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A B S T R A C T
Long-term forecasting is of paramount importance in numerous scenarios, including predicting future energy, water, and food consumption. For instance, 
extreme weather events and natural disasters can profoundly impact infrastructure operations and pose severe safety concerns. Traditional CNN-based 
models often struggle to capture long-distance dependencies effectively. In contrast, Transformers-based models have shown significant promise in long-term 
forecasting.

This paper investigates the long-term forecasting problem and identifies a common limitation in existing Transformer-based models: they tend to reduce 
computational complexity at the expense of time information aggregation capability. Moreover, the order of time series plays a crucial role in accurate 
predictions, but current Transformer-based models lack sensitivity to time series order, rendering them unreasonable.

To address these issues, we propose a novel Deformable-Local (DL) aggregation mechanism. This mechanism enhances the model’s ability to aggregate 
time information and allows the model to adaptively adjust the size of the time aggregation window. Consequently, the model can discern more complex 
time patterns, leading to more accurate predictions. Additionally, our model incorporates a Frequency Selection module to reinforce effective features and 
reduce noise. Furthermore, we introduce Position Weights to mitigate the order-insensitivity problem present in existing methods.

In extensive evaluations of long-term forecasting tasks, we conducted benchmark tests on six datasets covering various practical applications, including 
energy, traffic, economics, weather, and disease. Our method achieved state-of-the-art (SOTA) results, demonstrating significant improvements. For instance, 
on the ETT dataset, our model achieved an average MSE improvement of approximately 19% and an average MAE improvement of around 27%. 
Remarkably, for predicted lengths of 96 and 192, we achieved outstanding MSE and MAE improvements of 32.1% and 30.9%, respectively.
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1. Introduction

In real-life scenarios, time series prediction plays a vital role in numerous fields, such as demand forecasting in supply chain management 
[1], stock market forecasting [2], energy consumption forecasting [3], and weather and climate forecasting [4]. With the development of deep 
learning technology, deep neural networks [5] have been introduced into the field of time series forecasting. This data-driven approach 
reduces the reliance on artificial features [6]. Particularly, models based on Convolutional Neural Network (CNN) [7] have achieved promising 
results. Recurrent Neural Networks (RNNs) [8] were the pioneering models in time series prediction, aiming to address the difficulty of 
CNN in capturing long-distance dependencies. Long Short-Term Memory (LSTM) [9] networks effectively manage memory and forgetting within 

neural networks through gating mechanisms. Additionally, the encoder and decoder architecture in DeepAR [10] is based on RNNs, leading to 
significant breakthroughs in performance.

Some examples combine CNN with traditional methods. For instance, Rangapuram et al. [11] used Deep State Space Models (DSSM) to 
achieve more accurate predictions, and Wang et al. [12] proposed Deep Factors.

However, in practical applications, models are required to predict future values for an extended period. The increasing length of time 
series data imposes challenges on the predictive capability of models. Nonetheless, most existing methods are designed for short-term prediction 
settings. Early traditional methods can only handle short prediction lengths, including State Space Models (SSMs) [13], Matrix Factorization 
methods [14], exponential smoothing [15], Auto-Regressive Integrated Moving Average (ARIMA) [16], Seasonal Autoregressive Integrated 
Moving Average (SARIMA) [17], and Gaussian process (GP) [18]. Even recent research [19] incorporates methods that combine EM with 
DSSM. In the early stages of long-term forecasting, researchers mainly focused on addressing super-long inputs (e.g., truncation, summarization, 
sampling, etc.), which resulted in substantial information loss. Other approaches, such as Truncated BPTT [20], only use the last time 
step to estimate the gradient. Auxiliary Losses [21] introduce auxiliary gradients for weight updating, and regularization attempts include 
Bootstrapping Regularizercitecao2020better. For graph neural networks (GNN)-based methods, MTGNN [22] proposes a general graph neural 
network framework, while SDGL [23] introduces a dynamic graph learning network for modeling unknown patterns.

However, these models usually set the prediction length as 48 data points or less. The long-term forecasting problem requires models with a 
stronger ability to capture long-distance dependencies compared to traditional CNN models.

Inspired by the tremendous success of Transformer [24] in the field of vision, many researchers have recently attempted to apply the 
transformer model architecture to the long-term forecasting problem. Transformers have a significant advantage in modeling long-term 
dependencies for sequential data, thanks to their self-attention mechanism.

For example, in Informer [25], the long-term forecasting problem is proposed to address real-world applications that require 
predictions for long time series, such as power consumption planning. Reformer [26] introduces the Local-sensitive hashing (LSH) 
attention, while Logtrans [27] proposes the LogSparse attention to select time steps following exponentially increasing intervals. ConvTrans 
[28] introduces an improved attention mechanism to reduce the computational cost of self-attention. Autoformer [29] leverages correlation 
to select the time nodes that should be prioritized and achieves state-of-the-art (SOTA) results. Moreover, many researchers try to combine 
expertise from other fields and design models based on transformers to address time series prediction challenges. Spectral filtering technology is 
used in [30], while [31] views the correlation between sequences from the perspective of the spectral domain.

However, through our research, we identified two fatal flaws in most existing Transformer-based models, preventing further 
improvements in long-term forecasting.



The first bottleneck arises from the high computing cost of self-attention [24]. To address this issue, many existing methods attempt to reduce 
computational complexity, but often at the expense of time information aggregation capability. For instance, Informer [25] highlights that the 
canonical self-attention (dot product of QK) forms a long-tailed distribution in most cases. As a solution, Informer [25] introduces query sparsity 
measurement to screen the 𝑢 most important queries using Kullback–Leibler divergences. However, this approach leads to time-point-wise 
information aggregation, resulting in significant information loss when selecting the top-k queries. Similarly, Autoformer [29] uses autocorrelation 
coefficients to calculate the correlation between QK under different time delays. Despite the effort to reduce complexity, the information aggregation 
remains time point-wise. Reformer [26] designs self-attention based on local-sensitive hash, and Longformer [32] employs a heuristic self-attention 
mechanism, both facing the issue of time point-wise aggregation and loss of information during top-k operations.

The second bottleneck stems from the existing self-attention based methods’ inability to recognize the importance of location order in time 
series prediction tasks, particularly in long-term forecasting. The insensitivity to position hampers these models’ ability to capture complex 
time patterns and extract crucial time features, making it a significant limitation.

To address these two challenges, we propose a mechanism called Position-Weight-Deformable Correlation (PWD correlation). PWD 
correlation consists of two components: Deformable-Local aggregation (DL aggregation) and Position Weights.

DL aggregation aims to overcome the issue of insufficient time information aggregation capability by introducing a deformable time 
aggregation window. Unlike conventional approaches, our model can dynamically adjust the size of the time aggregation window based on 
local information. This adaptability empowers our model to capture and understand more intricate time patterns, enabling more accurate 
predictions in complex long-term forecasting tasks.

Position Weights are designed to tackle the order-insensitivity problem. By allowing the model to learn the weight of each position in the 
input time series, we can adjust the final attention. This breakthrough frees our model from the constraints of position insensitivity and 
enables it to learn time information features closely related to the position order.

