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Abstract

Software-defined networking (SDN) has received considerable attention and

adoption owing to its inherent advantages, such as enhanced scalability,

increased adaptability, and the ability to exercise centralized control. How-

ever, the control plane of the system is vulnerable to denial-of-service

(DoS) attacks, which are a primary focus for attackers. These attacks have

the potential to result in substantial delays and packet loss. In this study,

we present a novel system called Two-Phase Authentication for Attack

Detection that aims to enhance the security of SDN by mitigating DoS

attacks. The methodology utilized in our study involves the implementation

of packet filtration and machine learning classification techniques, which

are subsequently followed by the targeted restriction of malevolent network

traffic. Instead of completely deactivating the host, the emphasis lies on

preventing harmful communication. Support vector machine and K-nearest

neighbours algorithms were utilized for efficient detection on the CICDoS

2017 dataset. The deployed model was utilized within an environment

designed for the identification of threats in SDN. Based on the observations

of the banned queue, our system allows a host to reconnect when it is no

longer contributing to malicious traffic. The experiments were run on a

VMware Ubuntu, and an SDN environment was created using Mininet and

the RYU controller. The results of the tests demonstrated enhanced

performance in various aspects, including the reduction of false positives,

the minimization of central processing unit utilization and control channel

bandwidth consumption, the improvement of packet delivery ratio, and the

decrease in the number of flow requests submitted to the controller.

These results confirm that our Two-Phase Authentication for Attack Detec-

tion architecture identifies and mitigates SDN DoS attacks with low

overhead.
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1 | INTRODUCTION

Due to the inherent complexity and limitations of the architecture, as well as the challenges of adapting to changing
market demands, traditional network designs pose management challenges. The advent of the Internet has significantly
transformed the landscape of communication and computing technology.1,2 As the number of technologies incorpo-
rated into a typical network increase, the task of addressing emerging requirements such as scalability, security, flexibil-
ity, dependability, and reliability becomes increasingly complex.3,4 The Internet of Things (IoT) refers to a network of
interconnected devices, such as sensors, that are capable of collecting and transmitting data autonomously, without the
need for human involvement, within the context of software-defined networking (SDN). The IoT has brought about sig-
nificant transformations in communication. Its incorporation into computer networks, computing environments, smart
gadgets, and healthcare technologies has resulted in enhanced personalized and efficient care. Data security and pri-
vacy are significant issues, and there is a lack of standardized data protocols in many IoT devices, highlighting the
importance of ensuring security in SDN architecture.5–7

The challenges associated with administration and operation of conventional network technologies have prompted
the emergence of SDNs. In traditional network architectures, distinct network components are responsible for manag-
ing the control plane and data plane functions. In contrast, SDN allocate separate network entities to individual opera-
tions.8 The control plane, alternatively referred to as the controllers, has responsibility for all network operations, while
the data plane only concentrates on the transmission of traffic based on instructions received from the control plane.
Interfaces play a crucial role in facilitating the exchange of information and promoting effective communication across
the realms of data, control, and application planes.8–10 The SDN architecture has three interfaces: the eastbound/
westbound interface, which establishes connections between distributed controllers; the southbound interface, which
links the control plane to the data plane; and the northbound interface, which connects the control plane to the appli-
cation plane.3,11 Typically, the establishment of communication between the controller and switches is facilitated using
a standardized protocol known as OpenFlow.12

The research group known as Cleanslate at Stanford University introduced OpenFlow, which has now become the
prevailing industry standard for SDN. The widespread adoption of OpenFlow in both academic and industrial settings
has contributed to the remarkable success of this SDN standard.13 An OpenFlow Controller is a communication device
that facilitates communication between underlying switches by adhering to the standards of the OpenFlow protocol.
Typically, an OpenFlow Controller refers to a software application with elevated functionality that governs numerous
OpenFlow logical switches.12 An OpenFlow channel serves as a communication interface connecting an OpenFlow
switch and an OpenFlow controller, enabling the controller to effectively manage the switches.14 The utilization of the
OpenFlow protocol has the potential to provide efficient communication between switches and controllers. The control-
ler is responsible for making the decision of either discarding the packet or proceeding with its transmission to the
intended destination. The task of processing incoming packets and updating the network switches with the most recent
set of rules is undertaken by this entity.4,15

1.1 | Overview of SDN workflow

During communication, there is a lot of extra work involved in passing information between the control plane and the
data plane, and it might slow down the whole network if it is not handled properly.12,16 The controller, which is located
in the control plane of an OpenFlow network, is responsible for governing the behaviour of the entire network. This is
accomplished in one of two ways: by establishing flow rules on the data plane. These two primary ways to configure
rules at switches are the proactive and reactive modes. During proactive network start-up, the controller first converts
network policies into flow rules, which are then installed on the network's switches. When operating in the reactive

