GANESH BABU, S., VINOTH, R., SURYA NARAYANA, P., BAHNEMANN, D. and NEPPOLIAN, B. 2015. Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. *APL materials* [online], 3(10), article number 104415. Available from: https://doi.org/10.1063/1.4928286 ## Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. GANESH BABU, S., VINOTH, R., SURYA NARAYANA, P., BAHNEMANN, D. and NEPPOLIAN, B. 2015 The supplementary material published alongside this article has been included at the end of the file. ## Reduced graphene oxide wrapped Cu₂O supported on C₃N₄: An efficient visible light responsive semiconductor photocatalyst S. Ganesh Babu, ¹ R. Vinoth, ¹ P. Surya Narayana, ¹ Detlef Bahnemann, ² and B. Neppolian ^{1,a} ¹SRM Research Institute, SRM University, Kattankulathur, Chennai 603203, India ²Institute of Technical Chemistry, Leibniz University of Hannover, D-30167 Hannover, Germany (Received 29 April 2015; accepted 26 July 2015; published online 25 August 2015) Herein, Cu_2O spheres were prepared and encapsulated with reduced graphene oxide (rGO). The Cu_2O –rGO– C_3N_4 composite covered the whole solar spectrum with significant absorption intensity. rGO wrapped Cu_2O loading caused a red shift in the absorption with respect to considering the absorption of bare C_3N_4 . The photo-luminescence study confirms that rGO exploited as an electron transport layer at the interface of Cu_2O and C_3N_4 heterojunction. Utmost, ~2 fold synergistic effect was achieved with Cu_2O –rGO– C_3N_4 for the photocatalytic reduction of 4-nitrophenol to 4-aminophenol in comparison with Cu_2O –rGO and C_3N_4 . The Cu_2O –rGO– C_3N_4 photocatalyst was reused for four times without loss in its activity. © 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4928286] Semiconductor photocatalysis technique is one of the best environmental friendly methods for the degradation of organic pollutants, removal of heavy metals, water purification, and disinfection. ¹⁻³ Owing to the non-toxicity, chemical stability, insolubility in water, and the favorable optical property, titania (TiO2) is regarded as the promising material to approach the universal energy and environmental crises.^{4,5} Unfortunately, TiO₂ can only be excited by ultraviolet (UV) light, which limits its application to a great extend. Many approaches have been proposed to make the TiO₂ as visible light active: metal ion implanted TiO₂, reduced TiO_x photocatalysts, non-metal doped TiO₂, composites of TiO₂ with semiconductor having lower band gap energy, sensitizing of TiO₂ with dyes, and TiO₂ with luminescence agent.^{7–12} On the other hand, a great research effort is being taken to replace the UV light active TiO₂ photocatalyst with the visible light active stable photocatalysts. Recently, Wang et al. reported a novel metal free polymer material and graphitic carbon nitride (g-C₃N₄) for the production of H₂ by splitting of water via photocatalysis. ¹³ Because of its lower band gap energy, g- C_3N_4 ($E_g = 2.7 \text{ eV}$) can absorb natural sunlight and thereby active under visible light. More interestingly, C₃N₄ possesses more favorable properties to be a suitable photocatalyst such as extremely thermally stable, chemically inert, and resistive towards photocorrosion. 14 High recombination rate of electron-hole pairs makes the pristine C₃N₄ to be less efficient under visible light irradiation that limits its energy and environmental applications. Furthermore, C₃N₄ suffers with inadequate photon absorption capability after ~460 nm. ¹⁵ Many methods have been developed to overcome the above two demerits such as doping of metals or non-metals and combining with graphene. 16,17 Hence, to make the C₃N₄ photocatalyst more efficient, copper(I) oxide (Cu₂O) is deposited on the surface of C₃N₄. It is well known that Cu₂O is a promising visible light active photocatalyst due to its low band gap energy (2.2 eV), nontoxicity, and natural abundance. 18 For example, Tion et al. reported the preparation of C₃N₄/Cu₂O heterojunction and its photocatalytic studies for the degradation of methyl orange dye under visible light irradiation.