In summary, the main contribution of this paper are highlighted below:

• We propose a novel Deformable-Local aggregation (DL aggregation) mechanism that enables the model to adaptively adjust the size of 
the time aggregation window based on the information around the current time point. This mechanism addresses the problem of 
insufficient information aggregation capability in existing Transformer-based models.

• To tackle the order-insensitivity problem in Transformer-based models, we introduce Position Weights, allowing the model to be weighted 
differently at various locations of the input time series, even in different multi-channel scales. This breakthrough enables the discovery of 
more complex time series features associated with location order.

• We design the Frequency-Selection module to reduce noise interference in the encoder stage. This module operates from the perspective of 
the frequency domain and effectively reduces the model’s attention to noise.

• We propose the Position Weight Deformable former (PWDformer) specifically for long-term forecasting, and extensively evaluate it on six widely 
used datasets covering various practical applications such as energy, traffic, economics, weather, and disease. In most cases, PWDformer 
outperforms state-of-the-art (SOTA) models.

2. Preliminaries

2.1. Problem definition

Long-term forecasting is a more difficult time series prediction problem. We define the input time series 𝑋 as having a length of 𝐼 , and the time 
series to be predicted 𝑌 with a length of 𝑂. As time series can be either univariate or multivariate, we define the dimension of the variable as 𝑁 . 
Hence, we have 𝑋 ∈ R𝐼×𝑁 and 𝑌 ∈ R𝑂×𝑁 .

One fundamental assumption in this context is the conditional independence between different time instants.
For the input time series 𝑥𝑛1∶𝑡𝑝−1

N

n=1
, where 𝑥𝑛1∶𝑡𝑝−1 = (𝑥𝑛1, 𝑥

𝑛
2,… ,

horizon, and 𝜏 ∈ N represents the forecast length. Consequently, the total sequence length becomes 𝑙𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑝 + 𝜏. The goal of this problem is to model 
the conditional probability distribution of the input time series and predict the future time series with the specified time step 𝜏. In long-term 
forecasting, the 𝜏 is greater than in normal time series forecasting. Our objective can be expressed as follows:

𝑍𝑡
𝑖
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Here, 𝑖 represents the dimensions to be predicted, and 𝛷 represents our model. The 𝜃 denotes the learnable parameters.

{ } 𝑛
𝑝𝑥𝑡 −1), 𝑡𝑝 ∈ N denotes the forecast h zon, and 𝜏 ∈ N represents the forecast

In Section 3.1, we will start by presenting the comprehensive architecture of PWDformer, as depicted in Fig. 1. Subsequently, Section 3.2 will 
introduce the structure of PWD correlation, which encompasses DL aggregation and Position Weights. The detailed specifics of DL 
aggregation can be found in Section 3.2.1, while Section 3.2.2 will elaborate on the working principles of Position Weights. Lastly, in 
Section 3.3, we will introduce the Frequency-Selection module.

3. Methodology



3.1. Pwdformer structure

As depicted in Fig. 1, PWDformer comprises two major components: Encoder and Decoder. The input to the Encoder is denoted as 𝑋𝑒𝑛 ∈ R𝐿×𝐷,
where 𝐿 represents the length of inputs, and 𝐷 represents the number of variables in the time series. For the Decoder input, denoted as 𝑋𝑑𝑒 ∈ R𝐿×𝐷,
we use the second half of the original inputs 𝑋 ∈ R𝐿×𝐷 filled with zeros to match the length of the Encoder input. Subsequently, the series decompose 
module decomposes 𝑋𝑑𝑒 into seasonal items 𝑋𝑠 ∈ R𝐿×𝐷 and residual items 𝑋𝑟 ∈ R𝐿×𝐷.

𝑋𝑑𝑒 = 𝑃 𝑎𝑑𝑑𝑖𝑛𝑔(𝑋 𝐼
2 ∶𝐼 , 0)

The process of the series decompose module can be described as follows:

𝑋𝑚𝑒𝑎𝑛 = 𝑀𝑒𝑎𝑛(𝑋 𝐼
2 ∶𝐼 ), 𝑋𝑚𝑒𝑎𝑛 ∈ R 2 ∕2×𝐷

𝑋𝑟 = 𝐴𝑣𝑔𝑃 𝑜𝑜𝑙(𝑃 𝑎𝑑𝑑𝑖𝑛𝑔(𝑋𝑑𝑒, 0))

𝑋𝑠 = 𝑃 𝑎𝑑𝑑𝑖𝑛𝑔(𝑋𝑑𝑒 − 𝑋𝑟, 𝑋𝑚𝑒𝑎𝑛)

     Here, 𝑥𝑟 represents the residual item, and 𝑥𝑠 denotes the seasonal item. The idea of decomposing the series is derived from some early time series 

modeling methods [33,34], which believe that the seasonal term contains a clear change law and the residual term is a combination of trend and 
inherent noise, reflecting the general trend of the series. Some recent works [29,35] have proved that this decomposition based prediction method 
can effectively improve the performance of the model. The operation 𝑃 𝑎𝑑𝑑𝑖𝑛𝑔(𝑥, 𝛼) denotes filling the series 𝑥 with a constant 𝛼. Meanwhile, 𝐴𝑣𝑔𝑃 
𝑜𝑜𝑙 refers to the moving average operation. The Data Embedding step utilizes Temporal Embedding [29] to transform the input into a high-
dimensional space with the assistance of linear layers.

3.2. Position weight deformable (PWD) correlation

The existing Transformer-based models suffer from two main draw-backs:
Firstly, when dealing with complex patterns in long-term forecasting, sacrificing the ability of information aggregation is not an ideal 

solution. Time information aggregation refers to combining information on historical time points within a certain time window size and 
extracting potential features, while traditional self-attention can only aggregate features on a single time point, so the aggregated feature 
information is not rich and sufficient, which is difficult to deal with long-term prediction. Our aim is to design a mechanism that enhances 
the information aggregation capability of the self-attention mechanism without significantly increasing computational complexity.

Secondly, the self-attention operation is order-insensitive, meaning that changing the order of input information produces the same 
attention result. This limitation hinders the self-attention mechanism from fully leveraging its advantages in time series prediction tasks, 
especially in long-term forecasting. We believe that the model should be able to assign varying degrees of attention to inputs based on the time 
distance between them and the predicted point. For instance, in a stock prediction task, the model should focus more on recent data, while for 

L

Table 1
Comparison of information aggregation ability of different models.

Method Time aggregation capability

Ours 𝛥𝑘 ⋅ 𝑐 ⋅ log𝐿
Autoformer 𝑐 ⋅ log𝐿
Informer 𝑐 ⋅ log𝐿
Logtrans 𝑐 ⋅ log𝐿
Reformer 𝑐 ⋅ log𝐿

* 𝛥𝑘 represents the deformable scale, 𝑐 is a constant, 𝑐 ⋅ log 𝐿 represents the number of Topk QK pairs in the 
attention module. For example, in Autoformer [29] the 𝑐⋅log 𝐿 represents Topk autocorrelations.

stable and regular datasets, distant time points might be more critical than recent ones. To measure the information aggregation ability of 
Transformer-based models, we calculate the amount of information that can be aggregated at each time point to be predicted. As shown in 
Table 1, a higher number indicates a stronger information aggregation ability. For example, in Autoformer, each point to be predicted is
aggregated by 𝑛 input time points.