2 of 20 NISA ET AL.



mode, the controller does not compute or install new rules unless one of the switches makes an explicit request. So, it is
abundantly clear that switches can respond rapidly to changes in the network by operating in reactive mode, which
eliminates the need for massive flow tables.17,18

The installation of reactive rules, on the other hand, leaves SDN controllers and switches open to denial-of-service
(DoS) attacks. An attacker can take control of compromised hosts and flood the network with transient faked flows,
causing switches to repeatedly poll the controller.17 In the reactive method, whenever an OpenFlow switch gets numer-
ous packets, then it will queue these packets in an input queue and then proceeds to perform the various steps to pro-
cess each packet in a First-In–First-Out way and this are done because the reactive method is considered to be the more
efficient method.18,19 In particular, if an Internet Protocol (IP) address in an incoming packet matches one in the local
flow table, the packet is forwarded according to the corresponding flow forwarding rule. In this scenario, the entry is
considered to be a table hit, and the packet is processed or forwarded in accordance with the rule that was installed. On
the other hand, if the switch encounters a table miss, it will initiate a lookup request to the SDN controller, perhaps
through an OpenFlow Packet-In message, if no match is discovered.20–23 After that, the SDN controller will examine
these search queries and install the proper forwarding flow rules among all networking devices/switches along the
direction that this packet can flow, such as by using OpenFlow messages. It is important to keep in mind that the SDN
controller has the capability of installing rules that cause these particular types of packets to be dropped as shown in
Figure 1. The OpenFlow switch searches the flow table for flow rules matching the packet header. Based on the action
field of the flow rule, the switch processes the packet. When this is not the case, the switch stores the packet in a buffer,
and its header is encapsulated in a packet_in message and alerts the controller. Upon receiving a packet message, the
controller processes it according to the control application's rules. The switch will get a packet-out message with the
“action” when the packet is sent out. After that, the OpenFlow switch will process the buffered table-miss packet in
accordance with the “action” received from the controller. In addition, the controller can set up flow rules with “match”
and “action” attributes, telling the switch how to handle packets of the same flow upon their subsequent
reception.8,11,15,24–27

1.2 | Problem statement

Despite its advantages over traditional networks, such as centralized monitoring and granular management, SDN
is less secure due to its increased vulnerability to attacks and the introduction of new security concerns.28 SDN
can be compromised in a variety of ways, such as by spoofing,29 tampering, repudiation, information leakage, and
DoS.30–32

Attacks using DoS could also be launched against the SDN. DoS attacks take place whenever a host attempts
to take control of one system by flooding it with excessive traffic. The primary objective of this attack is to reduce

FIGURE 1 Software-defined networking (SDN) block diagram.

NISA ET AL. 3 of 20



the amount of time that the system is available to users and to prevent those users from accessing any available
services. Distributed DoS (DDoS) attacks are those in which the attackers use a large number of hosts rather than
just one to attack a system that acts as the controller. And when an SDN controller is hit by a DoS/DDoS attack,
it might cause serious problems.

Because DoS attacks come in numerous shapes and sizes and may affect so many areas of an SDN's infrastruc-
ture, they are notoriously tricky to identify and counter. Because of this, they are widely recognized as among the
most difficult forms of cyberattacks.4,33 A network attack can take one of two forms: either the attacker sends a
huge number of little packets to many hosts on the network, thereby consuming their bandwidth, or the attacker
sends a flood of packets to many hosts, so consuming the memory and processing capacity of the switch and the
controller. The attacker has a choice between the two. An authorized user may need to repeatedly scan the entire
network or send a sizable volume of data to a large number of nodes.16 Network activity includes both of these
examples. This makes it challenging for a mitigation method to differentiate between an attacker and a legitimate
user.18,34–36

An SDN-based system may readily be subjected to a DoS attack by flooding the OpenFlow switch with packets hav-
ing random destinations. In search of a new flow rule, every packet is now transmitted from the switch to the control-
ler. By using their resources, such an attack might affect several parts of the SDN architecture, such as switch storage,
control channel bandwidth, and central processing unit (CPU) usage. This resource utilization may lead to performance
concerns, increased latency, packet loss, and reduced accuracy in detecting attacks. When SDN is utilized, DoS attack
may not completely halt the functioning of the network or its components, but it has the potential to slow down data
transmission due to an overabundance of network resources.