¹⁹ ^a Author to whom correspondence should be addressed. Electronic mail: neppolian.b@res.srmuniv.ac.in FIG. 1. Schematic illustration for the preparation of Cu₂O-rGO-C₃N₄ photocatalyst. To enhance the reactivity of the photocatalyst or to reduce the charged carrier recombination, rGO was used as a potential carbonaceous solid support in many of the photocatalytic systems. ²⁰ But insertion of the rGO exactly at the interfacial of the two heterojunction is another key challenge. Hence, in this particular research work, Cu₂O spheres were wrapped with rGO layer and then deposited on the surface of C₃N₄, so that the rGO layers are precisely in between the p-n heterojunction of Cu₂O and C₃N₄. So, rGO effectively increased the charged carrier mobility in the interfacial region of the two semiconducting materials. To prove the efficacy of the prepared composite, photocatalytic reduction of 4-nitrophenol was performed under visible light irradiation which is an important organic reaction as per industrial perspective. The schematic representation for the preparation of Cu_2O –rGO– C_3N_4 photocatalyst is illustrated in Figure 1. Cu_2O spheres were prepared by simple wet solution method using $Cu(CH_3COO)_2$ - H_2O , glucose, and polyvinyl pyrolidone. The as-prepared Cu_2O spheres were characterized by scanning electron microscope - energy dispersive spectroscopy (SEM-EDS) analysis. As depicted in Figure 2(a), the Cu_2O possesses exact spherical in shape. This hierarchical spherical structure made the wrapping of rGO extremely straightforward. More importantly, no defective spots were identified in the spherical structure which emphasized the reliability of this preparation protocol [Figures 2(b)-2(d)]. Furthermore, the purity of the sample was estimated by EDS analysis which confirmed the presence of Cu and O (the elemental C peak came from double side carbon tape used as a sample holder for SEM-EDS measurements) [Figure 2(e)]. In order to find the phase purity of the prepared Cu_2O spheres, XRD analysis was carried out and the pattern exactly resembled the XRD pattern of Cu_2O (JCPDS card number is 77-0199). More importantly, no peaks were observed with respect to the CuO, which confirmed the complete reduction of Cu^{2+} ($Cu(CH_3COO)_2$ - H_2O) to Cu^+ (Cu_2O) [Figure 2(f)]. Price Cu_2O (Cu_2O) [Figure 2(f)]. XRD patterns of Cu₂O, (3-Aminopropyl)triethoxysilane (APTES) modified Cu₂O, Cu₂O–rGO, Cu₂O-rGO-C₃N₄ and C₃N₄ are depicted in Figure 3. As discussed previously, the XRD peaks of phase pure primitive lattice Cu₂O spheres were observed. The XRD pattern of surface modified Cu₂O using APTES precisely resembled with the pure Cu₂O spheres that revealed that surface modification only generated positive charges on the surface of Cu₂O spheres but not created any changes in the phases and oxidation states. However, while wrapping the rGO layer onto the surface of Cu₂O spheres, a new XRD peak centered at $2\theta = 38.74^{\circ}$ was appeared, corresponding to the (111) plane of CuO.^{23,24} This oxidation of Cu₂O to CuO occurred during the calcination process. Nevertheless, the intensity of the peak was very less which authenticated that the over-oxidation was very minimal because the calcination performed under inert condition (in presence of N₂ atmosphere). It is worth to mention here that no authenticated peaks were observed for rGO in the XRD spectra of both Cu₂O-rGO and Cu₂O-rGO-C₃N₄ photocatalysts which might be due to the lowest loading of GO (1%). The additional two peaks in the XRD pattern of Cu₂O-rGO-C₃N₄ photocatalyst at 13.05° and 27.55° were corresponded to the (001) and (002) planes of graphitic C₃N₄ (g-C₃N₄), respectively.