In response to these challenges, we propose the PWD correlation to tackle the above problems. As shown in Fig. 2, PWD correlation comprises 
two main components: DL aggregation and Position Weights. First, PWD calculates the correlation between Queries (𝑄) and Keys (𝐾) using Wiener–
Khinchin theorem [36]. We select the Top-𝜎 pairs of Query-Keys (𝑄𝐾) with the highest correlation, where 𝜎 is a manually set constant. For these 
Top-𝜎 𝑄𝐾 pairs, DL aggregation is applied to process the original Values (𝑉 ) and generate new 𝑉  with enriched local information and complex time 
patterns. Then, the model’s attention is adjusted to the new �̂�   through Position Weights. Finally, the outputs of PWD correlation are obtained.



Fig. 1. The overall structure of PWDformer.

Fig. 2. The PWD correlation involves generating three matrices of the same shape from the input time series through a linear layer: 𝑄, 𝐾, and 𝑉 .



3.2.1. Deformable local(DL) aggregation mechanism
To enable the model to capture more complex patterns in time series data, we emphasize that in the self-attention mechanism [24], it 

should aggregate temporal information at the level of time periods rather than fragmented and incomplete information at individual time 
points. However, different application scenarios and time series data may require varying sizes of aggregated time periods. Even for different 
time points within the same time series dataset, the required time period for prediction may differ.

Therefore, we propose the DL aggregation, which allows the model to dynamically adjust the size of the aggregated time period information 
based on the characteristics of the time points to be predicted. This adaptive approach facilitates better capturing of relevant temporal 
patterns.

The vanilla self-attention [24] mechanism comprises Querys, Keys, and Values (abbreviated as 𝑄, 𝐾, and 𝑉 ). To facilitate further discussion on 
self-attention, we establish the notation that 𝑄, 𝐾, and 𝑉 represent the Querys, Keys, and Values, respectively. Based on this notation, we can 
formally define the vanilla self-attention as follows:

𝐴(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾
√

𝑇

𝑑
)𝑉

Additionally, we introduce 𝑣𝑖 as the representation of the 𝑖th row
the Deformable Convolution [37,38] utilized in object detection, we propose that each 𝑣𝑖 in the 𝑣𝑎𝑙𝑢𝑒 matrix should also encompass temporal 
information from its neighboring time points within a certain time span. Leveraging the characteristics of time series data, we devise the DL 
aggregation, which is elaborated step by step below.

To elucidate the process of DL aggregation, let us consider a simple case of time aggregation with an immutable-size window. As shown in
Fig. 3, we assume the aggregated window size to be 𝑛 (where each 𝑣𝑖

of 𝑉 , where 𝑖 corresponds to the 𝑖th time point. Drawing inspiration from 

number).
We define Values as 𝑉 in the self-attention, the length of 𝑉 is 𝐿𝑉 . For each point 𝑣𝑖, 𝑖 = 1, 2, 3, … , 𝐿𝑉 , We gather information around 𝑣𝑖,

and the aggregated information is used as the new value of 𝑣𝑖. which can be expressed as:

can aggregate information from 𝑛 − 1 points around it, and 𝑛 is usually an odd 

𝑣𝑖 =
𝑖+(
∑

𝑛
2
−1 )

𝑗=𝑖−( 𝑛2
−1 )

𝑤𝑗 ∗ 𝑣𝑗

Fig. 3. Time aggregation with size-immutable window

s

where 𝑤𝑖 is the weight that can be learned during the process.
However, when dealing with time series data exhibiting complex patterns, the model should possess the capability to dynamically adjust the 

size of the time aggregation window based on the input data.
Furthermore, we propose the deformable local aggregation mecha-nism, as illustrated in Fig. 4.
Our general idea can be expressed as follows: for each 𝑣𝑖 in every time aggregation window, our mechanism learns an offset value 𝛥𝑠𝑖. Given that 

the same 𝑣𝑖 will learn 𝑛 offset values (due to the step size of the time aggregation window being 1, resulting in overlap between windows), we further 
represent 𝛥𝑠𝑖 as 𝛥𝑠𝑖𝑗 . Here, 𝛥𝑠𝑖𝑗 indicates the 𝑗th offset value of 𝑣𝑖. The new value of time point 𝑣𝑖 can be expressed as follows:
𝑣𝑖 = 𝑣𝑖̂

𝑖 = 𝑖 +
𝑛
∑

𝑗=1
𝑝𝑖𝑗 ∗ 𝛥𝑠𝑖𝑗



Where 𝑝𝑖𝑗 represents the learnable weight corresponding to each offset value 𝛥𝑠𝑖𝑗 .
However, the final coordinate 𝑖 is often a decimal value. To obtain

behind choosing unilinear interpolation is the continuity of time series data and the feasibility of backpropagation. Thus, the final value of 𝑣𝑖
can be determined by the following formula:
𝑣𝑖 = 𝐺(𝑐𝑒𝑖𝑙(𝑖), 𝑖) ∗ 𝑣𝑐𝑒𝑖𝑙(𝑖) + 𝐺(𝑓𝑙𝑜𝑜𝑟(𝑖), 𝑖) ∗ 𝑣𝑓𝑙𝑜𝑜𝑟(𝑖)

     𝐺 represents the linear interpolation kernel function. 𝑐𝑒𝑖𝑙 denotes the operation of rounding up to the nearest integer, and 𝑓 𝑙𝑜𝑜𝑟 denotes the 
operation of rounding down to the nearest integer.

the ultimate value of 𝑣𝑖̂ , we will utilize unilinear interpolation. The rationale 

Each 𝑣𝑖 in the original 𝑉 undergoes processing using the aforementioned offset mechanism, resulting in the transformed 𝑉 , denoted as 𝑉 .
Thus, the final 𝑉   is represented as 𝑉   |�̂�𝑖, 𝑖 = 0, 1, 2, 3..., 𝐿𝑣. The core workflow of the DL aggregation can be observed in Fig. 5. In this context, we 

employ a fixed-size time aggregation window to slide (with a stride of 1) on 𝑉 , thereby aggregating information for each point to implement our 
mechanism.

This step can be expressed as follows:

�̂�𝑖 ∈ 𝑉

�̂�𝑖 =
𝑖+(
∑

𝑛
2
−1 )

𝑗=𝑖−( 𝑛2
−1 )

𝑤𝑗 ∗ �̂�𝑗

With the aid of information entropy theory [39], we posit that if the extracted feature exhibits more diverse time patterns, its information 
entropy will be higher.