In this research, we proposed a system called Two-Phase Authentication of Attack Detection (TPAAD) that miti-
gates the impact of DoS attacks on SDN while conserving network resources including bandwidth, computation, and
flow table space.

The subsequent sections of the paper are structured in the following manner: Section 2 provides a comprehensive
analysis of the strategies employed to mitigate DoS attacks within the context of SDN. Section 3 provides a thorough
explanation of the proposed TPAAD system. In Section 4, an evaluation of the performance of the suggested system will
be conducted by a comparative analysis with certain benchmarks that are now in existence. In Section 5 of our article,
we present our concluding remarks and provide suggestions for further research.

2 | RELATED WORK

This section provides a comprehensive overview of several techniques employed over the past few years to protect
SDN from DoS attacks. For SDN DoS attack detection, machine learning algorithms provide convincing perfor-
mance. The attack on the SDN controller's control and data planes can be efficiently detected using machine
learning approaches.

FloodDefender18 is a scalable and protocol-independent system for OpenFlow networks. It is located in the centre
of the controller platform and other controller programs, ensuring that both comply with the OpenFlow rules without
the need for any additional hardware. New frequency features are utilized by FloodDefender's detection module to
enable accurate identification of SDN-targeted DoS attacks. The mitigation module employs three strategies to effi-
ciently mitigate attack traffic: table-miss engineering to avoid exhausting the communication overhead, packet filtration
to isolate the malicious requests and conserve the control plane's computation power, and flow rule strategic planning
to get rid of most of the redundant incoming packets in the flow table. Additionally, a prototype is implemented to
assess FloodDefender's functionality in both software and hardware settings, and a queueing delay model is employed
to determine the optimal number of neighbour switches to be used in the table-miss engineering. However, when the
attack rate is high, FloodDefender may discard benign packets, and communication between two planes may slow
down the overall network.

Mousavi and St-Hilaire37 introduce an entropy-based method for preventing DoS attacks in SDN with centralized
management. The procedure is explained in depth below. Monitoring for entropy changes at an IP address can help
detect DoS attacks. Variation in the incoming data packet request is one way to detect DoS attempts. Entropy rises as
uncertainty rises and vice versa. Both the window's size and the threshold's setting control how much entropy is pro-
duced. The barrier point will always be set at 50; however, the height of the barrier will vary depending on the dimen-
sions of the window. Using the packet's IP address, the entropy of an incoming packet can be calculated. When the
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entropy value of such an attack reaches a specified requirement or threshold, it is considered a DoS attack. On the other
hand, looking at a temporal range can improve precision and yield better outcomes. However, this approach can only
be used on centralized SDNs and a single host at a time.

Avant-Guard38 uses the Transmission Control Protocol (TCP) handshake method to confirm where the attack is
coming from. This makes DoS attacks on open flow (OF) switches less effective. Once validation is complete, the con-
troller will set up a flow rule to begin the data transmission. However, in this approach, only TCP data may be
processed using this method, and the OF switches will need to be updated. To avoid both planes' saturation,
FloodGuard39 employs a proactive flow rule analyser and packet migration. When FloodGuard detects an overloading
attack, it will send any packets that failed to be processed because of an OpenFlow table miss to the data plane cache.
The Analyser module helps to keep an eye on the values of sensitive variables in programs or applications that are cur-
rently running. These values are then turned into path conditions, and the flow rules are set up as proactive ones in OF
switches. Then, Packet-In message notification will be sent to the controller by the data plane cache. However, both
of the above methods focus on protecting against DDoS attacks directed against SDN. When compared with attack pre-
vention, the importance of detection is often overlooked. Furthermore, both methods employ extra hardware, like in
Avant-Guard (TCP-Proxy) and in FloodGuard (data plane cache), that is incompatible with the standard OpenFlow
protocol.

In order to safeguard the controller from DoS attacks, Kandoi and Antikainen40 implemented a mechanism to
restrict the pace at which packets are transmitted towards the controller. The authors proposed the utilization of flow
aggregation as a viable solution to mitigate the issue of flow table overflow. Additionally, they suggested the
implementation of an optimal timeout value for flow rules to effectively address this concern. While this method pro-
vides assistance, it is important to acknowledge the potential for loss of routine traffic packets. Belyaev41 introduced a
load-balancing strategy to enhance the overall survival of SDN by dividing the congested lines with other routes
between switches. This was done to maximize the amount of traffic that may pass through the network. To put this
strategy into action, there needs to be an alternative route that can lighten the load. Oktian et al.42 developed a program
that keeps the media access control and IP addresses of connecting hosts in a binding table so that he can become
completely aware of their location. When a person leaves or joins a host, the information about that host is updated
accordingly. For DoS protection, the program gathers three OpenFlow messages. Each procedure will separately and
jointly generate a solution based on different attributes, all of which will be used to identify and react to the messages.
At this time, many security techniques, such as firewalls, authentication systems, various encryption methods, and vari-
ous antiviruses, are utilized in order to shield sensitive data from the possibility of being compromised by a security
breach.10,43–45