²⁵ This was further confirmed by comparing the XRD spectrum of bare $g-C_3N_4$ as shown in Figure 3. Figure 4 represents the SEM images of APTES modified Cu₂O, Cu₂O-rGO and Cu₂O-rGO-C₃N₄ photocatalysts. It is seen that APTES not only created positive charges on the surface of Cu₂O spheres but also reduced the particle size which is clearly evident from the SEM images of FIG. 2. (a)-(d) SEM images of hierarchically structured Cu_2O spheres with different magnifications. (e) EDX graph [inset: elemental wt. % table] and (f) XRD pattern of Cu_2O spheres. APTES modified Cu_2O [Figures 4(a) and 4(b)]. This size contraction might be due to the existence of more positive charges on the surface of Cu_2O . Presence of rGO layer in Cu_2O –rGO photocatalyst was verified by the SEM images as shown in Figure 4(c). Complete wrapping of rGO over Cu_2O spheres were confirmed from the Figure 4(d). Nonetheless, only a meager amount of free rGO layers were identified at the background which authenticated the complete utilization of rGO for the wrapping of Cu_2O spheres. The SEM images of Cu_2O -rGO- C_3N_4 composite are depicted in Figures 4(e) and 4(f). In addition, even after introducing C_3N_4 , the spherical morphology of Cu_2O was maintained. Furthermore, the SEM results revealed that the rGO wrapped Cu_2O spheres were dispersed homogeneously on the surface of C_3N_4 . In order to understand the absorption behavior and band gap of Cu_2O , C_3N_4 and Cu_2O –rGO– C_3N_4 , ultraviolet-visible (UV-vis) spectroscopy was studied in diffused reflectance spectroscopy (DRS) mode. The results are shown in Figure 5. The absorption range was restricted to 460 and FIG. 3. XRD patterns of Cu₂O, APTES modified Cu₂O, Cu₂O-rGO, Cu₂O-rGO-C₃N₄, and C₃N₄. 600 nm for pristine Cu_2O and C_3N_4 , respectively, which was in good agreement with the literature reports. ^{27,28} But the Cu_2O –rGO– C_3N_4 composite covered almost the whole solar spectrum that favors the material to be photoactive [Figure S1(a) in the supplementary material]. ³⁶ The absorption intensity was also remarkably increased after loading Cu_2O –rGO to C_3N_4 and appeared as a red shift in comparison with bare C_3N_4 . The adsorption edge of pristine C_3N_4 was 450 nm which can be assigned to the band gap energy of 2.75 eV [Figure S1(b) in the supplementary material]. ³⁶ Bare Cu_2O possesses the band gap energy of 2.20 eV [Figure S1(c) in the supplementary material]. ³⁶ Similarly, the absorption edge of Cu_2O –rGO– C_3N_4 photocatalyst was about 477 nm and the calculated band gap was 2.60 eV [Figure S1(d) in the supplementary material]. ^{29,36} Photoluminesence (PL) spectroscopy is one of the powerful tools to examine the charge transfer, migration, and extend of separation in photocatalysts. Figure 5 shows the PL spectra of pure C₃N₄, Cu₂O, Cu₂O–rGO, and Cu₂O–rGO–C₃N₄ photocatalysts. In the PL spectrum of pristine C₃N₄, a peak centered at 450 nm, corresponding to the band gap of C₃N₄.²⁹ The other three materials, namely, Cu₂O, Cu₂O–rGO, and Cu₂O–rGO–C₃N₄ showed broad PL emission peak from 500 to 700 nm. Very importantly, the peak intensity at this region was in the order of Cu₂O > Cu₂O–rGO > Cu₂O–rGO–C₃N₄ which confirmed that the charged carriers recombination was very high in pristine Cu₂O. It is well known fact that rGO has higher carrier mobility and thereby reduced the recombination rate in Cu₂O–rGO photocatalyst. As a result, the peak intensity was lesser for Cu₂O–rGO than bare Cu₂O. But the peak intensity was decreased further by adding C₃N₄ to Cu₂O–rGO. It is worth to mention here that the Cu₂O–rGO–C₃N₄ photocatalyst showed two PL emission peaks at around 500 to 700 nm and 450 nm which were emerged because of Cu₂O and C₃N₄, respectively. Astonishingly, both the emission peaks were suppressed that inferred that the recombination of charged carriers was completely prevented. All the characterization techniques results, especially the optical studies (UV-vis DRS and PL), indicate that Cu_2O –rGO– C_3N_4 can be a very good material for visible light active photocatalytic reactions. Therefore, photocatalytic reduction of 4-nitrophenol to 4-aminophenol was performed in presence of Cu_2O –rGO– C_3N_4 photocatalyst under visible light irradiation. For comparison, the photocatalytic reduction of 4-nitrophenol was performed using bare Cu_2O , rGO wrapped Cu_2O , pure C_3N_4 , Cu_2O – C_3N_4 , and Cu_2O –rGO– C_3N_4 (Figure 6). Among the photocatalysts used, bare Cu_2O showed lesser activity whereas the rGO wrapping increased the photocatalytic reduction property of Cu_2O . But the activity was comparatively lesser than the photocatalytic reduction of 4-nitrophenol using pristine C_3N_4 . The photocatalytic activity of pristine C_3N_4 was increased slightly by loading bare Cu_2O (without rGO) spheres. However, the Cu_2O –rGO– C_3N_4 composite exhibited maximum reduction of 4-nitrophenol. This can be well explained by the fact that the recombination rate was $FIG.