We conducted a statistical analysis on the characteristics (�̂�𝑗 ) to which each predicted point was aggregated. Our findings reveal that
the information entropy [39] of the outputs aggregated by DL aggregation is consistently higher than the feature distribution that was not 
processed by DL aggregation. The feature distribution obtained through DL aggregation was subjected to a statistical comparison with the final 
feature distribution used by autocorrelation in Autoformer. Some of the visualization results are displayed in Fig. 6. Additionally, we calculated the 
average information entropy of each head with an input length of 96 and an output length of 96 on the four datasets of Autoformer and 
PWDformer under the multivariable prediction task. Further details and comprehensive results are provided in Table 2.

Fig. 4. Deformable time aggregation window.

Table 2
The statistical comparison results of the feature information entropy extracted between our model and Autoformer. The input length is 96
and the prediction length is 96. Head 1 represents the first head of the Multi-headed attention. The values in the table represent the average
information entropy within each head. The larger the value of information entropy, the more complex information pattern can be extracted.
The bolded value represents the larger average information entropy on the same dataset.

Dataset Method Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

ETTh1 Autoformer 1.2164 1.2187 1.2181 1.2146 1.2144 1.2178 1.2191 1.2181
Ours 1.3957 1.3923 1.3835 1.4000 1.4073 1.3990 1.3991 1.3880

ETTh2 Autoformer 1.2620 1.2609 1.2584 1.2581 1.2578 1.2606 1.2569 1.2521
Ours 1.5118 1.4939 1.4830 1.4781 1.4907 1.4934 1.5023 1.5033

ETTm1 Autoformer 1.8391 1.8445 1.8356 1.8448 1.8417 1.8421 1.8468 1.8357
Ours 1.9008 1.8950 1.9060 1.8972 1.9009 1.8930 1.8725 1.8954

ETTm2 Autoformer 0.7558 0.7597 0.8193 0.7593 0.8056 0.7658 0.7826 0.7703
Ours 0.9173 0.9192 0.9312 0.9406 0.9203 0.9299 0.9295 0.9336

Exchange Autoformer 1.3780 1.3688 1.3773 1.3711 1.3864 1.3730 1.3752 1.3408
Ours 1.7527 1.7507 1.7454 1.7490 1.7504 1.7469 1.7511 1.7516



Fig. 5. The core working flow of deformable local aggregation.

Fig. 6. The information entropy of the extracted feature was calculated and analyzed. For visual display purposes, we specifically selected the information entropy of the first 8
channels in each head. In the figure, the 𝑦-axis represents the information entropy, while the 𝑥-axis represents the channel number. Notably, all the input lengths in the figure
are set to 96, and the prediction length is also 96. Moreover, it is essential to mention that the predictions made are for a multivariable scenario.

Fig. 7. The working flow of Position Weights.



3.2.2. Position weights
As most of the existing long-term forecasting models based on the self-attention mechanism overlook the significance of temporal order 

in time series prediction tasks, we propose the concept of Position Weights. This novel approach takes into account the sequential nature 
of time series data and can be mathematically expressed as follows:

𝐶𝑜𝑟𝑟 = 𝑅(𝑄, 𝐾)

𝑠𝑐𝑜𝑟𝑒(𝜏) = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥(ℎ,𝑐 ◦𝐶𝑜𝑟𝑟ℎ,𝑐 )

Where 𝑅(𝑄,𝐾) represents the correlation coefficient between 𝑄 and

 (𝜏) =
→
lim
𝐿 ∞

1
𝐿

∑

𝐿

𝑡=1
𝑡𝑡−𝜏

𝐾, and 𝜏 denotes the lag or delay of the autocorrelation coefficient. To delve 

Based on the Wiener–Khinchin theorem, we can efficiently obtain a function for calculating the autocorrelation coefficient of a sequence:

 (𝑓 ) = 
(

𝑡
)

∗ (𝑡
)

 (𝜏) = −1 ( (𝑓 )
)

= ∫−∞
∞ 𝑡𝑒−𝑖2𝜋𝑡𝑓 d𝑡 ∫−∞

∞ 𝑡𝑒−𝑖2𝜋𝑡𝑓 d𝑡

= ∫−∞
∞  (𝑓 )𝑒𝑖2𝜋𝑓𝜏d𝑓

𝐿 represents the length of the sequence, and 𝜏 ∈ 1, … , 𝐿 denotes the delay or lag of the sequence autocorrelation coefficient.  represents the fast 
Fourier transform. In conclusion, the expression for Position Weights can be represented as follows:

𝜏 ∈ {1, … , 𝐿}

𝑠𝑐𝑜𝑟𝑒(𝜏) = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥(ℎ,𝑐 ◦𝐶𝑜𝑟𝑟ℎ,𝑐 )

𝜏1, … , 𝜏𝑘 = 𝑎𝑟𝑔𝑇 𝑜𝑝𝐾(𝑠𝑐𝑜𝑟𝑒(𝜏))

𝑃𝑊 (𝑄,𝐾, 𝑉 ) =
𝑓𝑎𝑐
∑

𝑡𝑜𝑟

𝑖=1
𝐺𝑎𝑡ℎ𝑒𝑟( , 𝜏)◦𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝜏))

Where:
• 𝐺𝑎𝑡ℎ𝑒𝑟( , 𝜏) refers to the value of  after applying the delay 𝜏.
• 𝑊 ∈ R𝐻×𝐶×𝐿 represents the set of learnable parameters.
• 𝑠𝑐𝑜𝑟𝑒(𝜏) ∈ R𝐻×𝐶×𝐿 represents the attention scores for different delays.
• ◦ denotes the dot product operation.

With the application of Position Weights, the attention scores for different positions within each channel are adjusted, allowing the 
model to effectively capture complex time patterns and dependencies in the time series data (see Fig. 8).

3.3. Frequency-selection module

We believe that the task of time series prediction may not necessarily require a complex coding process for the encoder. Instead, 
we posit that the decoder’s ability to extract complex temporal patterns plays a crucial role. The encoder’s primary responsibility 
should be focused on tasks such as noise reduction [40] or filtering. With these ideas in mind, we have designed the Frequency Selection 
module for the encoder. The main purpose of this module is to enhance or weaken specific frequencies of the time series data in the 
frequency domain by 

deeper into complex time patterns, we propose that the model assigns different weights to various positions within each channel. This allows the 
model to discern the varying importance of different time points in capturing temporal dependencies and patterns.  represents a set of learnable 
parameters with the shape of ℎ × 𝑐, where ℎ denotes the number of heads in the multi-head self-attention mechanism, and 𝑐 represents the number of 
channels within each head. These learnable parameters allow the model to adaptively assign different weights to different positions and channels, 
facilitating the extraction of relevant temporal patterns and correlations for the task at hand.