The network was protected from DoS attacks by Shoeb and Chithralekha46 using a trust-based method. For each
new packet, an IP-based trust value was applied based on the packet's communication history. A parallel flow installa-
tion paradigm was suggested by Imran et al.47 as a way to make DoS attacks on the controller and the control channel
less harmful. Upon receiving the flow request, this model will install flow rules on all switches between the source and
the destination. For preventing DDoS attacks, Cui et al.48 created SD-Anti-DDoS, which has four parts (attack trigger,
detection, traceback, and mitigation). By using a backpropagation neural network, we can identify the attack, track it
to its origin, and then prevent it by setting up flow rules. However, this mechanism will affect performance while using
different OF protocols. Packet-In messages entering from several switches are queued to prevent DoS attacks via multi-
layer queuing.17 Requests are retrieved from the queues using a weighted round-robin algorithm. Depending on the
number of ports, a switch's queue can be broken down into separate queues. It is also possible to combine the queues of
several switches into a single queue.

Peng et al.49 demonstrated a DDoS attack detection system for SDN that relies on centralized management.
Preprocessing and anomaly detection modules are what make up this component. The flow feature vectors are stan-
dardized and normalized by the preprocessing function, and the anomaly detection method then labels whether they
are legitimate or normal. An approach that is based on statistical analysis and machine learning is proposed in
Banitalebi Dehkordi et al.50 K-means and K-nearest neighbours (KNN) are merged into a single machine learning tech-
nique to detect malicious flows by relying on their asymmetrical nature, and high rates of change are suggested in Tan
et al.51 A study of DDoS detection using a support vector machine (SVM) in a SDN can be found in Ye et al.52 They used
the SVM technique to evaluate the traffic and detect DDoS attacks based on the derived six-tuple feature values. Accu-
rately classifying DDoS attacks based on incomplete information is essential for detection. Locating the source of the
controller attack is essential. The SVM classifier is popular because of its high accuracy and low false-positive rate for
detecting DDoS attacks.53 Solutions for early detection of DDoS attacks utilizing entropy to ascertain the degree of
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unpredictability in flow data are provided in the literature.54,55 But because threshold values do not consider the poten-
tial variances, Revathi et al.56 propose a solution with principal component analysis, which, from the collected informa-
tion, provides new models that allow predicting the attack.

Cybersecurity is a constantly developing topic, and the collective future orientation of scholars, programmers, and
security professionals needs to be in line with the novel proposals put forth by major authors in the field. The integra-
tion of artificial intelligence and machine learning with cyber threat analysis has been emphasized by various writers,
who argue that this convergence will have a significant impact on the identification of attacks and will greatly influence
the future of this field. Our ambition involves leveraging artificial intelligence-powered algorithms to independently
identify and categorize risks with exceptional precision and efficiency. These algorithms will continue to improve them-
selves through a process called reinforcement learning, thereby responding to new types of attacks and machine learn-
ing strategies.5–7,57–59

All of the aforementioned studies are connected in some way, and they all offer partial answers to the problem of
detecting and preventing DoS attacks. We find that DoS attacks in SDN may be identified and mitigated by different
methods, including the inclusion of hardware requirements, packet drop rate, the blocking of malicious traffic at the
port and switch levels, false alerts, detection accuracy, and computational overhead. In the event of serious attacks,
however, there will be a significant delay for flows that are benign. In addition, each method relies on extra network
resources while ignoring the significance of attack detection and mitigation.

3 | PROPOSED METHODOLOGY

Our proposed solution is based on detection and mitigation modules as shown in Figure 2, which will be on a control
layer that can simulate the impact of DoS attacks on networks that are controlled by SDN.

Initially, the attack detection module of TPAAD will constantly observe the network's current state to identify any
signs of impending attacks. It employs a two-phase authentication strategy for detecting attacks. The identification of
attacks in progress is required for the mitigation module to be activated.

