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Abstract: Photoelectrochemical water splitting is one of the viable approaches to produce 
clean hydrogen energy from water. Herein, we report MoS2/Si-heterojunction (HJ) 
photocathode for PEC H2 production. The MoS2/Si-HJ photocathode exhibits exceptional 
PEC H2 production performance with a maximum photocurrent density of 36.33 mA/cm2, 
open circuit potential of 0.5 V vs. RHE and achieves improved long-term stability up to 10 h 
of reaction time. The photocurrent density achieved by MoS2/Si-HJ photocathode is 
significantly higher than most of the MoS2 coupled Si-based photocathodes reported 
elsewhere, indicating excellent PEC H2 production performance. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Solar-driven water splitting is one of the most promising approaches to utilize renewable 
energy to produce clean H2 fuel [1,2]. The water splitting method can be categorized into two 
approaches which include electrochemical and solar-driven photoelectrochemical (PEC) H2 
production [3-6]. In general, PEC cell consists of two essential components i) photo-
absorbing semiconductor to generate electron-hole pairs upon light illumination and ii) co-
catalyst that facilitates charge transfer from semiconductor to the electrolyte and thereby 
induce the H2 production process [7]. Among the wide range of light absorber materials, Si-
based photocathodes have been widely adopted because of its low cost in the conventional 
solar industry [8,9]. Moreover, many theoretical studies have been illustrated that Si with the 
appropriate band-gap can perfectly align with the water oxidation–reduction potential levels 
[10]. 

In the PEC systems, p-type Si has been widely used as a photocathode for PEC H2 
production due to its downward band-bending in electrolyte, inexpensive and suitable band 
gap (~1.1 eV) to absorb solar light effectively. However, p-Si/H2O junction causes an 
intrinsically low open-circuit voltage (Voc), which greatly hampers the solar to H2 conversion 
efficiency in PEC [9]. In contrast, replacing p-Si/electrolyte junction with a built-in p-n 
junction by adding an n+-layer to the p-Si can boost the photovoltage [11]. For example, 
Lewis demonstrated that the onset potential could be improved to about 0.56 V when Pt is 
used as a co-catalyst, and p-Si is used that features a high level of n+ surface doping [11]. 
This is because of the n+-layer provides a built-in depletion region at the semiconductor-
liquid junction [11]. Therefore, adding p+-Si layer on the back of the n+-p Si junction helps to 
facilitate the majority carrier collection, improving the device fill factor (FF) and overall 
performance [12]. 
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Platinum and other noble metals are the best-known electrocatalysts for hydrogen 
evolution reaction (HER), but the high cost and scarcity have significantly hindered their 
large-scale commercial usage [13,14]. Consequently, intensive research is devoted to 
exploring a new catalyst that possesses characteristics such as earth-abundant, inexpensive, 
and non-toxic and has a highly efficient catalytic performance towards HER. For example, 
metal alloys [15], chalcogenides [16], nitrides [17], phosphides [18], borides [19], transition 
metal dichalcogenides (TMDs) [20], perovskites [21], and carbides [22]. In fact, most of these 
new materials have only been utilized as standalone electrocatalysts, and few of them have 
been integrated with photocathodes for PEC H2 production [23]. Furthermore, the appearance 
of interfacial defect states causes charge recombination sites due to the unappropriated band 
alignment of the light absorber/co-catalyst/electrolyte bands [24]. Also, there are fabrication 
issues related to control the morphology, thickness, and uniform deposition when using the 
direct synthesis of co-catalyst on the light absorbing substrate [25]. Molybdenum disulfide 
(MoS2) as a co-catalyst has been widely integrated with Si photocathodes due to its 
electrochemical stability in the acidic environment, excellent HER activity, the direct 
controllable synthesis method, and favorable band-gap alignment with Si [26]. 