In terms of computing the autocorrelation coefficient 𝑅(𝑄, 𝐾), we employ the Wiener–Khinchin theorem [36]. This theorem allows us to 
efficiently calculate the autocorrelation coefficient between sequences. By utilizing this method, we can effectively analyze the relationships and 
dependencies within the sequences without incurring excessive computational overhead (see Fig. 7). We define the autocorrelation coefficient 
between sequences as:

dimensions or channels in the data. The corresponding learnable weights are denoted as 𝑤 (𝑤 ∈ R𝐿×𝐷). Considering the above, the workflow of 
the entire module can be succinctly expressed as follows:
�̂�  = 𝑓 𝑓 𝑡(𝑥)

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑓 𝑓 𝑡(𝑤◦�̂� )

is the sequence length, and 𝐷 represents the number of 
employing a set of learnable weights. To elaborate, let us specify the Fourier transform operation as 𝑓 𝑓 𝑡, 

Fourier transform as 𝑖𝑓 𝑓 𝑡. The input time series data is denoted as 𝑥 (𝑥 ∈ R𝐿×𝐷), where 𝐿

and the inverse



The operator ◦ is the Hadamard product. In our module, the first step is to obtain the frequency domain representation �̂� of the input time series 
data 𝑥 using the fast Fourier transform. Next, we perform the Hadamard product between the learnable weights 𝑤 and �̂�, effectively modifying the 
frequency components. Finally, we invert the Fourier transform on the result to bring it back to the time domain, resulting in the modified time 
series data with the desired frequency adjustments. To summarize, the Frequency Selection module achieves its objective by transforming the 
input data into the frequency domain, applying learnable weights to the frequency components using the Hadamard product, and then 
bringing the modified data back to the time domain through the inverse Fourier transform. This process allows the module to selectively 
enhance or weaken specific frequencies in the time series data, contributing to noise reduction or other filtering tasks in the encoder’s 
workflow.

Fig. 8. The working flow of Frequency Selection.

4. Experiments

In this section, we will comprehensively verify the performance of PWDformer through a series of extensive experiments. To achieve this,
we carefully selected six datasets that represent various application scenarios for most long-term forecasting tasks. These datasets encompass 
five different scenarios: energy, economy, transportation, weather, and disease prediction. During our study, we discovered that traditional 
time series prediction models, such as ARIMA [16], RNN [8], and CNN [7]-based models, performed inadequately on these datasets. This 
observation is further corroborated by the findings presented in the studies of Wu et al. [29] and Zhou et al. [25]. To conduct a fair 
comparison, we selected the best-performing models on these datasets, with most of them being based on the Transformer architecture [24]. For 
the multivariate forecasting task, we compared the performance of PWD-former against several prominent models, including Autoformer 
[29], Informer [25], LogTrans [27], Reformer [26], LSTNet [41], LSTM [42], and TCN [43]. Additionally, for the univariate forecasting task, 
we contrasted the performance of PWDformer against Autoformer [29], Informer [25], LogTrans [27], and Reformer [26].

Through these comprehensive comparative experiments, we aim to demonstrate the superiority of PWDformer in tackling a wide range of 
long-term forecasting scenarios. The results will highlight PWDformer’s ability to outperform existing state-of-the-art Transformer-based 
models in both univariate and multivariate forecasting tasks across diverse application domains.

4.1. Datasets and experimental settings

In this section, the details of the experiment datasets are summarized as follows: (1) ETT [29] dataset contains four sub-dataset: 
ETTh1, ETTh2, ETTm1 and ETTm2. Among them, ETTh1 and ETTm1 come from the power transformer of the same site.ETTh2, ETTm2 from 
another site. ETTh1 and ETTh2 represent the collection frequency in hours. ETTm1 and ETTm2 represent the collection frequency in the
unit of 15 min. ETT dataset contains multiple series of loads and one series of oil temperatures. (2) The Electricity1 dataset is a dataset 
on electricity consumption that collects the electricity consumption of 322 clients over time (one client per column). (3) The Exchange [41] 
dataset is about the exchange rates and contains exchange rate data for exchanges of eight countries. (4) The Traffic2 dataset contains the 
traffic bring collected on highway in California. (5) Weather3 dataset has 21 meteorological indicators for a range of 1 year in Germany.
(6) Illness4 dataset contains the influenza-like illness patients in the United States. We follow the Autoformer [29] setup for partitioning
the dataset and split all datasets into training, validation and test set in chronological order by the ratio of 6:2:2 for the ETT dataset and 7:1:2
for all others.

 In terms of experimental setting, we are also consistent with Auto-former: The method is trained with the L2 loss, using the ADAM 
[44] optimizer with an initial learning rate of 1e-4. Batch size is set to 32. The training process is early stopped within 10 epochs. All
of our experiments were repeated three times, implemented in PyTorch [45] and carried out on a single NVIDIA GeForce RTX 3060 12 GB
GPU.
1 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2 http://pems.dot.ca.gov
3 https://www.bgc-jena.mpg.de/wetter/
4 https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html



4.2. Multivariate results

As depicted in Table 4, our model demonstrates superior perfor-mance compared to the existing state-of-the-art (SOTA) model (Auto-former) 
across all four subdatasets of ETT. Notably, on the ETTh1 dataset, our model achieved an impressive 9.7% improvement in Mean Squared Error 
(MSE) (0.490 → 0.442) and a significant 5.8% improvement in Mean Absolute Error (MAE) (0.481 → 0.453). Similarly, on the ETTh2 dataset, our 
model achieved an 11.2% improvement in MSE (0.457 → 0.406) and a notable 7% improvement in MAE (0.455 → 0.423). Furthermore, on the 
ETTm1 dataset, our model demonstrated a remarkable 22.2% improvement in MSE (0.634 → 0.491) and a substantial 9.5% improvement in MAE 
(0.453 → 0.41). On the ETTm2 dataset, our model showcased impressive improvements of 18.4% in MSE (0.255 → 0.208) and 14.5% in MAE (0.339 
→ 0.29).

Similarly, as evident from Table 5, our model outperforms the existing SOTA model (Autoformer) across the remaining five datasets as well. On
the Electricity dataset, our model achieved a noteworthy 14.9% improvement in MSE (0.222 → 0.189) and a significant 9.6%improvement in MAE 
(0.334 → 0.302). For the Exchange dataset, our model demonstrated an impressive 27.1% improvement in MSE (0.509 → 0.371) and a substantial 
14.7% improvement in MAE (0.524 → 0.447). On the Traffic dataset, our model showcased a considerable 13.8% improvement in MSE (0.660 → 0.569) 
and a notable 13.7%improvement in MAE (0.408 → 0.352). Moreover, on the Weather dataset, our model achieved a noteworthy 10.5% improvement in 
MSE (0.266 → 0.238) and a significant 7.7% improvement in MAE (0.336 → 0.31). Lastly, on the ILI dataset, our model demonstrated a remarkable 16.9% 
improvement in MSE (3.103 → 2.578) and a substantial 9.0%improvement in MAE (1.148 → 1.045).

Overall, our model consistently achieved a substantial performance improvement compared to the existing models. Particularly noteworthy is 
the improvement of over 20% observed on some datasets (e.g., Ex-change, ETTm1). Notably, our model showcased exceptional performance 
on the Traffic dataset, achieving a 13.8% MSE improvement with a forecast length of 720, and on the Exchange dataset, where a 21.4% 
MSE improvement was achieved with the same forecast length.