3.1 | Detection module

In the default configuration, a single First-In–First-Out buffer is used, and it does not differentiate between legitimate
and malicious requests that are transmitted from the data plane switches. An efficient method for configuring the
SDN controller and improving operational efficiency is developed to solve this. As shown in Figure 2, this is accom-
plished by integrating the detection module with the SDN RYU controller, where our detection program is used to
detect DoS attacks. TPAAD is the proposed methodology that is utilized by the detection module. To identify abnor-
mal traffic by analysing packet flows, it first applies the packet filtration technique. These discovered abnormal traffic
flows are then sent to classifier models powered by machine learning for effective identification and management of
harmful attacks. To reduce the load on the control plane and maintain the available communication bandwidth, the
system employs SVM and KNN models that are very accurate at identifying between malicious and benign packet
flows (Figure 3).

Our detection module comprises a TPAAD as part of its functionality. The detection module operates as follows:

• The sender launches a login procedure to enter the network and then sends a packet of data to the SDN switch. The
switch determines if the packet is new.

• To control which data packets are accepted or rejected at a network interface, packet filtration is used to exam-
ine their source and destination addresses and associated ports. This procedure involves inspecting the flow
table.

• A switch will check the IP address of an incoming data packet against the entries in its flow table. With the use of a
set of predetermined flow rules, this comparison aims to determine if a match exists.

• If the switch detects a match (a “table hit”), it will process or route the packet in accordance with the associated rule.
• If, on the other hand, the switch experiences a “table miss,” where no matching entry is located in the flow table, the

packet is instead kept in a buffer until the issue can be resolved.
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• If the packet's source IP address is found to match a value in the banned list (its list contains IP addresses from where
harmful packets coming again and again), the packet is dropped and the source IP address and other data are
recorded for auditing reasons.

• Each request will only be executed up to a maximum of four times from the same IP address.
• Attack traffic is identified based on the rate of flow entries. The rate at which a flow enters the switch is pro-

portional to the number of packets it sends and receives. Attack traffic will have a low frequency because its
volume is intended to overwhelm the target. The opposite is true for normal flows, which are predicted to occur
regularly.

• If a packet from the same IP address exceeds the threshold values for frequency and duration, the counter is
increased. The packet is then sent to the harmful queue, where a classifier model is used to determine whether
or not the anomaly is indeed malicious. In this way, the best possible assessment outcomes may be
implemented.

• We use the CICDoS 2017 dataset to help with attack identification and categorization. Unfortunately, there are
many types of information in this dataset that cannot be used in a machine learning algorithm. Preprocessing

FIGURE 2 Proposed solution for detection and mitigation of denial-of-service attack in software-defined networking. IP, Internet

Protocol.
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the CICDoS 2017 dataset is required to remove these superfluous features before the machine learning model
can be trained.

• The CICDoS 2017 dataset undergoes a data cleaning/preprocessing step to remove inconsistencies and duplicates. To
improve the efficiency of the machine learning model, it is necessary to delete columns that contain null or empty
values. If you want to get reliable results from your analysis, you must deal with the missing and incomplete data in
your dataset. The CICDoS 2017 dataset was found to have several characteristics (columns) with missing values,
which might have an undesirable effect on the machine learning model.

• Model accuracy, training speed, overfitting, and data visualization may all be improved with careful feature selection.
A filter selection strategy is used to make the most of available features and cut down on unnecessary steps. This
technique not only reduces the size of the dataset but also finds the best feature sets to use in detecting attacks.

• DoS attacks in the malicious queue are identified using SVM and KNN models. To effectively detect DoS attacks,
these models require both the malicious queue and the dataset.

• The best attack identification results are chosen after comparing the two models' outputs. Once an issue has been
identified, the controller will issue an alarm to alert the mitigation module, which will then take whatever steps are
necessary.

FIGURE 3 Flow chart of Two-Phase Authentication of Attack Detection. IP, Internet Protocol; KNN, K-nearest neighbours; SVM,

support vector machine.
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• Alternatively, packets in the malicious queue can be sent to the controller, where they can be sent to their destina-
tion if they fit the rules in the flow table.

3.2 | TPAAD functions

3.2.1 | Packet filtration in attack detection

The filtration function sets up a number of different queues and variables. It accepts incoming packets containing
switch IDs and IP addresses as input. The method retrieves packets from the buffer and determines if they have the
same IP address as the packet that came before them. If they do, a counter is increased, and the packet's timing and fre-
quency are noted. Communication with the IP is blocked, it is placed on the banned list, and the packet and source IP
are noted if the packet originates from an invalid IP.

When an IP packet is legitimate, it is delivered to the normal queue and then to the controller for
further processing. The packet is added to the malicious queue and the controller is alerted of a potential
attack from that IP if the timing and frequency of the packet exceed a certain threshold. In any other case, a
typical packet from that IP is reported to the controller. The classifier's approach is used to handle the
malicious queue of abnormal packets that the function outputs. Packet filtration process is detailed in
Algorithm 1.