\ 4.\ SEM\ images\ of\ (a)\ and\ (b)\ APTES\ modified\ Cu_2O\ (c)\ and\ (d), rGO\ wrapped\ Cu_2O,\ and\ (e)\ and\ (f)\ Cu_2O-rGO-C_3N_4\ composites.$ completely prevented in Cu_2O –rGO– C_3N_4 photocatalyst as evident by the PL studies (Figure 5) and also that it possessed utmost visible light absorption capability as supported by the UV-vis DRS absorption spectrum [Figure S1(a) in the supplementary material]. Based on the results, a tentative mechanism was proposed for the photocatalytic reduction of 4-nitrophenol using Cu_2O –rGO– C_3N_4 photocatalyst in presence of sodium sulfite under visible light irradiation (Figure 7). Both Cu_2O and C_3N_4 are visible light active photocatalysts and hence electron-hole pairs were generated in both the catalysts under visible light irradiation. The conduction band (CB) and valance band (VB) energy levels of Cu_2O are -0.7 V and 1.3 V, respectively.³⁰ FIG. 5. Photoluminescence spectra of C₃N₄, Cu₂O, Cu₂O-rGO, and Cu₂O-rGO-C₃N₄ photocatalysts. Since Cu_2O is a p-type semiconductor, the Fermi level energy is close to the $VB.^{31}$ On the other hand, the CB and VB potential of C_3N_4 are -1.13 V and 1.57 V, respectively. But the Fermi level is nearer to the CB because it is an n-type semiconductor. Apparently, the band structure of Cu_2O and C_3N_4 is not suitable for the formation of heterojunction. Nevertheless, when the rGO wrapped Cu_2O deposited on the surface of C_3N_4 , the band structures were modified in such a way to reach the equilibrium between the Fermi levels of C_3N_4 and $Cu_2O.^{34}$ The negatively charged carriers move to the positive field (n-type C_3N_4) and the positive carriers migrate to the negative field (p-type Cu_2O). In other words, the CB of C_3N_4 behaved as a sink for the photogenerated electrons and subsequently the holes accumulated in the VB of $Cu_2O.^{35}$ Presence of rGO facilitated this carrier transport as strongly supported by the PL studies (Figure 5) and thereby increased the photocatalytic activity. The holes were utilized for the conversion of SO_3^{2-} to SO_3^{-} . On the other hand, the photoexcited electrons involved in the reduction of 4-nitrophenol to 4-aminophenol. FIG. 6. Photocatalytic reduction of 4-nitrophenol to 4-aminophenol in presence of different photocatalysts. FIG. 7. Plausible mechanism for the photocatalytic reduction of 4-nitrophenol to 4-aminophenol using Cu₂O-rGO-C₃N₄ photocatalyst in presence of sodium sulfite. In conclusion, rGO wrapped Cu_2O spheres were synthesized and loaded over C_3N_4 photocatalyst. By this synthetic route, the rGO was placed exactly at the interfacial of Cu_2O and C_3N_4 heterojunction and hence the photogenerated carrier migration became very rapid which was authenticated by the PL studies. As a result of this, the photocatalytic reduction ability of Cu_2O –rGO– C_3N_4 was enhanced ~2 fold synergistically as compared with that of the bare C_3N_4 and Cu_2O –rGO photocatalysts. A tentative mechanism was proposed for the reduction of 4-nitrophenol using Cu_2O –rGO– C_3N_4 photocatalyst under visible light irradiation. Photocatalyst recyclability was scrutinized for four times without any measurable loss in its photocatalytic activity. We acknowledge financial support from the SERB (No. SR/FT/CS-127/2011), DST, New Delhi, India. We also acknowledge Professor B. Viswanathan, National Centre for Catalysis Research, IIT-Chennai for XPS analysis. - ¹ P. V. Kamat, Chem. Rev. **93**, 267 (1993). - ² S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65 (2003). - ³ J. Nisar, B. Pathak, and R. Ahuja, Appl. Phys. Lett. **100**, 181903 (2012). - ⁴ H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Catal. Today 84, 191 (2003). - ⁵ A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. **95**, 735 (1995). - ⁶ M. Suzuki, T. Ito, and Y. Taga, Appl. Phys. Lett. **78**, 3968 (2001). - ⁷ M. D. H. A. Fuerte, A. J. Maira, A. Martinez-Arias, M. Fernadez-Garcia, J. C. Conesa, and J. Soria, Chem. Commun. 