We also provide the Pearson correlation coefficient and the Spear-man correlation coefficient for some datasets. Our model achieved the best 
results in both of these evaluation metrics. As shown in Table 3.

These compelling results further underscore the advantages of our model for handling long-term forecasting.

Table 3
Pearson correlation coefficient and the Spearman correlation coefficient.

Datasets ETTh1 ETTh2 ETTm1 ETTm2

PredictionLength 24 48 168 336 720 24 48 168 336 720 24 48 96 288 672 24 48 96 288 672

Ours Pearson 0.682 0.68 0.578 0.516 0.451 0.633 0.535 0.358 0.246 0.161 0.744 0.7 0.682 0.576 0.513 0.785 0.755 0.702 0.566 0.417
Spearman 0.343 0.334 0.288 0.254 0.237 0.309 0.265 0.182 0.123 0.084 0.362 0.342 0.332 0.296 0.269 0.382 0.369 0.348 0.286 0.213

Autoformer Pearson 0.624 0.633 0.515 0.506 0.388 0.557 0.529 0.34 0.24 0.118 0.651 0.617 0.57 0.508 0.502 0.779 0.74 0.679 0.548 0.409
Spearman 0.307 0.317 0.257 0.252 0.2 0.274 0.263 0.173 0.121 0.067 0.316 0.299 0.282 0.268 0.259 0.375 0.362 0.338 0.28 0.21

Table 4
Multivariate prediction results on the ETT dataset. We follow the SOTA models’ (Autoformer [29], Informer [25] etc.) settings: set the input length as 96. A lower MSE or MAE 
indicates a better prediction.

Models Ours Autoformer Informer LogTrans Reformer LSTNet LSTMa

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.357 0.409 0.384 0.425 0.577 0.549 0.686 0.604 0.991 0.754 1.293 0.901 0.650 0.624
48 0.38 0.419 0.392 0.419 0.685 0.625 0.766 0.757 1.313 0.906 1.456 0.960 0.702 0.675
168 0.442 0.453 0.490 0.481 0.931 0.752 1.002 0.846 1.824 1.138 1.997 1.214 1.212 0.867
336 0.481 0.482 0.505 0.484 1.128 0.873 1.362 0.952 2.117 1.280 2.655 1.369 1.424 0.994
720 0.503 0.511 0.498 0.500 1.215 0.896 1.397 1.291 2.415 1.520 2.143 1.380 1.960 1.322

ETTh2

24 0.238 0.323 0.261 0.341 0.720 0.665 0.828 0.750 1.531 1.613 2.742 1.457 1.143 0.813
48 0.297 0.36 0.312 0.373 1.457 1.001 1.806 1.034 1.871 1.735 3.567 1.687 1.671 1.221
168 0.406 0.423 0.457 0.455 3.489 1.515 4.070 1.681 4.660 1.846 3.242 2.513 4.117 1.674
336 0.466 0.475 0.471 0.475 2.723 1.340 3.875 1.763 4.028 1.688 2.544 2.591 3.434 1.549
720 0.458 0.476 0.474 0.484 3.467 1.473 3.913 1.552 5.381 2.015 4.625 3.709 3.963 1.788

ETTm1

24 0.34 0.391 0.383 0.403 0.323 0.369 0.419 0.412 0.724 0.607 1.968 1.170 0.621 0.629
48 0.383 0.41 0.454 0.453 0.494 0.503 0.507 0.583 1.098 0.777 1.999 1.215 1.392 0.939
96 0.398 0.429 0.481 0.463 0.678 0.614 0.768 0.792 1.433 0.945 2.762 1.542 1.339 0.913
288 0.491 0.489 0.634 0.528 1.056 0.786 1.462 1.320 1.820 1.094 1.257 2.076 1.740 1.124
672 0.559 0.516 0.606 0.542 1.192 0.926 1.669 1.461 2.187 1.232 1.917 2.941 2.736 1.555

ETTm2

24 0.149 0.255 0.153 0.261 0.173 0.301 0.211 0.332 0.333 0.429 1.101 0.831 0.580 0.572
48 0.171 0.269 0.178 0.280 0.303 0.409 0.427 0.487 0.558 0.571 2.619 1.393 0.747 0.630
96 0.208 0.29 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365 2.041 1.073
288 0.309 0.353 0.342 0.378 1.047 0.804 1.090 0.806 2.441 1.190 2.856 1.329 0.969 0.742
672 0.403 0.407 0.434 0.430 3.126 1.302 2.397 1.214 3.090 1.328 3.409 1.420 2.541 1.239



Table 5
Multivariate prediction results on the Five dataset. We follow the SOTA models’ (Autoformer [29], Informer [25] etc.) settings: set the input length I as 36 for ILI and 96 for the 
others. A lower MSE or MAE indicates a better prediction.

Models Ours Autoformer Informer LogTrans Reformer LSTNet LSTM TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

96 0.185 0.299 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402 0.680 0.654 0.375 0.437 0.985 0.813
192 0.189 0.302 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433 0.725 0.676 0.442 0.473 0.996 0.821
336 0.198 0.31 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433 0.828 0.727 0.439 0.473 1.000 0.824
720 0.219 0.328 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420 0.957 0.811 0.980 0.814 1.438 0.784

Exchange

96 0.153 0.286 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058 1.453 1.049 3.004 1.432
192 0.245 0.368 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028 1.846 1.179 3.048 1.444
336 0.371 0.447 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 1.507 1.031 2.136 1.231 3.113 1.459
720 1.137 0.825 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243 2.984 1.427 3.150 1.458

Traffic

96 0.58 0.365 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423 1.107 0.685 0.843 0.453 1.438 0.784
192 0.578 0.353 0.616 0.382 0.696 0.379 0.685 0.390 0.733 0.420 1.157 0.706 0.847 0.453 1.463 0.794
336 0.569 0.346 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.420 1.216 0.730 0.853 0.455 1.479 0.799
720 0.569 0.352 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423 1.481 0.805 1.500 0.805 1.499 0.804

Weather

96 0.238 0.31 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596 0.594 0.587 0.369 0.406 0.615 0.589
192 0.291 0.346 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.560 0.565 0.416 0.435 0.629 0.600
336 0.368 0.399 0.359 0.395 0.578 0.523 0.797 0.652 0.639 0.596 0.597 0.587 0.455 0.454 0.639 0.608
720 0.407 0.414 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.618 0.599 0.535 0.520 0.639 0.610

ILI

24 3.055 1.193 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382 6.026 1.770 5.914 1.734 6.624 1.830
36 2.578 1.045 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 5.340 1.668 6.631 1.845 6.858 1.879
48 2.685 1.096 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 6.080 1.787 6.736 1.857 6.968 1.892
60 2.7 1.111 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483 5.548 1.720 6.870 1.879 7.127 1.918

4.3. Univariate results

The results of the univariate prediction are presented in Table 6. A comparison with Autoformer reveals that our model has 
exhibited improved accuracy in the majority of cases. Remarkably, on the ETTm1 dataset, our model achieved a remarkable 32.1% increase 
in MSE for a predicted length of 96, and an impressive 30.9% increase in MSE for a predicted length of 192, respectively. These 
significant improvements underscore the superiority of our model in tackling univariate forecasting tasks, particularly on the ETTm1 
dataset.