NISA ET AL. 9 of 20



3.2.2 | Classifiers for attack detection in TPAAD

The function accepts as inputs malicious queue packets and a dataset. The process begins by importing and preparing
the dataset. Next, a method for selecting the most pertinent features for attack detection is applied. Using the selected
feature set, packet headers and network traffic are calculated to extract features. These extracted features are then fed
to classifier models, and the model with the highest performance is selected. If the model detects an attack, the
corresponding IP address is added to a banned list, the packet and source IP are logged, an alarm is generated, and
the packet is sent for mitigation. Alternatively, if the model determines that the packet is normal, it is sent to the nor-
mal queue and then to the controller for further processing. Algorithm 2 provides the main operations performed for
classifiers for attack detection process.

3.3 | Mitigation module

To protect the SDN against DoS attacks, we will use a mitigation module. The mitigation unit uses a cutting-edge
tunnelling method to effectively manage attack traffic, relieving the controller of the burden of meeting high computa-
tional bandwidth requirements. This is what we will accomplish using a tunnel. Consider the following vital actions for
preventing a malicious attack:

• The malicious queue will first send packets to the tunnel marked with an alert, signifying their presence. The usual
queue will forward packets to the appropriate destination addresses.

• For additional processing, the controller will examine the header fields of the alarm-triggering packets, includ-
ing the source and destination addresses, source port, destination port, and virtual LAN (VLAN) priority. The
controller can decide whether to discard the packet or route it to alternative ports using the results of this
analysis.

• Highly dangerous packets will be discarded, and the relevant IP addresses will be banned listed for a pre-
determined amount of time. Because these packets come from the same source repeatedly, this action is
conducted.

• The source IP address will be permanently banned, prohibiting the reception of any more packets from that source,
if the aforementioned behaviour continues for a certain period.
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• However, the controller can unlock the source to allow regular traffic to continue once the packet flooding lowers
below a certain level in the queue.

Attack mitigation Algorithm 3 is mentioned as follows.

4 | RESULTS AND ANALYSIS

4.1 | Dataset

The CICDoS 2017 dataset was used for both training and testing the classification models. This dataset addresses many
of the problems and restrictions of previous efforts. Twenty network traffic features were retrieved and computed for all
benign and DoS flows, and these features are used to designate CICDoS 2017. The dataset provides the results of the
network traffic analysis together with labelled flows that are based on the following like time stamp, source and desti-
nation IPs, source and destination ports, protocols, and attack. Outliers and values that were either infinite or empty
were removed from the data before it was shuffled. In order to perform binary classification, the category labels were
converted to integer format, where 1 indicates safety and 0 indicates danger. Misclassification was eliminated by
indexing the string values and then standardizing the data. The classification record from dataset is shown in Table 1.

TABLE 1 Classification record.

Number of classes 2

Normal records 2,153,72 (50.02%)

Malicious records 2,153,72 (49.98%)

Total features 79

Features selected 20
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4.2 | Experimental setup

For the evaluation to be conducted, the following installations are required:

• Install the Ubuntu operating system on a virtual machine. Install the SDN network and switches on Ubuntu within
this virtual machine.

• Install the Python-based Ryu controller program. The Ryu controller will be executed using an integrated development
environment like PyCharm. By connecting Ryu to the switches, incoming packets can be forwarded to Ryu for further
processing. The Ryu controller then makes decisions based on the packets that have been received.

• Utilize Ryu controller to implement the essential network protocols for the assessment.

When discussing SDN, the term “OpenFlow switch” or “SDN switch” is used to describe either a computer program
or a physical device that handles packet forwarding. OpenFlow is used by the SDN controller to program these devices.
The use of the SDN controller simplifies the programming of the switches, which is an advantage.

4.2.1 | SDN RYU controller

Ryu controller is an open, SDN controller designed to increase the agility of the network by making it easy to manage
and adapt how traffic is handled. In general, the SDN controller is the brain of the SDN environment, communicating
information down to the switches and routers with southbound application programming interface (API) and up to the
applications and business logic with northbound APIs.

4.2.2 | SDN without the proposed solution

An attacker might quickly flood an SDN-enabled network through their host. It will be difficult to differentiate between
regular and this kind of traffic because they will be combined. If a switch cannot determine what to do with a newly arriv-
ing packet, it will store it in its Flow Buffer and subsequently send a Packet-In message to the controller, as per the
OpenFlow protocol as shown in Figure 1. As a result, if a DoS attack were to occur, the controller would need to process
a massive amount of Packet-In messages caused by the flooding traffic, which may potentially overwhelm the system and
prevent it from handling legitimate traffic. It is also possible that the attacking traffic will use up all available bandwidth
between the controller and the switches, thus slowing down the entire network.