Herein, we demonstrate MoS2/Si-HJ as an efficient photocathode for PEC H2 production. 
The MoS2/Si-HJ photocathode shows an ability to address the shortcoming of each 
component. We have achieved a half cell solar-to-hydrogen (STH) conversion efficiency of 
5.57% under AM 1.5G illumination with a maximum photocurrent density of 36.33 mA/cm2 
and an onset potential of 0.5 V vs. RHE. Besides, the electrochemical impedance 
spectroscopy (EIS) elucidates that the integration of MoS2 significantly reduced the charge 
transfer resistance and thereby enhanced the PEC H2 production performance of MoS2/Si-HJ 
photocathode. Accordingly, the integration of Si (excellent light harvesting) and MoS2 (HER 
catalytic ability, and chemical protection) results in fabricating of an earth-abundant catalyst 
coupled photocathode that has an efficient and stable PEC H2 production characteristics. 

2. Experimental details 

2.1 Synthesis of MoS2 

The thermal annealing method was used for the synthesis of MoS2 [27]. The different 
concentrations of ammonium tetrathiomolybdate (0.5 to 1.5 M) was prepared in 
dimethylformamide (DMF) solution and subsequently ultra-sonicated for 30 min [28]. Then, 
the prepared precursor solution was spin coated (500 rpm for 30 s and then 1500 rpm for 45 s) 
on a fluorine-doped tin oxide (FTO) substrates and heated at 80 °C for 20 min in a vacuum 
oven. Afterward, the spin-coated MoS2 film was transferred into a tube furnace and annealed 
at 450 °C for one h under Ar: H2 (8:2) atmosphere to obtain MoS2 thin film [28]. Importantly, 
H2 gas plays a critical role to avoid creating MoO3 during the growth process and improves 
the MoS2 film quality. Equation (1) shows the thermal decomposition reaction involved for 
synthesis the MoS2 from the initial precursor [28]. 

 4 2 4 2 3 2 2( ) 2 2NH MoS H NH H S MoS+ → + +  (1) 

2.2 Fabrication of MoS2/Si-HJ photocathode 

The photocathode includes several components. Firstly, n-type layers of (100) Si wafer with a 
thickness of 150 μm contains a dopant concentration of 5 × 1015 cm−3 that were fabricated on 
both sides of the cell by using an electrodeless chemical etching process [Solution of 
potassium hydroxide (KOH, 45 vol. %) and isopropyl alcohol (IPA)] to create a micro-
pyramidal surface structure. Secondly, an emitter layer includes a 300 nm of p+-Si with a 
dopant concentration of 9 × 1019 cm−3 which is formed by utilizing the thermal diffusion of 
BCl3. Thirdly, the back surface field layer contains a 300 nm of n+-Si with the dopant 
concentration of 3 × 1020 cm−3 that is fabricated by the thermal diffusion process of POCl4. 
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By utilizing the techniques of atomic layer deposition and plasma-enhanced chemical vapor 
deposition, the 7 nm of Al2O3 and 50 nm of Si3N4 were deposited on the top of the emitter 
layer, respectively. Finally, both Al2O3 and Si3N4 layers were etched by HF, and then the 
photolithography and lift-off processes were applied to both materials, to deposit 300 nm of 
Ag on the top side of the cell. Furthermore, the p+-layer side function is to harvest the light 
(light harvesting layer), due to its nearest location to the interface of the p+-n junction 
position. Before MoS2 deposition, Si cell was treated with buffer oxide etchant (BOE) to 
remove the native oxide layer followed by O2 plasma for 3 min to make the hydrophilic Si 
surface for the better integration of MoS2 precursor with Si photocathode. MoS2 film on Si 
photocathode was prepared by drop-casting MoS2 precursor solution on the n+ side of Si and 
subsequently thermally annealed as described in MoS2 synthesis (section 2.1). 