Result analysis: Our model consistently outperforms Autoformer in both multivariate and univariate prediction tasks, as evidenced 
by lower MSE and MAE values, indicating closer proximity to the true values. Moreover, our model exhibits higher Spearman and 
Pearson coefficients, suggesting a stronger correlation between predicted and true values. These superior performance metrics are 
attributed to the incorporation of three proposed modules: DL aggregation, Position Weights and Frequency-Selection. By leveraging 
diverse historical features from multiple perspectives, our model excels at capturing the general trend of sequences with remarkable 
accuracy, as demonstrated
Autoformer.

For cases such as 336 and 720, where the prediction length is more extreme, we believe that further analysis is necessary to 
clearly demonstrate our contribution. When the prediction step size is very long, we believe that more rich and diverse feature 
information is the key to improve the performance of the model. This is similar to Bengio et al. [46] mentioned that feature 
representation from multiple sources helps to improve model performance. The DL aggregation module enriches the acquisition of 
features from a local perspective. The Position Weights provides more information to the model from a sequential perspective. 
Frequency-Selection module performs feature selection from the frequency domain perspective. All of these factors contribute to our 
model’s ability to accurately capture the underlying patterns of the original sequence even under extreme prediction step sizes.

As shown in Fig. 9, our model outperforms Autoformer in capturing the general trend of the series, even when facing a prediction 
step size of 720. The higher Spearman and Pearson coefficients reported in Table 3 indicate that our predicted results are more similar 
to the ground truth compared to Autoformer. While our model may have slightly higher MSE and MAE indices than Autoformer for 
ETTh1 at a prediction step size of 720, it is important to note that these metrics do not fully represent the quality of predictions as 
low MSE values can still result in irrelevant predictions. Combining this with correlation evaluation results (Table 3), we observe that our 
proposed model achieves significantly higher Pearson and Spearman coefficients at 0.451 and 0.237 respectively, compared to Autoformer’s 
scores of 0.388 and 0.2 respectively. This is further supported by Fig. 9 which shows that while Autoformer may make ‘lucky’ predictions, 
its overall trend prediction is completely wrong.

in Table 3 where our model achieves the highest correlation coefficients across all ETT datasets compared to 



Table 6
Univariate prediction results on the ETT dataset. We set the input length as 96. A lower MSE or MAE indicates a better prediction.

Models Ours Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.073 0.211 0.071 0.206 0.193 0.377 0.283 0.468 0.532 0.569
192 0.92 0.234 0.114 0.262 0.217 0.395 0.234 0.409 0.568 0.575
336 0.106 0.257 0.107 0.258 0.202 0.381 0.386 0.546 0.635 0.589
720 0.123 0.279 0.126 0.283 0.183 0.355 0.475 0.628 0.762 0.666

ETTh2

96 0.144 0.294 0.153 0.306 0.213 0.373 0.217 0.379 1.411 0.838
192 0.194 0.342 0.204 0.351 0.227 0.387 0.281 0.429 5.658 1.671
336 0.242 0.389 0.246 0.389 0.242 0.401 0.293 0.437 4.777 1.582
720 0.275 0.422 0.268 0.409 0.291 0.439 0.218 0.387 2.042 1.039

ETTm1

96 0.038 0.151 0.056 0.183 0.109 0.277 0.049 0.171 0.296 0.355
192 0.056 0.186 0.081 0.216 0.151 0.310 0.157 0.317 0.429 0.474
336 0.073 0.214 0.076 0.218 0.427 0.591 0.289 0.459 0.585 0.583
720 0.91 0.235 0.110 0.267 0.438 0.586 0.430 0.579 0.782 0.730

ETTm2

96 0.077 0.213 0.065 0.189 0.088 0.225 0.075 0.208 0.076 0.214
192 0.107 0.254 0.118 0.256 0.132 0.283 0.129 0.275 0.132 0.290
336 0.138 0.289 0.154 0.305 0.180 0.336 0.154 0.302 0.160 0.312
720 0.18 0.329 0.182 0.335 0.300 0.435 0.160 0.321 0.168 0.335

4.4. Ablation study

In order to further explore and demonstrate the validity of our proposed three modules, we conducted ablation experiments on two 
different datasets.

Tables 7–8 show the results on the ETTm2 and Exchange datasets respectively. For the sake of illustration, we have added a column (for 
short) to the far left of the table to mark the four different module configurations. We set Mode A as the baseline model Autoformer. Mode B 
represents the individual Frequency Selection module. Mode C is the individual DL Aggregation module. Mode D is the individual Position 
Weights module. Mode E combines the Frequency Selection module with the DL Aggregation module. Mode F combines the Frequency 
Selection module with the Position Weights module. Mode G combines the DL Aggregation module with the Position Weights module. Mode H 
includes all three modules, representing our complete model. The horizontal axis represents the predicted length and the vertical axis 
represents the MSE.

Ablation experiments on two different datasets demonstrate the effectiveness of our proposed three modules. From the perspective of 
individual modules, the Frequency Selection module generally provides performance improvement in most cases. However, it only weakens the 
baseline model’s performance on the ETT dataset when the prediction stride is 48. The DL Aggregation module performs well on the Exchange 
dataset, improving the model’s performance for all four prediction strides. The improvement becomes more evident with increasing 
prediction stride. For instance, at a prediction stride of 96, the baseline model’s MSE improves from 0.197 to 0.167 (17.9%). At a 
prediction stride of 336, it improves from 0.509 to 0.401 (21.2%). However, the DL Aggregation module’s performance on the ETT 
dataset is not satisfactory, as it even weakens the model’s performance with shorter prediction strides (24, 48). Its performance on the ETT 
dataset improves gradually with the increase of prediction stride. On the other hand, the Position Weights module provides positive assistance 
to the model in all cases and both datasets, regardless of the prediction stride.

From the perspective of combining two modules, let us start with the combination of the Frequency Selection module and DL Aggregation 
module. This combination slightly weakens the model’s performance on the ETT dataset at a prediction stride of 48. Similarly, the combination 
of the Frequency Selection module and Position Weights module also slightly weakens the model’s performance on the ETT dataset with a 
prediction stride of 48. This may be related to the subpar performance of the individual Frequency Selection module in this particular case. 
Now, the combination of the Frequency Selection module with Position Weights module has the smallest improvement effect compared to 
other dual-module combinations. In some cases, it does not improve the model or even has a negative impact. For example, on the ETT 
dataset with prediction strides of 24 and 48. Finally, the combination of the DL Aggregation module with Position Weights module is the 
most beneficial among the dual-module combinations. Especially as the prediction stride increases, its effect becomes more prominent. 
For instance, on the Exchange dataset with a prediction stride of 96, this combination’s improvement effect is still smaller than Mode E, 
but as the prediction stride increases, its improvement effect surpasses Mode E.Those further demonstrate the capability of our model for the 
long-term forecasting.