4.2.3 | SDN with the proposed solution

An attack begins when the attacker floods the switches with packets, as shown in Figure 4. The open-source SDN Ryu
controller recognizes this suspicious behaviour and, after checking its behaviour, blocks the offending IP address. The
required rules are then given to the switches, telling them to prevent incoming packets from the specified IP address.

FIGURE 4 Proposed system visualization diagram. SDN, software-defined networking.
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4.3 | Results discussion

The proposed system's performance has been analysed and compared with existing systems, in particular refer-
ences.12,18,56,60 The comparison's findings are listed below.

4.3.1 | CPU utilization

The level of CPU utilization during normal traffic that our system and benchmarks offer with comparison is shown in
Figure 5. During normal traffic, the average CPU utilization of Imran et al., Gao et al., Revathi et al., Wang et al., and
our proposed system are almost equal and 7.50%, 7.63%, 7.52%, 7.75%, and 7.62%, respectively, as shown in Figure 5.

On the other hand, during the DoS attack, the average CPU utilization of our proposed system with benchmarks is
compared and shown in Figure 6. During the DoS attack, the controller's CPU resources are diverted to the endless
installation of meaningless flow rules for flow tables, leaving less processing power for actual flow requests coming
from the source. When an attack occurs, the percentage of time that the CPU is being used immediately increases to its

FIGURE 5 Central processing unit (CPU) utilization without denial-of-service attack.

FIGURE 6 Central processing unit (CPU) utilization with denial-of-service attack.
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high capacity, which is somewhere around 9% and takes less than 2 s to reach. Then, it goes down slowly because the
packet filter starts to pass this in the malicious queue.

Following a delay of around 2 s, the level of CPU use never changes. However, at point, the packet in the buffer is
capable of storing the packet-in messages in such an effective manner while only consuming approximately 1% of the
CPU's utilization. After approximately 8 s, there is a brief increase in CPU utilization, which peaks at approximately 4%
before dropping down precipitously in 2 s. This is due to the two-phase filtering that occurs in the packet filter. During
DoS attacks, the average CPU utilization of Imran et al., Gao et al., Revathi et al., Wang et al., and our proposed system
are almost equal and 8.50%, 14.87%, 9.75%, 11.50%, and 9.13%, respectively, as shown in Figure 6. The finding demon-
strates that our system is able to conserve the computational power of the control layer effectively; in addition to this, it
also demonstrates that the latency of the packet filter is relatively low. The level of CPU utilization during a DoS attack
that benchmarks offer with comparison is shown in Figure 6.

4.3.2 | Control channel bandwidth

The percentages of control channel bandwidth during normal traffic with our system and benchmarks are compared
and shown in Figure 7. During normal traffic, the average control channel bandwidth of Imran et al., Gao et al.,
Revathi et al., Wang et al., and our proposed system are almost equal and 8.63%, 8.25%, 8.13%, 8.34%, and 8.13%, respec-
tively, as shown in Figure 7.

However, it is difficult to isolate attacked traffic from the regular traffic because they are mixed together.
OpenFlow specifies that a switch will store a new packet in its Flow Buffer before sending a Packet-In message to
the controller for further direction if the switch has no prior knowledge of what to do with the packet. In order
to check bandwidth, we send multiple packets from the same IP in 5 s, and we see that when packets flood came
in, bandwidth increases by a maximum of 30 kbps but it suddenly falls down and again increases after the 30 s as
shown in Figure 8. The controller may run out of resources needed to process normal traffic if a DoS attack
occurs and a large number of Packet-In messages are generated by the flooded traffic in a short period. Addition-
ally, the attacking traffic may use up all available bandwidth between the controller and the switches, drastically
slowing down the entire network. Requests for new flows must pass through the control channel, which might
become jammed during DoS attacks. Our proposed solution not only blocks attacked traffic at switches because if
the same flow request will come from the same IP four times which is from the banned list, then that packet will
be dropped, and the IP will be blocked at switches. In this way, the proposed solution also provides ease on the
control channel by reducing the bandwidth by 14.13% as compared with benchmarks whose bandwidth increases
by 15.38%, 15.13%, 15.54%, and 15.25%.

FIGURE 7 Control channel bandwidth without denial-of-service attack.
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4.3.3 | Packet-in messages

In the OpenFlow network, switches utilize flow rules to handle messages received from the SDN. OpenFlow switches
match packet headers to flow tables. Each match triggers a flow table action and table misses indicate no match as this
activity is very important during SDN traffic flow. Figure 9 shows that the flow rate of packets during normal traffic
sent to the controller is between 200 to 400 packets per minute which is approximately the same range for all the
benchmarks.