For packing MoS2/Si-HJ photocathode, Ga-In eutectic alloy (Sigma-Aldrich) was 
deposited on the electrode to make an Ohmic contact. The photocathode was subsequently 
connected with a Cu wire using silver paste. Samples then were embedded in Epoxy (Hysol 
11C), and the only part that was covered with MoS2 was exposed to the electrolyte. Epoxy 
then was dried at 80 °C for 30 min. The sample areas were then measured through the ImageJ 
software before the PEC measurements. 

2.3 Characterizations 

Raman spectroscopy measurements were carried out using a micro-Raman spectrometer. The 
samples were excited with a visible light laser [wavelength (λ = 473 nm)]. An objective lens 
at 100x magnification was used to focus the excitation laser on the desired spot of the MoS2 
thin film. Photoluminescence (PL) spectra of MoS2 film was obtained using a Lab RAM 
micro-PL spectrometer. X-ray photoelectron spectroscopy (XPS) studies were carried out in a 
Kratos Axis Supra DLD spectrometer equipped with a monochromatic Al Ka X-ray source 
(hν = 1486.6 eV) operating at 150 W, a multi-channel plate and delay line detector under a 
vacuum of ~10−9 m bar. X-ray diffraction patterns (XRD) were collected at room temperature 
using a Bruker D8 Advance powder diffractometer (German Bruker) equipped with a Lynx- 
Eye detector and a Cu source. We used a field-emission scanning electron microscope (FE-
SEM, Magellan and FEI) to observe the surface morphology. The TEM instrument used for 
this study was a probe Cs-corrected FEI-ST Titan 80−300 kV (ST) microscope. The high 
angle annular dark field-scanning electron microscopy (HAADF-STEM) were obtained using 
Titan Themis-Z TEM (TFS) at an operating voltage of 300 kV. 

2.4 Electrochemical and photoelectrochemical (PEC) measurements 

We evaluated the HER activity of the MoS2 thin film at 25 °C in 0.5 M H2SO4 electrolyte 
using a standard three-electrode system, consists a MoS2 electrode as the working electrode, 
Pt wire as the counter electrode, and Ag/AgCl (1 M KCl) as the reference electrode. All 
electrode potentials were converted with respect to RHE scale, according to Eq. (2). Also, all 
the HER curves were iR corrected to reflect the intrinsic behaviors of the catalysts. 

 ( ) / 0.197RHE Ag AgClE E V= +  (2) 

The electrochemical impedance spectroscopy (EIS) of the samples were measured at a 
frequency changing from 200 KHz to 100 MHz. For PEC measurements, AM 1.5G 
illumination was achieved with a 150 W halogen-lamp-based solar simulator. The 
chronoamperometry measurement was carried out using a three-electrode cell under one sun 
illumination in 0.5 M H2SO4. The amount of H2 gas evolved during PEC experiments was 
measured using an online gas chromatography instrument (Agilent Technologies, 7890B GC 
system equipped with TCD detector). 
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high current density. For example, 1M MoS2 exhibits an overpotential of 0.191 V to attain 60 
mA/cm2, which is smaller than the overpotential of MoS2 prepared using 0.5M MoS2 and 
1.5M MoS2 catalysts to achieve same current density. Based on the HER performance, MoS2 
catalyst prepared using 1M initial precursor solution was found to be the optimized HER 
catalyst. Moreover, the observed overpotential is almost similar to that of previously reported 
metallic MoS2 nanosheets [38]. In order to gain more insights in reaction kinetics during 
HER, Tafel slope values were extracted from Tafel plots as shown in Fig. 2(b). The Tafel 
slope value of 1 M MoS2 electrode is calculated to be 64 mV/decade, while 0.5 M and 1.5 M 
MoS2 shows high Tafel values of 96 and 81 mV/decade, respectively. The smallest Tafel 
value offered by 1 M MoS2 suggests that the mechanism of hydrogen adsorption/desorption is 
close to the Heyrovsky reaction regime (40 mV/decade) and the rate-limiting step here is the 
electrochemical desorption step [39]. Moreover, the Tafel value noted for 1 M MoS2 quite 
agrees with previous reports of MoS2 crystals, which range from 55 to 60 mV/ decade [40]. 
Overpotential and Tafel slope values comparison shows that 1 M MoS2 is found to be 
optimized to achieve improved HER activity [Fig. 2(c)]. Stability is one of the most important 
factors used to evaluate the performance of a robust catalyst. Figure 2(d) shows 
chronoamperometry measurement that was used to analyze the long-term stability of the 1 M 
MoS2 electrode at an overpotential of −0.1 V vs. RHE. The 1M MoS2 is found to be stable up 
to 20h of continuous reactions with slight degradation in its performance, indicating excellent 
stability of MoS2 in acidic environment. 

