., Yu, C., Fan, Y., Stroe, D. I. A novel charged state prediction
method of the lithium ion battery packs based on the composite equivalent
modeling and improved splice kalman filtering algorithm. J Power Sources, 471,
228450.

[2] Panchal S, Mathew M, Fraser R, Fowler M. Electrochemical thermal modeling and
experimental measurements of 18650 cylindrical lithium-ion battery during
discharge cycle for an EV. Appl Therm Eng 2018;135:123–32.

[3] Li P, Zhang Z, Xiong Q, Ding B, Hou J, Luo D, et al. State-of-health estimation and
remaining useful life prediction for the lithium-ion battery based on a variant long
short term memory neural network. J Power Sources 2020;459.

[4] Xiaoyu L, Zhang L, Wang Z. Remaining useful life prediction for lithium-ion
batteries based on a hybrid model combining the long short-term memory and
elman neural network. J Energy Storage 2019;21:510–8.

[5] Yl A, Kang LA, Xuan LA, Wang Y, Zhang L. Lithium-ion battery capacity estimation -
a pruned convolutional neural network approach assisted with transfer learning.
Appl Energy 2021;285:116410.

[6] Zheng Y, Qin C, Lai X, Han X, Xie Y. A novel capacity estimation method for lithium-
ion batteries using fusion estimation of charging curve sections and discrete
Arrhenius aging model. Appl Energy 2019;251:113327.

[7] Qin Q, Zhao S, Chen S, Huang D, Liang J. Adaptive and robust prediction for the
remaining useful life of electrolytic capacitors. Microelectron Reliab 2018;87:
64–74.

[8] Dong G, Chen Z, Wei J, Ling Q. Battery health prognosis using Brownian Motion
modeling and particle filtering. IEEE Trans Ind Electron 2018;65(11):8646–55.

[9] Chang Y, Fang H. A hybrid prognostic method for system degradation based on
particle filter and relevance vector machine. Reliab Eng Syst Saf 2019;186:51–63.

[10] Zhu ZY. Improved particle filter algorithm based on importance density function
selection. In: Particle filter algorithm its application. 4nd ed. BeiJing, China:
Science Press; 2010. p. 37–8.

[11] Wei JW, Dong GZ, Chen ZH. Remaining useful life prediction and state of health
diagnosis for lithium-ion batteries using particle filter and support vector
regression. IEEE Trans Ind Electron 2018;65(7):5634–43.

[12] Mejdoubi AE, Chaoui H, Gualous H. Lithium-ion batteries health prognosis
considering aging conditions. IEEE Trans Power Electron 2019;34:6834–44.

[13] Chen Y, He YG, Li Z, Chen L, Zhang C. Remaining useful life prediction and state of
health diagnosis of lithium-ion battery based on second-order central difference
particle filter. IEEE ACESS 2020;8:37305–13.

Table 5
Battery RUL prediction error.

Battery Algorithm Start point RULp RULr RE

B0005 IPSO-SVR [34] 41 95 83 12
BL-ELM [35] 41 78 83 5
ISSA-SVR 41 77 83 6
VMD-ISSA-SVR 41 80 83 3
VMD-ISSA-MKSVR 41 84 83 1

B0006 IPSO-SVR [34] 41 72 68 4
BL-ELM [35] 41 65 68 3
ISSA-SVR 41 65 68 3
VMD-ISSA-SVR 41 67 68 1
VMD-ISSA-MKSVR 41 68 68 0

B0007 IPSO-SVR [34] 41 92 85 7
BL-ELM [35] 41 79 85 6
ISSA-SVR 41 78 85 7
VMD-ISSA-SVR 41 80 85 5
VMD-ISSA-MKSVR 41 85 85 0

B00018 IPSO-SVR [34] 41 67 56 11
BL-ELM [35] 41 67 56 11
ISSA-SVR 41 66 56 10
VMD-ISSA-SVR 41 64 56 8
VMD-ISSA-MKSVR 41 59 56 3

Table 6
RUL prediction results of four batteries with different start points.

Battery Algorithm RE51 RE41 RE31

B0005 IPSO-SVR [34] 10 12 ∞
BL-ELM [35] 8 5 20
ISSA-SVR 10 6 ∞
VMD-ISSA-SVR 2 3 16
VMD-ISSA-MKSVR 2 1 10

B0006 IPSO-SVR [34] 3 4 8
BL-ELM [35] 6 3 23
ISSA-SVR 4 3 9
VMD-ISSA-SVR 2 1 10
VMD-ISSA-MKSVR 1 0 2

B0007 IPSO-SVR [34] 8 16 ∞
BL-ELM [35] 7 6 8
ISSA-SVR 6 7 ∞
VMD-ISSA-SVR 6 5 7
VMD-ISSA-MKSVR 4 0 5

B00018 IPSO-SVR [34] 10 14 15
BL-ELM [35] 13 11 9
ISSA-SVR 12 10 10
VMD-ISSA-SVR 9 8 6
VMD-ISSA-MKSVR 2 3 1

Y. Chen et al. Green Energy and Intelligent Transportation 3 (2024) 100160

9



[14] Li QL, Li DZ, Zhao K, Wang L, Wang K. State of health estimation of lithium-ion
battery based on improved ant lion optimization and support vector regression.
J Energy Storage 2022;50:104215.