24, 2718 (2001). - ⁸ K. Takeuchi, I. Nakamura, O. Matsumoto, S. Sugihara, M. Ando, and T. Ihara, Chem. Lett. 29, 1354 (2000). - ⁹ J. C. Yu, L. Zhang, Z. Zheng, and J. Zhao, Chem. Mater. **15**, 2280 (2003). - ¹⁰ T. Hirai, K. Suzuki, and I. Komasawa, J. Colloid Interface Sci. 244, 262 (2001). - ¹¹ D. Chatterjee and A. Mahata, Appl. Catal., B **33**, 119 (2001). - ¹² J. Wang, T. Ma, G. Zhang, Z. Zhang, X. Zhang, Y. Jiang, G. Zhao, and P. Zhang, Catal. Commun. 8, 607 (2007). - ¹³ X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2009). - ¹⁴ Y. Wang, X. Wang, and M. Antonietti, Angew. Chem., Int. Ed. **51**, 68 (2012). - ¹⁵ S. C. Yan, S. B. Lv, Z. S. Li, and Z. G. Zou, Dalton Trans. **39**, 1488 (2010). - ¹⁶ S. Yan, Z. Li, and Z. Zou, Langmuir **26**, 3894 (2010). - ¹⁷ X. Li, J. Chen, X. Wang, J. Sun, and M. Antonietti, J. Am. Chem. Soc. **133**, 8074 (2011). - ¹⁸ L. F. Gou and C. J. Murphy, Nano Lett. **3**, 231 (2003). - ¹⁹ Y. Tian, B. Chang, J. Fu, B. Zhou, J. Liu, F. Xi, and X. Dong, J. Solid State Chem. **212**, 1 (2014). - ²⁰ B. Neppolian, A. Bruno, C. L. Bianchi, and M. Ashokkumar, Ultrason. Sonochem. 19, 9 (2012). - ²¹ S. G. Babu, R. Vinoth, D. P. Kumar, M. V. Shankar, H.-L. Chou, K. Vinodgopal, and B. Neppolian, Nanoscale 7, 7849 - ²² S. G. Babu, R. Vinoth, B. Neppolian, D. D. Dionysiou, and M. Ashokkumar, J. Hazard. Mater. **291**, 83 (2015). - ²³ S. G. Babu and R. Karvembu, Ind. Eng. Chem. Res. **50**, 9594 (2011). - ²⁴ S. G. Babu, N. Neelakandeswari, N. Dharmaraj, S. D. Jackson, and R. Karvembu, RSC Adv. 3, 7774 (2013). - ²⁵ J. Zhu, Y. Wei, W. Chen, Z. Zhao, and A. Thomas, Chem. Commun. **46**, 6965 (2010). - ²⁶ J. S. Lee, K. H. You, and C. B. Park, Adv. Mater. **24**, 1084 (2012). - ²⁷ Y. Zhang, T. Mori, L. Niu, and J. Ye, Energy Environ. Sci. **4**, 4517 (2011). - Y. Bai, T. Yang, Q. Gu, G. Cheng, and R. Zheng, Powder Technol. 227, 35 (2012). J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang, and L. Guo, Appl. Catal., B 152–153, 335 (2014). - ³⁰ J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, and X. Wang, Energy Environ. Sci. 4, 675 (2011). - ³¹ A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, Nat. Mater. **10**, 456 (2011). - ³² L. Ge, C. Han, and J. Liu, Appl. Catal., B **108–109**, 100 (2011). - ³³ P. Wang, Y. H. Ng, and R. Amal, Nanoscale **5**, 2952 (2013). - ³⁴ Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, ACS Appl. Mater. Interfaces 2, 2915 (2010). ³⁵ J. Cao, X. Li, H. Lin, S. Chen, and X. Fu, J. Hazard. Mater. 239–240, 316 (2012). - ³⁶ See supplementary material at http://dx.doi.org/10.1063/1.4928286 for detailed experimental procedures for the preparation of materials, instrumental parameters and some of the results. ## Reduced graphene oxide wrapped Cu₂O supported on C₃N₄: An efficient visible light responsive semiconductor photocatalyst S. Ganesh Babu,¹ R. Vinoth,¹ P. Surya Narayana,¹ Detlef Bahnemann,² and B. Neppolian^{1,*} ¹SRM Research Institute, SRM University, Kattankulathur, Chennai 603203, India ²Institute of Technical Chemistry, Leibniz University of Hannover, D-30167, Hannover, Germany **Supplemental Material** Graphite powder (synthetic, conducting grade, 325 mesh, 99.9995%) was obtained from Alfa Aesar. Cupric acetate (Cu(CH₃COO)₂·H₂O) was procured from Loba Chemie Pvt. Ltd. 3-aminopropyltriethoxysilane (APTES), glucose (C₆H₁₂O₆), polyvinylpyrrolidone (PVP, K-30) and 4-nitrophenol were purchased from Sigma Aldrich. N,N-dimethylformamide (DMF), isopropanol, NaNO₃, KMnO₄, H₂SO₄ and H₂O₂ were purchased from Rankem, India. Milli-Q ultrapure water through Q-POD (Merck Millipore system, conductivity 18.2 MΩ) was used in all experiments. An ultrasonic bath (WENSAR, 40 kHz and 25 L capacity, India) was used for the homogenous dispersion of graphene oxide (GO) in water. Graphene oxide (GO) was prepared from graphite using NaNO₃, KMnO₄, H₂SO₄ and H₂O₂ by following modified Hummer's method. Cu₂O spheres were prepared by following the literature procedure. In detail, 8 mmol of Cu(CH₃COO)₂·H₂O and 6 mmol of PVP(K-30) were dissolved in DMF (120 mL). 