A top view scanning electron microscopy (SEM) image of MoS2 film reveals a 
continuous, ordered and compressed, featuring grains that cover the entire n+ side of Si cell 
[Fig. 3(a)]. As shown in Fig. 3(b), SEM image of the front side of Si cell shows micro-
pyramidal structure. Figure 3(c) shows the SEM image of MoS2/Si-HJ PEC cell in which a 
conformal and smooth MoS2 thin film catalyst is uniformly covered the Si micro-pyramidal 
surface with a thickness of ~1–1.5 µm. In addition, top view TEM shows that the thick flakes 
of MoS2 with different sizes are covered the pyramidal Si surface [Fig. 3(c) inset]. Figures 
3(d)-3(f) depicts the HR-TEM images of MoS2/Si-HJ. The lattice fringes values (0.607 nm 
and 0.31 nm) correspond to MoS2 noted in Figs. 3(d) and 3(e) indicates the successful 
integration of MoS2 with Si. Also, the HR-TEM images confirm the nanosheets layer-by-
layer growth mode on the faceted n+-Si layer where the interface area appeared between the 
two materials. Figures 3(g) and 3(h) depict the HR-TEM image and its corresponding EDX 
mapping image at the interface between MoS2 and Si. The HAADF-STEM image and its 
EDX mapping further reconfirm the integration of MoS2 with Si. Furthermore, the mapping 
images confirm the existence of Mo, S and Si elements in MoS2/Si-HJ [Figs. 3(i) and 3(l)]. 
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MoS2/Al2O3/n
+p-Si 

0.5 M 
H2SO4 

+ 0.35 34.5 40 [44] 

1T-MoS2/p-Si 
0.5 M 
H2SO4 

+ 0.25 17.6 3 [26] 

MoSx /Ti /n+p-Si 
1 M 

HClO4 
+ 0.33 16 

1 
 

[45] 

MoS2/TiO2/Si NW 
0.5 M 
H2SO4 

+ 0.30 15 
75 
 

[46] 

Si/a-CoMoSx 
Phosphate 
solution 

+ 0.25 17.5 3 [47] 

MoS2 /p-Si 
in wafer scale 

0.5 M 
H2SO4 

- 0.79 V 24.6 
10 000 

Seconds 
[48] 

MoS2 /Al2O3/n
+p-Si 1 M HClO4 + 0.4 V 35.6 120 [49] 

Si nanowires/MoS2 0.5 M H2SO4 + 0.26 V 16.5 48 [50] 

4. Conclusion 

In conclusion, MoS2/Si-HJ photocathode reported herein exhibited a maximum half-cell ηSTH 
of 5.5% with a high photocurrent density of 36.33 mA/cm2, an open circuit potential of 0.5 V 
vs. RHE, and stability up to 10 h of continuous reaction time. The EIS measurement 
demonstrated that the integration of MoS2 significantly reduced the charge-transfer 
resistances across either the MoS2/Si-HJ interface or the MoS2/electrolyte interface and 
thereby significantly enhance the PEC H2 production efficiency. The excellent PEC H2 
production performance of the integrated photocathode provides a promising alternative for 
non-noble metal co-catalysts toward solar-driven hydrogen production. Importantly, this will 
also lead to additional research and exploration to employ the semiconducting metal 
chalcogenides for PEC applications. 
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