[15] Pang X, Huang R, Wen J, Shi Y, Jia J, Zeng J. A lithium ion battery RUL prediction
method considering the capacity regeneration phenomenon. Energies 2019;12(12).

[16] Yang H, Wang P, An Y, Shi C, Sun X, Wang K, et al. Remaining useful life prediction
based on denoising technique and deep neural network for lithium-ion capacitors.
eTransportation 2020;5:100078.

[17] Li W, Jiao Z, Du L, Fan W, Zhu Y. An indirect RUL prognosis for lithium-ion battery
under vibration stress using Elman neural network. Int J Hydrogen Energy 2019;
44(23):12270–6.

[18] Wang S, Yongcun F, Siyu J, Paul T, Carlos F. Improved anti-noise adaptive long
short-term memory neural network modeling for the robust remaining useful life
prediction of lithium-ion batteries. Reliab Eng Syst Saf 2023;230:108920.

[19] Li L, Liu Z, Tseng M, Chiu A. Enhancing the Lithium-ion battery life predictability
using a hybrid method. Appl Soft Comput 2019;74:110–21.

[20] Mengyun Z, Wang S, Yanxin X, Yang X, Hao X, Carlos F. Hybrid gray wolf
optimization method in support vector regression framework for highly precise
prediction of remaining useful life of lithium-ion batteries. Ionics 2023;29(9).

[21] LiX,YuanC,WangZ. State ofhealth estimation for Li-ionbatteryvia partial incremental
capacity analysis based on support vector regression. Energy 2020;203:117852.

[22] Feng X, Weng C, He X, Han X, Lu L, Ren D, et al. Online state-of-Health estimation
for li-ion battery using partial charging segment based on support vector machine.
IEEE Trans Veh Technol 2019;68(9):8583–92.

[23] Zhang S, Zhai B, Guo X, Wang K, Peng N, Zhang X. Synchronous estimation of state
of health and remaining useful lifetime for lithium-ion battery using the
incremental capacity and artificial neural networks. J Energy Storage 2019;26:
100951.1–100951.12.

[24] Zhao, Qin Qi, Zhao H, Feng W. A novel prediction method based on the support
vector regression for the remaining useful life of lithium-ion batteries.
Microelectron Reliab 2018;85:99–108.

[25] Cadini F, Sbarufatti C, Cancelliere F, Giglio M. State-of-life prognosis and diagnosis
of Lithium-ion batteries by data-driven particle filters. Appl Energy 2019;235:
661–72.

[26] Zhao L, Wang Y, Cheng J. A hybrid method for remaining useful life estimation of
Lithium-ion battery with regeneration phenomena. Appl Sci 2019;9(9):1890–905.

[27] Li F, Xu J. A new prognostics method for state of health estimation of Lithium-ion
batteries based on a mixture of Gaussian process models and particle filter.
Microelectron Reliab 2015;55(7):1035–45.

[28] Qin T, Zeng S, Guo J. Robust prognostics for state of health estimation of lithium-
ion batteries based on an improved PSO-SVR model. Microelectron Reliab 2015;
55(9–10):1280–4.

[29] Wang Y, Ni Y, Lu S, Wang J, Zhang X. Remaining useful life prediction of Lithium-
ion batteries using support vector regression optimized by artificial bee colony.
IEEE Trans Veh Technol 2019;68(10):9543–53.

[30] Li X, Zhang L, Wang Z, Dong P. Remaining useful life prediction for lithium-ion
batteries based on a hybrid model combining the long short-term memory and
Elman neural networks. J Energy Storage 2019;21:510–8.

[31] Jiang Y, Chen L, Zeng W, Xin Y. Adaptive weighted VMD-WPEE method of power-
electronic-circuit multiple-parameter-fault diagnosis. IEEE J Emerg Selec Topics
Power Electr 2020;(99):3878–90.

[32] Shi W, Wen G, Huang X, Zhang Z, Zhou Q. VMD-scale space based hoyergram and
its application in rolling bearing fault diagnosis. Measurement Science and
Technology 2020.

[33] Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search
algorithm. Sys Sci Contr Eng Open Access J 2020;8(1):22–34.

[34] Qin T, Zeng S, Guo J. Robust prognostics for state of health estimation of lithium-
ion batteries based on an improved PSO-SVR model. Microelectron Reliab 2015;55:
1280–4.

[35] Ma Y, Wu L, Guan Y, Peng Z. The capacity estimation and cycle life prediction of
lithium-ion batteries using a new broad extreme learning machine approach.
J Power Sources 2020;476:228581.

Y. Chen et al. Green Energy and Intelligent Transportation 3 (2024) 100160

10


	coversheet_template
	CHEN 2024 A hybrid data driven framework (VOR)