8.5 mmol of Glucose was added to the above solution as a reducing agent for the reduction of Cu²⁺ to Cu⁺. The solution was stirred vigorously for for 30 min at 27 °C. Then the whole mixture was heated to 85 °C and stirred for 3 min at this temperature and thereby the color of the mixture became tan. The final product was centrifuged, washed with alcohol and water several times to get pure Cu₂O spheres. The as-prepared Cu₂O spheres were surface modified using APTES. Typically, 0.1 g of Cu₂O spheres was homogeneously dispersed in 9.9 mL of isopropanol by ultrasonication. Then 0.1 mL of APTES was added into the above mixture and stirred at 27 °C for 24 h. The final solution was centrifuged and washed several times with ethanol. For the preparation of 1% rGO loaded Cu₂O spheres, 1 mg of GO was ultrasonicated in deionized water (5 mL) for 1 h. To this solution, 0.1 g of APTES surface modified Cu₂O spheres were added and stirred for 3 h at 27 °C. Then the solution was centrifuged, washed with water and dried at room temperature. For the reduction of GO to reduced GO (rGO), the final powder sample was calcinated at 350 °C with the increasing temperature rate of 2 °C/min under a flowing N₂ atmosphere. rGO wrapping was restricted to 1% mainly because higher amount of rGO loading covers the whole Cu₂O spheres (make the sample more black) and prevent the penetration of light to fall on Cu₂O spheres. Pyrolysis synthetic route was followed for the preparation of C₃N₄.³ 3 g of melamine was crushed completely in a pastel-mortar for 30 min and then transferred into a crucible which covered semi-closely with a lid to prevent sublimation of melamine, heated in a muffle furnace at 500 °C with the heating rate of 20 °C/min that was kept at this temperature for 4 h. Then the temperature was raised further to 520 °C at the rate of 10 °C/min, and kept at this temperature for 2 h. The sample was allowed to cool naturally to room temperature. The yellow polymer that obtained by this pyrolysis were ground into powder. Cu₂O-rGO-C₃N₄ photocatalysts were prepared by following the wet impregnation technique. The required amount of rGO wrapped Cu₂O spheres (5, 10, 15 and 20%) were mixed with C₃N₄ that dispersed in water. The solution was ultrasonicated for 5 min for the homogenous mixing and then stirred at 80 °C to evaporate water completely. The crystal structure of C₃N₄, Cu₂O, Cu₂O-rGO and Cu₂O-rGO-C₃N₄ photocatalysts were studied using PANaltical X'pert powder diffractometer (XRD) recorded with Cu Kα radiation. UV-vis DRS measurements were carried out over Specord-200 plus UV-vis spectrophotometer, Germany in DRS mode. The hierarchy, surface morphology and elemental weight percentage were determined by FESEM and EDS analysis, respectively (FEI Quanta FEG 200 HR-SEM which operated at 20 kV). TEM analysis was performed using a JEM-2100 JEOL (Japan) with an accelerating voltage of 120 kV. Photoluminescence (PL) studies were performed using Jasco FP- 8300 spectrophotometer in the wavelength range, 300–800 nm using an excitation wavelength of 280 nm. Fourier Transform Infrared (FT-IR) spectra were recorded using Perkin-Elmer-USA. Photocatalytic reduction of 4-nitrophenol was performed in a quartz photoreactor system containing 15 ppm of 4-nitrophenol (100 mL), Na₂SO₃ (200 mg, 0.025 M) and 50 mg of the photocatalyst powder. The mixture was stirred under dark for 90 min at 400 rpm to reach adsorption-desorption equilibrium. Then, the suspension was irradiated with an external light source (150 W tungsten lamp) which emitting wavelength (λ) of > 420 nm. The photocatalytic reduction of 4-nitrophenol was estimated using Specord-200 plus UV-vis spectrophotometer by following the disappearance of the absorption band at 400 nm. Figure S1 shows