While during DoS attacks, the number of flows entering a switch increases, new rules must be added to the device's
flow table; for this, the controller compares incoming packets to its database. The controller first checks it if that packet
comes from the banned list in packet filtration module; if that happens, then that packet will be dropped, and if it is
not, so then it creates a new flow table if there is no match. Figure 10 shows that during DoS attack, the average flow
rate requests per minute increases for the benchmarks as 5565, 5209, 5874, and 5272, and again, it is less for proposed
solution which is 5197 because of packet filtration module.

4.3.4 | Evaluation of latency

Average response times during normal traffic for benchmarks and proposed solution are depicted in Figure 11. Here,
we can observe that our proposed solution provides better response time in milliseconds during normal traffic as an

FIGURE 8 Control channel bandwidth with denial-of-service attack.

FIGURE 9 Packet-in messages without denial-of-service attack.

NISA ET AL. 15 of 20



average of 4.25% because of its queue system where normal packets and malicious packets are separated in two differ-
ent queues while benchmarks have higher average response time as 4.50%, 4.75%, 5.75%, and 5.0%.

While during DoS attacks, the average response time of our proposed solution is approximately (6.50%) the same as
some of the benchmarks because of two-phase authentication filter where packets are placed in two separate queues
after filtration, and it rejects malicious traffic and frees up the controller to serve legitimate hosts. The average response
times for the benchmarks as depicted in Figure 12 are 6.0%, 6.5%, 6.5%, and 5.5%.

4.3.5 | Attack identification false rate

In Figure 13, we can see how well the TPAAD detects attacks. As the frequency of attacks increases, so does the propor-
tion of false positives. This is due to the fact that a higher attack rate will result in a greater occurrence of the same flow
within a given time window. So, in order to filter out attack traffic, packet filtration will employ a higher threshold and
move the attack traffic to malicious queue. As the attack rate rises, a greater number of attack packets are falsely
labelled as normal flow, but the fraction of false positives remains constant, making for a more consistent recall rate.
Overall, the TPAAD filtering method has a false-positive rate of less than 5% and can accurately identify over 99% of
attack traffic.

FIGURE 10 Packet-in messages with denial-of-service attack.

FIGURE 11 Response time without denial-of-service attack.
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FIGURE 12 Response time with denial-of-service attack.

FIGURE 13 Attack identification and false-positive rate.

FIGURE 14 Attack detection accuracy.
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4.3.6 | Detection accuracy

Due to TPAAD, we evaluate our system with both real-time data and CICDoS 2017 dataset. During evaluation, we
analysed that some of the benchmarks provide false alarm generation. On the other hand, proposed solution not only
blocks the IP. Our proposed system provides higher detection accuracy as 99.56% than the other benchmarks 99.05%,
97.15%, 99.12%, and 98.64% as depicted in Figure 14.

5 | CONCLUSIONS

This study presents a proposed technique, called the TPAAD and mitigation, which aims to protect SDN systems from
DoS attacks. The initial step of the proposed approach involves the identification of malevolent network traffic, which
arises from DoS attacks. This identification is accomplished through the utilization of TPAAD detection. Subsequently,
the identified malicious traffic is redirected to a mitigation mechanism, wherein the focus is on terminating the malevo-
lent communication rather than disrupting the entire host. In order to enhance precision, we employed SVM and KNN,
two widely utilized machine learning methodologies that are currently prevalent for efficient identification. The com-
prehensive methodology was applied to evaluate the efficiency of the strategy using the CICDoS 2017 dataset within
the context of an SDN environment. The unblocking of a host takes place subsequent to the verification that the host is
no longer involved in the transmission or receiving of harmful network traffic. The verification process occurs subse-
quent to the placement of the host in the banned queue. The experiment was performed using the Ubuntu operating
system within a VMware virtualized environment. Based on our examination of benchmarks, it has been determined
that the implementation of SDN with our proposed solution yields enhanced precision by mitigating the occurrence of
erroneous notifications, minimizing CPU utilization, optimizing control channel bandwidth, and reducing the number
of flow requests directed towards the controller, all without necessitating the incorporation of supplementary hardware.
Based on our conducted tests, it can be inferred that the proposed approach is effective in detecting and mitigating
SDN-based DoS attacks while incurring minimal additional resource utilization. In the foreseeable future, we aim to
implement our proposed method on an actual network environment and evaluate its performance.
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