4.5. Position weights visualization

As demonstrated in Figs. 10 and 11, we have selected a subset of data from the Exchange dataset to visualize the effect of Position
Weights. In each graph, the first subgraph depicts the original correlation, while the second subgraph represents the correlation after 
applying our proposed Position Weights. The third subgraph visualizes the relevance of attention with the application of Position Weights 
processing.

As we discussed earlier, existing Transformer-based models tend to be order-insensitive, which may not be ideal for time series prediction 
tasks. In contrast, our proposed Position Weights take into account the importance of different positions in the time series data. As evident 
from Figs. 10–11, the original correlation appears regular and order-insensitive. However, once adjusted using the Position Weights, the 
models can capture more intricate and complex time patterns, which are crucial for accurate time series predictions. The enhanced ability 
to capture these complex temporal dependencies contributes to the improved performance of our model over existing Transformer-based 
approaches.



Fig. 9. 720 step prediction detail display. When the predicted step size is 720, the results are gradually enlarged from left to right.

Table 7
Results of the ablation experiment on the Exchange dataset. We set the input length as 96. A lower MSE or MAE indicates a better prediction.

For short Frequency
selection

DL aggregation Position
weights

Predictions lengths

96 192 336 720

MSE MAE MSE MAE MSE MAE MSE MAE

Mode A 0.197 0.323 0.3 0.369 0.509 0.524 1.447 0.941
Mode B ✓ 0.155 0.286 0.274 0.383 0.467 0.511 1.2 0.851
Mode C ✓ 0.167 0.294 0.278 0.389 0.401 0.469 1.199 0.849
Mode D ✓ 0.186 0.317 0.299 0.365 0.437 0.491 1.314 0.877
Mode E ✓ ✓ 0.141 0.273 0.272 0.381 0.409 0.473 1.156 0.838
Mode F ✓ ✓ 0.155 0.283 0.27 0.384 0.423 0.499 1.192 0.844
Mode G ✓ ✓ 0.149 0.277 0.251 0.379 0.378 0.46 1.141 0.829
Mode H (ours) ✓ ✓ ✓ 0.153 0.286 0.245 0.37 0.371 0.447 1.137 0.825

Table 8
Results of the ablation experiment on the ETTm2 dataset. We set the input length I as 96. A lower MSE or MAE indicates a better prediction.

For short Frequency
selection

DL aggregation Position
weights

Predictions lengths

24 48 96 288 672

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Mode A 0.153 0.261 0.178 0.28 0.255 0.339 0.342 0.378 0.434 0.43
Mode B ✓ 0.15 0.26 0.181 0.282 0.246 0.331 0.332 0.376 0.427 0.421
Mode C ✓ 0.155 0.264 0.183 0.289 0.254 0.341 0.319 0.371 0.412 0.427
Mode D ✓ 0.151 0.259 0.177 0.284 0.247 0.331 0.328 0.369 0.429 0.426
Mode E ✓ ✓ 0.144 0.259 0.179 0.283 0.221 0.307 0.312 0.365 0.408 0.411
Mode F ✓ ✓ 0.149 0.262 0.183 0.29 0.252 0.339 0.34 0.373 0.424 0.419
Mode G ✓ ✓ 0.146 0.26 0.176 0.281 0.211 0.305 0.309 0.361 0.405 0.409
Mode H (ours) ✓ ✓ ✓ 0.149 0.255 0.171 0.269 0.208 0.29 0.309 0.353 0.403 0.407

4.6. Forecasting showcases

To provide a more intuitive demonstration of our model’s performance, we have randomly selected a portion of the data for visualization. A 
detailed comparison with the Autoformer model is presented to showcase the superiority of our approach.

As depicted in Fig. 12, and Fig. 13, our model exhibits a notable reduction in prediction error compared to the Autoformer model. 
Additionally, the prediction curves generated by our model are notably smoother. These results further emphasize the enhanced predictive 
capabilities of our model, particularly in terms of achieving more accurate and refined predictions compared to the Autoformer model. The 
visualizations offer a clear and intuitive representation of our model’s performance, validating its efficacy in handling time series forecasting tasks.



Fig. 10. Multihead Position Weights’ heatmap with 8 heads on the Exchange dataset. This is the head 1. Since the dimension of the data in the model is 512 and the number of
heads is 8, the number of channels per head is 64. The 𝑦 axis represents the channel and the horizontal axis represents the point in time to be predicted. The shade of each pixel
represents the amount of attention (or weight).

Fig. 11. Multihead Position Weights’ heatmap with 8 heads on The Exchange dataset. This is the head 2.



Fig. 12. Visualization results of multivariate prediction on ETTh2 dataset. Input step size is 96. Ours-x represents the performance of Ours under the setting of prediction step
size x.

Fig. 13. Visualization results of multivariate prediction on ETTm2 dataset. Input step size is 96. Ours-x represents the performance of Ours under the setting of prediction step
size x.

We present a novel deep learning model, PWDformer, for long-term forecasting by integrating signal processing techniques with an
autoregressive model based on deep learning. The experimental results, both for multivariate and univariate prediction tasks, support our 
proposed mechanisms. PWDformer achieved state-of-the-art results on six popular datasets, demonstrating its strong potential for long-term 
forecasting tasks. Moreover, we provided evidence of DL aggregation’s ability to extract complex time patterns using information entropy 
analysis. A detailed ablation experiment further validated the effectiveness of the three proposed modules: DL aggregation, Position Weights, 
and Frequency Selection. Visualization results of Position Weights confirmed its role in solving the order-insensitivity problem.

Despite significant progress and the proposal of the novel deep learning model, PWDformer, our study acknowledges several limitations 
and shortcomings that require attention and future research: Dataset Selection: In this study, we utilized multiple publicly available 
datasets to validate the effectiveness of PWDformer. However, these datasets might not fully represent the diversity and complexity of real-
world time series data. Future research should consider incorporating more diverse and domain-specific datasets to ensure the model’s 
generalizability. Computational Complexity: PWDformer incorporates DL aggregation and other advanced techniques, which might introduce 

5. Conclusion

increased computational complexity. While our model has demonstrated competitive performance on existing hardware, further efforts are 
needed to optimize the model’s efficiency for large-scale and real-time applications.

In the future, we recommend exploring the integration of more deep learning methods with traditional signal processing techniques. For 
instance, incorporating comparative learning to mitigate the impact of noise on predictions could yield promising results. Additionally, 
developing a low-complexity Transformer-based model would be valu-able for extending the length of input and output sequences. Exploring 
spectrum analysis technology in deep learning models can enable the mining of even more intricate time patterns.

Overall, our research paves the way for further improvements in long-term forecasting by synergizing deep learning and signal processing 
methodologies. Addressing the identified limitations and exploring new avenues of research will undoubtedly contribute to advancing the field 
and enhancing the performance of predictive models for complex time series data.
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