the absorbance spectroscopic results of bare C₃N₄, bare Cu₂O and Cu₂O-rGO-C₃N₄, and also gives the clear picture of Tauc plot of C₃N₄, Cu₂O and Cu₂O-rGO-C₃N₄ composites. Figure S1. (a) Absorbance spectroscopic results of bare C₃N₄, bare Cu₂O and Cu₂O-rGO-C₃N₄, and Tauc plot of (b) C₃N₄, (c) Cu₂O and (d) Cu₂O-rGO-C₃N₄ composite. Figure S2 depicts the FTIR spectra of Cu₂O, C₃N₄, APTES Cu₂O, Cu₂O-rGO and Cu₂O-rGO-C₃N₄ photocatalysts. Pure C₃N₄ showed a characteristic band centred at 807 cm⁻¹ which might be due to the out-of-plane bending vibration of the triazine rings. The bands in the region of 800-1250 cm⁻¹ were allocated to the typical stretching modes of C-N heterocylces. FTIR spectra of C₃N₄ based photocatalysts exhibited peaks at 806, 883 and 1242 cm⁻¹ which were assigned to the C-N stretching. Similarly, the Cu-O stretching band was observed around 627 cm⁻¹ in pure Cu₂O, APTES modified Cu₂O, Cu₂O-rGO photocatalysts. Nevertheless, the intensity of Cu-O stretching band was comparatively less in Cu₂O-C₃N₄-rGO photocatalyst as compared to that of the other Cu₂O loaded photocatalysts (pure Cu₂O, APTES modified Cu₂O, Cu₂O-rGO photocatalysts) which was exactly owing to the lesser loading of Cu₂O in Cu₂O-C₃N₄-rGO photocatalyst. The oxygen rich functional groups especially the -C-O, -C=O and -C-O-C- bonds bending and stretching frequencies of rGO were observed at around 1220 to 1670 cm⁻¹. Likewise the O-H stretching band of hydroxyl group present in the rGO was renowned at around 3450 cm⁻¹. Figure S2. FTIR spectra of Cu₂O, C₃N₄, APTES Cu₂O, Cu₂O-rGO and Cu₂O-rGO-C₃N₄ photocatalysts. Figure S3 shows the TEM image of Cu₂O-rGO-C₃N₄ photocatalyst. The TEM image clearly confirmed the presence of Cu₂O spheres. Moreover, a thin layer of rGO was wrapped with rGO which was inferred from TEM image. This rGO wrapped Cu₂O spheres were firmly anchored on the surface of C₃N₄. Furthermore, the rGO layer was placed exactly at the interface of Cu₂O and C₃N₄ interfacial heterojunction. Very interestingly, the porous nature of the C3N4 photocatlyst was also evidenced from the TEM image. This particular property of the photocatlytic material appreciably increased the adsorption of 4-nitrophenol on the surface and hence the photoreduction process was enhanced significantly. Figure S3. TEM image of Cu_2O -rGO- C_3N_4 photocatalyst. Figure S4. XPS spectra of the Cu₂O-rGO-C₃N₄ photocatalyst: (a) high resolution C1s spectrum, (b) high resolution N1s spectrum, (c) high resolution Cu2p spectrum and (d) high resolution O1s spectrum. The chemical oxidation states of Cu₂O-rGO-C₃N₄ composites were found using XPS analysis. Figure S4 depicts the high resolution C1s, N1s, Cu2p and O1s spectra of Cu2O-rGO-C₃N₄ photocatalyst. Figure S4(a) shows the high resolution C1s spectra and can be deconvoluted into three peaks at 285.4, 286.6 and 289.9 eV, which are mainly assigned to the sp² bonded carbon atoms such as carbon-carbon double bond (C=C), carbonyl (C=O) groups and carbon-nitrogen double bond (C=N), respectively. Figure S4(b) clearly shows that the N1s spectra can be deconvoluted into three peaks located at 398.7, 400.4 and 401.5 eV which are attributed to the C-N=C, N-(C)₃ and C-N-H groups, respectively. The existence of secondary C-N-H groups clearly indicated the formation of chemical bonds between rGO and C₃N₄. Figure S4(c) shows the high resolution Cu2p spectra that can be fitted into two major peaks centered at 934.8 and 954.9 eV which was mainly attributed to Cu⁺ state of Cu2p3/2 and Cu2p1/2, respectively. This result clearly confirmed the existence of Cu₂O in the composites.⁷ Furthermore, a small satellite peaks with higher binding energy compared to that of Cu2p3/2 and Cu2p1/2 were observed that might be owing to the over oxidation of Cu⁺ ions on the surface of the photocatalyst.⁸ Generally the Cu₂O based photocatalysts are unstable because of the easy oxidation of Cu₂O to CuO. Nevertheless in the present system the Cu₂O spheres are relatively stable, especially the rGO layer which wrapped on the surface of the Cu₂O spheres prevent the over oxidation and make the photocatalyst more stable. Likewise, the deconvolution of O1s into three peaks are appeared in 532, 533.4 and 534.4 eV which were ascribed to epoxy or hydroxyl, ester and carboxylic groups.⁹ The experimental results suggested that Cu₂O-rGO-C₃N₄ composite rapidly involved in the reduction of 4-nitrophenol to 4-aminophenol and thereby it is indispensable to optimize the loading of rGO wrapped Cu₂O to C₃N₄. For this purpose different weight percentage of Cu₂O-rGO (0, 5, 10, 15 and 20 wt%) loaded C₃N₄ was prepared and the photocatalytic activity was tested against the reduction of 4-nitrophenol. Figure S5 shows the respective results. Amongst the different weight percentage Cu₂O-rGO loaded catalysts, the 15% Cu₂O-rGO loaded C₃N₄ exhibited the maximum photoreduction activity. Further increase of Cu₂O-rGO loading has no remarkable influence on the photocatalytic reduction of 4-nitrophenol to 4-aminophenol. The possible reason could be that above the monolayer dispersion, agglomeration of Cu₂O-rGO on the C₃N₄ surface may occur while increasing the Cu₂O-rGO loading which resulted in ineffective photocatalytic ability besides the light screening effect. Hence the weight percentage loading of Cu₂O-rGO was optimized to be 15% and the same catalyst was used for the durability studies. Figure S5. Optimization of Cu₂O-rGO loading in C₃N₄ for the photoreduction of 4-nitrophenol to 4-aminophenol. It is paramount important to optimize the rGO content in the final Cu₂O-rGO-C₃N₄ composite photocatalyst. For this purpose, different weight percentage rGO (0, 0.5, 1.0, 1.5 and 2.0 wt%) wrapped Cu₂O was initially prepared and subsequently the as synthesized Cu₂O-rGO was loaded on C₃N₄. The photocatalytic reduction of 4-nitrophenol to 4-aminophenol was tested by using the different weight percentage rGO loaded photocatalysts. Figure S6 implies that the initial loading of rGO increased the photocatalytic performance and it reached a maximum with 1.0 wt% rGO loaded photocatalyst. But further increase of rGO loading (1.5 and 2.0 wt%) decreased significantly the photocatalytic activity. This could be possibly due to the fact that the higher loading of rGO made the sample black and thereby prevent the interaction of photon with Cu₂O which resulted in lesser generation of electron-hole pairs in Cu₂O spheres. Figure S6. Optimization of rGO loading in Cu₂O-C₃N₄ for the photoreduction of 4-nitrophenol to 4-aminophenol. Durability of any heterogeneous catalyst is paramount important, especially for the economic and environmental points of view. Therefore durability of the as-prepared Cu₂O-rGO-C₃N₄ photocatalyst was tested with 4-nitrophenol. The reduction efficiency of the recycled photocatalyst was monitored using UV-vis spectrophotometer. Figure S7 shows the corresponding reusability results. The results implied that this photocatalyst can be reused for four cycles without losing its catalytic activity, which is an advantage of using the catalysts for industrial applications. Figure S7. Durability test results of Cu₂O-rGO-C₃N₄ for the photoreduction of 4-nitrophenol to 4-aminophenol. ¹ W. S. Hummers, and R. E. Offeman, J. Am. Chem. Soc. **80**, 1339 (1958). ² L.J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. **131**, 1043 (2009). ³ Y. –T. Xu, Y. Guo, C. Li, X. –Y. Zhou, M. C. Tucker, X. –Z. Fu, R. Sun, and C. –P. Wong, Nano Energy 11, 38 (2015). G. Xin, and Y. Meng, J. Chem. 2013, 5 (2013). ⁴ M. Gopiraman, S. G. Babu, Z. Khatri, K. Wei, E. Morinobu, R. Karvembu, and I. S. Kim, Catal. Sci. Tech. **3**, 1485 (2013). ⁵ B. Peng, S. Zhang, S. Yang, H. Wang, H. Yu, S. Zhang, and F. Peng, Mater. Res. Bull. **56**, 19 (2014). ⁶ Y. Fu, J. Zhu, C. Hu, X. Wu, and X. Wang, Nanoscale 6, 12555 (2014). - ⁷ S. G. Babu, R. Vinoth, D. P. Kumar, M. V. Shankar, H. –L. Chou, K. Vinodgopal and B. Neppolian, Nanoscale 7, 7849 (2015). - ⁸ S. G. Babu, R. Vinoth, B. Neppolian, D. D. Dionysiou, and M. Ashokkumar, J. Hazard. Mater. 291, 83 (2015). - ⁹ M. Gopiraman, S. G. Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, and Ick Soo Kim, J. Phy. Chem. C **117**, 23582 (2013).